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A stochastic delay Gilpin-Ayala competition system under regime
switching

Yiliang Liua, Qun Liua

aCollege of Sciences, Guangxi University for Nationalities

Abstract. In this paper, a stochastic delay Gilpin-Ayala competition system under regime switching is
proposed and studied. We show that there is a unique global positive solution of the system for any given
positive initial value. Moreover, we show that the solution is stochastically ultimately bounded under some
conditions. Finally, asymptotic moment estimation of the solution with respect to a large time behavior is
derived.

1. Introduction

A deterministic Gilpin-Ayala competition system with N interacting species is as follows:

dxi(t) = xi(t)
[
ri(t) −

N∑
j=1

ai j(t)x
αi j

j (t) −
N∑

j=1

bi j(t)x
βi j

j (t − τi j) −
N∑

j=1

ci j(t)

×
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
]
dt, 1 ≤ i ≤ N, (1)

where x(t) = (x1(t), x2(t), . . . , xN(t))T, xi(t) and ri(t) are the population density and intrinsic growth rate of the
ith species at time t, respectively; A(t) = (ai j(t))N×N,B(t) = (bi j(t))N×N,C(t) = (ci j(t))N×N, where ai j(t), bi j(t), ci j(t)
stand for the effects of interspecific (for i , j) and intraspecific (for i = j) interaction at time t; αi j, βi j, γi j, δi j ≥ 0
and they denote nonlinear measures of interspecific or intraspecific interferences; τi j ≥ 0 denote the matura-

tion time of the jth species. We assume that Ki j ∈ C((−∞, 0];RN
+ ) satisfying

∫ 0

−∞ Ki j(s)ds = 1. Furthermore, we
suppose ri(t), ai j(t), bi j(t) and ci j(t) are positive continuous and bounded functions on [0,∞), i, j = 1, 2, . . . ,n.

On the other hand, in the real world, populations systems are often affected by environmental noises.
There exist a large number of papers which consider stochastic population systems, but most of them are
Lotka-Volterra competition systems and just a few articles deal with Gilpin-Ayala competition systems (see
e.g. [1–4]).
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In general, the intrinsic growth rate ri(t) of the ith species is estimated by an average value plus an error
term. Then we can replace the rate ri(t) by an average growth rate plus a stochastic fluctuation term

ri(t)→ ri(t) +
N∑

j=1

σi j(t)x
θi j

j (t)dB j(t),

where σi j(t) is the intensity of the white noise at time t(i, j = 1, 2, . . . ,N) and σ(t) = (σi j(t))N×N satisfies

σii(t) > 0, i = 1, 2, . . . ,N, σi j(t) ≥ 0, i , j. (∗)

We choose θi j(θi j ≥ 0, i, j = 1, 2, . . . ,N) dependent on the parameters αi j, βi j, γi j, δi j such that the solution of
the stochastic system has some nice properties. Then corresponding to the deterministic system (1), we
have the following stochastic N-species Gilpin-Ayala competition system:

dxi(t) = xi(t)
[
ri(t) −

N∑
j=1

ai j(t)x
αi j

j (t) −
N∑

j=1

bi j(t)x
βi j

j (t − τi j) −
N∑

j=1

ci j(t)
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
]
dt

+

N∑
j=1

σi j(t)xi(t)x
θi j

j (t)dB j(t), i = 1, 2, . . . ,N. (2)

It is well known that in the real world there are several types of environmental noise. Besides the white
noise, in this paper we consider a classical colored noise, i.e., telegraph noise. The telegraph noise can
be demonstrated as a switching between two or more regimes of environment. Frequently, the switching
among different environments is memoryless and the waiting time for the next switch is exponentially
distributed. Consequently, we can take the random factors in the stochastic system by a continuous-time
Markovian chain ξ(t), t ≥ 0 with a finite state space S = {1, 2, . . . ,m}. Let ξ(t) be generalized by Q = (qi j),
that is

P
{
ξ(t + ∆t) = j|ξ(t) = i

}
=

{
qi j∆t + o(∆t), if j , i;
1 + qii∆t + o(∆t), if j = i, (3)

where qi j ≥ 0 for i, j = 1, 2, . . . ,m with j , i and
∑m

j=1 qi j = 0 for i = 1, 2, . . . ,m.
Corresponding to system (2), in this paper we consider a stochastic delay Gilpin-Ayala system under

regime switching:

dxi(t) = xi(t)
[
ri(ξ(t)) −

N∑
j=1

ai j(ξ(t))x
αi j

j (t) −
N∑

j=1

bi j(ξ(t))x
βi j

j (t − τi j) −
N∑

j=1

ci j(ξ(t))

×
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
]
dt +

N∑
j=1

σi j(ξ(t))xi(t)x
θi j

j (t)dB j(t), 1 ≤ i ≤ N, (4)

where x(t) = (x1(t), x2(t), . . . , xN(t))T. The initial condition is

xi(θ) = φi(θ) > 0, −∞ < θ ≤ 0; sup
−∞<θ≤0

|φ(θ)| < ∞, (5)

where φi(i = 1, 2, . . . ,N) are continuous functions on (−∞, 0]. Suppose that the Markovian chain γ(·)
is independent of B j(t), j = 1, 2, . . . ,N. As the standard hypothesis, we assume that γ(·) has a unique
stationary distribution π = (π1, π2, . . . , πm) which can be obtained by solving the following linear equation
πQ = 0 subject to

∑m
i=1 πi = 1 and πi > 0, i ∈ S.

Throughout this paper, let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions and D(t) = (B1(t),B2(t), . . . ,BN(t))T be a N-dimensional Brownian motion defined
on a filtered probability space and RN

+ = {x ∈ RN : xi > 0 for all i = 1, 2, . . . ,N}. Moreover, define
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ν̂ = maxi∈S ν(i), ν̆ = mini∈S ν(i) and let C((−∞, 0];RN) be the collection of continuous functions from (−∞, 0]
to RN

+ .
This paper is organized in the following way: In Section 2, we show that the solution of system (4) is

global and positive. In Section 3, we obtain the stochastically ultimate boundedness of the solution. Finally,
the asymptotic moment behavior of the solution is analyzed.

2. Positive and global solutions

Since xi(t) in system (4) represents the population size, it should be nonnegative. For further study, we
firstly give some conditions under which system (4) has a global positive solution.
Theorem 1. In addition to assumption (*), let us suppose that

θii ≥ max
j
{θi j}, i = 1, 2, . . . ,N, (6)

max
i
{θii} > max

i, j
{αi j/2, βi j, γi j + δi j}, (7)

then for any system parameters A(t),B(t),C(t) ∈ RN×N and any given initial value {x(t) : −∞ < t ≤ 0} ∈
C((−∞, 0];RN

+ ), there exists a unique solution x(t) to system (4) on t ∈ R and the solution will remain in RN
+

with probability 1.
Proof. The proof of this theorem is motivated by the idea of Theorem 1 in [5]. Because the coefficients of
system (4) are locally Lipschitz continuous, for any given initial value {x(t) : −∞ < t ≤ 0} ∈ C((−∞, 0];RN

+ ),
there exists a unique maximal local positive solution x(t) defined on t ∈ [0, τe) (see e.g. [6, 7]), where τe is
the explosion time. To show this solution is global, we only need to verify τe = ∞ a.s. Let k0 be so large
that every component of {x(t) : −∞ < t ≤ 0} ∈ C((−∞, 0];RN

+ ) is lying within the interval [1/k0, k0]. For each
integer k ≥ k0, let us define the stopping times

τk = inf{t ∈ [0, τe)|xi(t) < (1/k, k) for some i = 1, 2, . . . ,N},

where throughout this paper we set inf ∅ = ∞. It is easy to see that τk is increasing as k → ∞. Set
τ∞ = limk→∞ τk. If we can prove τ∞ = ∞ a.s., then τe = ∞ a.s. and x(t) ∈ RN

+ a.s. for all t ≥ 0. In other words,
to finish the proof, we need to show τ∞ = ∞ a.s. or for all T > 0, we should obtain P(τk ≤ T)→ 0 as k→∞.
To show this assertion, define

V(x) =
N∑

i=1

(xγi − 1 − γ ln xi),

where 0 < γ < 1. Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T, applying Itô’s formula to V(x(t))
yields

dV(x(t)) = LV(x(t))dt + γ
N∑

i, j=1

σi j(ξ(t))(x
γ
i (t) − 1)xθi j

j (t)dB j(t),

where

LV(x(t)) = γ
N∑

i=1

(xγi (t) − 1)
[
ri(ξ(t)) −

N∑
j=1

ai j(ξ(t))x
αi j

j (t) −
N∑

j=1

bi j(ξ(t))x
βi j

j (t − τi j)

−
N∑

j=1

ci j(ξ(t))
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
]
+
γ

2

N∑
i, j=1

σ2
i j(ξ(t))[1 − (1 − γ)xγi (t)]x2θi j

j (t).

From the elementary inequality 2xy ≤ x2 + y2, it follows that

−γ
N∑

i, j=1

ai j(ξ(t))(x
γ
i (t) − 1)xαi j

j (t) ≤ γ
N∑

i, j=1

âi jx
γ
i (t)xαi j

j (t) + γ
N∑

i, j=1

âi jx
αi j

j (t),
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−γ
N∑

i, j=1

bi j(ξ(t))(x
γ
i (t) − 1)xβi j

j (t − τi j) ≤
γN
4

N∑
i, j=1

b̂2
i j(x
γ
i (t) − 1)2 +

γ

N

N∑
i, j=1

x2βi j

j (t − τi j),

−γ
N∑

i, j=1

ci j(ξ(t))(x
γ
i (t) − 1)

∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds

≤ γ
N∑

i, j=1

∫ 0

−∞
Ki j(s)

[N
4

ĉ2
i j(x
γ
i (t) − 1)2 +

1
N

x2γi j

i (t + s)x2δi j

j (t + s)
]
ds

=
γN
4

N∑
i, j=1

ĉ2
i j(x
γ
i (t) − 1)2 +

γ

N

N∑
i, j=1

∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds.

Therefore,

dV(x(t)) ≤ γ
[ N∑

i=1

r̂i(x
γ
i (t) − 1) +

N∑
i, j=1

âi jx
γ
i (t)xαi j

j (t) +
N∑

i, j=1

âi jx
αi j

j (t)

+
N
4

N∑
i, j=1

(b̂2
i j + ĉ2

i j)(x
γ
i (t) − 1)2 +

1
N

N∑
i, j=1

x2βi j

j (t − τi j)

+
1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds +
1
2

N∑
i, j=1

σ̂2
i jx

2θi j

j (t)

−1 − γ
2

N∑
i, j=1

σ̆2
i jx
γ
i (t)x2θi j

j (t)
]
dt + γ

N∑
i, j=1

σ̂i j(x
γ
i (t) − 1)xθi j

j (t)dB j(t).

Then define

V1(x(t)) =
1
N

N∑
i, j=1

∫ t

t−τi j

x2βi j

j (s)ds,

V2(x(t)) =
1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)

∫ t

t+s
x2γi j

i (u)x2δi j

j (u)duds

and compute that

dV1(x(t)) =
1
N

N∑
i, j=1

[
x2βi j

j (t) − x2βi j

j (t − τi j)
]
,

dV2(x(t)) =
1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)

[
x2γi j

i (t)x2δi j

j (t) − x2γi j

i (t + s)x2δi j

j (t + s)
]
ds

=
1
N

N∑
i, j=1

[
x2γi j

i (t)x2δi j

j (t) −
∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds
]
.

Hence,

d[V(x(t)) + V1(x(t)) + V2(x(t))] ≤ F(x(t))dt + γ
N∑

i, j=1

σ̂i j(x
γ
i (t) − 1)xθi j

j (t)dB j(t), (8)
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where

F(x(t)) = γ
[ N∑

i=1

r̂i(x
γ
i (t) − 1) +

N∑
i, j=1

âi jx
γ
i (t)xαi j

j (t) +
N∑

i, j=1

âi jx
αi j

j (t)

+
N
4

N∑
i, j=1

(b̂2
i j + ĉ2

i j)(x
γ
i (t) − 1)2 +

1
N

N∑
i, j=1

[
x2βi j

j (t) + x2γi j

i (t)x2δi j

j (t)
]

+
1
2

N∑
i, j=1

σ̂2
i jx

2θi j

j (t) − 1 − γ
2

N∑
i, j=1

σ̆2
iix
γ+2θii

i (t)
]
. (9)

However, F(x(t)) will be bounded if the extent of the term with negative coefficient is greater than any
degree of the terms with positive coefficients. As conditions (6) and (7) are satisfied, for γ < 2 maxi{θii} ∧ 1,
there is a positive constant K such that F(x(t)) ≤ K. Consequently, we have

d[V(x(t)) + V1(x(t)) + V2(x(t))] ≤ Kdt + γ
N∑

i, j=1

σ̂i j(x
γ
i (t) − 1)xθi j

j (t)dB j(t).

Integrating the above inequality from 0 to τk ∧ T and then taking expectation leads to

EV(x(τk ∧ T)) ≤ EV(x(τk ∧ T)) + EV1(x(τk ∧ T)) + EV2(x(τk ∧ T))
≤ V(x(0)) + V1(x(0)) + V2(x(0)) + KE(τk ∧ T)
≤ V(x(0)) + V1(x(0)) + V2(x(0)) + KT.

Thus, for each ω ∈ {τk ≤ T}, there exists some i such that xi(τk, ω) < (1/k, k). So

V(x(τk)) ≥ xγi (τk) − 1 − γ ln xi(τk) = (1/kγ − 1 + γ ln k) ∧ (kγ − 1 − γ ln k)

and then

∞ > V(x(0)) + V1(x(0)) + V2(x(0)) + KT ≥ EV(x(τk ∧ T))
= P(τk ≤ T)V(x(τk)) + P(τk > T)V(x(T)) ≥ P(τk ≤ T)V(x(τk))
≥ P(τk ≤ T)[(1/kγ − 1 + γ ln k) ∧ (kγ − 1 − γ ln k)].

Since (1/kγ − 1 + γ ln k) ∧ (kγ − 1 − γ ln k) prones to∞ as k → ∞, one can see that limk→∞ P(τk ≤ T) = 0 and
hence P(τ∞ ≤ T) = 0. Because T > 0 is arbitrary, we conclude that

P(τ∞ < ∞) = 0 and P(τ∞ = ∞) = 1,

which finishes the proof of Theorem 1.

3. Stochastically ultimate boundedness

In this section, we will investigate how the solutions vary in RN
+ . Firstly, we give the definition of

stochastic ultimate boundedness. Then, we prove Lemma 1. Finally, we prove the solution of system (4) is
stochastically ultimately bounded.
Definition 1. The solution of system (4) is said to be stochastically ultimately bounded if for any ε ∈ (0, 1),
there exists a positive constant H = H(ε) such that for any initial value {x(t) : −∞ < t ≤ 0} ∈ C((−∞, 0];RN

+ )
satisfying (5), the solution x(t) of system (4) satisfies

lim sup
t→∞

P{|x(t)| ≤ H} ≥ 1 − ε.
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Lemma 1. Let us suppose that conditions of Theorem 1 hold and µ ∈ (0, 2 maxi{θii} ∧ 1). Moreover, we
assume that there is a constant λ > 0 such that∫ 0

−∞
Ki j(s)e−λsds = K̄i j < ∞, i, j = 1, 2, . . . ,N, (10)

then there exists a positive constant C = C(θ) which is independent of the initial value {x(t) : −∞ < t ≤ 0} ∈
C((−∞, 0];RN

+ ) satisfying (5) such that the solution x(t) of system (4) has the property

lim sup
t→∞

E|x(t)|µ ≤ C.

Proof. The proof of this lemma is motivated by the idea of Lemma 1 in [5]. For x ∈ RN
+ and 0 < µ < 1, define

V̄(x) =
N∑

i=1

xµi .

Using Itô’s formula to eλtV̄(x(t)) results in

d[eλtV̄(x(t))] = eλtdV̄(x(t)) + λeλtV̄(x(t))dt = LV̄(x(t))dt + eλt
N∑

i, j=1

µσi j(ξ(t))x
µ
i (t)xθi j

j (t)dB j(t),

where

LV̄(x(t)) = eλt
N∑

i=1

[
(λ + µri(ξ(t)))x

µ
i (t) − µxµi (t)

N∑
j=1

(
ai j(ξ(t))x

αi j

j (t) + bi j(ξ(t))x
βi j

j (t − τi j) + ci j(ξ(t))

×
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
)
−
µ(1 − µ)

2

N∑
j=1

σ2
i j(ξ(t))x

µ
i (t)x2θi j

j (t)
]
.

Applying the elementary inequality 2xy ≤ x2 + y2 and condition (10) imply

−eλt
N∑

i, j=1

µai j(ξ(t))x
µ
i (t)xαi j

j (t) ≤ eλt
N∑

i, j=1

µâi jx
µ
i (t)xαi j

j (t),

−eλt
N∑

i, j=1

µbi j(ξ(t))x
µ
i (t)xβi j

j (t − τi j) ≤ eλtµ
2N
4

N∑
i, j=1

b̂2
i jx

2µ
i (t) +

eλt

N

N∑
i, j=1

x2βi j

j (t − τi j),

−eλt
N∑

i, j=1

µci j(ξ(t))x
µ
i (t)
∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds

≤ eλt
N∑

i, j=1

∫ 0

−∞
Ki j(s)

[N
4
µ2ĉ2

i jx
2µ
i (t) +

1
N

x2γi j

i (t + s)x2δi j

j (t + s)
]
ds

= eλtµ
2N
4

N∑
i, j=1

ĉ2
i jx

2µ
i (t) +

eλt

N

N∑
i, j=1

∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds.
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Consequently,

dV̄(x(t)) ≤ eλt
N∑

i=1

[
(λ + µr̂i)x

µ
i (t) + µ

N∑
j=1

âi jx
µ
i (t)xαi j

j (t) +
µ2N

4

N∑
j=1

(b̂2
i j + ĉ2

i j)x
2µ
i (t)
]

+
1
N

N∑
j=1

(
x2βi j

j (t − τi j) +
∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds
)

−
µ(1 − µ)

2
σ̆2

iix
µ+2θii

i (t)
]
dt + eλtµ

N∑
i, j=1

σ̂i jx
µ
i (t)xθi j

j (t)dB j(t).

Then define

V̄1(x(t)) =
1
N

N∑
i, j=1

∫ t

t−τi j

eλ(s+τi j)x2βi j

j (s)ds,

V̄2(x(t)) =
1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)

∫ t

t+s
eλ(u−s)x2γi j

i (u)x2δi j

j (u)duds,

then

dV̄1(x(t)) =
1
N

N∑
i, j=1

[
eλ(t+τi j)x2βi j

j (t) − eλtx2βi j

j (t − τi j)
]
,

dV̄2(x(t)) =
1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)

[
eλ(t−s)x2γi j

i (t)x2δi j

j (t) − eλtx2γi j

i (t + s)x2δi j

j (t + s)
]
ds.

By (10), we obtain

1
N

N∑
i, j=1

∫ 0

−∞
Ki j(s)eλ(t−s)x2γi j

i (t)x2δi j

j (t)ds =
eλt

N

N∑
i, j=1

x2γi j

i (t)x2δi j

j (t)
∫ 0

−∞
Ki j(s)e−λsds

=
eλt

N

N∑
i, j=1

K̄i jx
2γi j

i (t)x2δi j

j (t),

it shows that

dV̄2(x(t)) =
eλt

N

N∑
i, j=1

(
K̄i jx

2γi j

i (t)x2δi j

j (t) −
∫ 0

−∞
Ki j(s)x2γi j

i (t + s)x2δi j

j (t + s)ds
)
.

Then

d[eλtV̄(x(t)) + V̄1(x(t)) + V̄2(x(t))] ≤ eλt
(
F̄(x(t))dt +

N∑
i, j=1

µσ̂i jx
µ
i (t)xθi j

j (t)dB j(t)
)
,

where

F̄(x(t)) =

N∑
i=1

{
(µr̂i + λ)xµi (t) +

N∑
j=1

[
µâi jx

µ
i (t)xαi j

j (t) +
µ2N

4
(b̂2

i j + ĉ2
i j)x

2µ
i (t)

+
1
N

(
eλτx2βi j

j (t) + K̄x2γi j

i (t)x2δi j

j (t)
)]
−
µ(1 − µ)

2
σ̆2

iix
µ+2θii

i (t)
}
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and τ = maxi, j{τi j}, K̄ = maxi, j{K̄i j}. Because condition (7) is satisfied, for µ ∈ (0, 2 maxi{θii} ∧ 1) there is a
positive constant K such that F̄(x(t)) ≤ K. Therefore,

d[eλtV̄(x(t)) + V̄1(x(t)) + V̄2(x(t))] ≤ eλt
(
Kdt +

N∑
i, j=1

µσ̂i jx
µ
i (t)xθi j

j (t)dB j(t)
)
.

Integrating the above inequality from 0 to t and then taking expectation on both sides result in

eλtEV̄(x(t)) ≤ eλtEV̄(x(t)) + EV̄1(x(t)) + EV̄2(x(t))

≤ V̄(x(0)) + V̄1(x(0)) + V̄2(x(0)) +
∫ t

0
Keλsds

≤ V̄(x(0)) + V̄1(x(0)) + V̄2(x(0)) + Kλ−1eλt

and hence,
lim sup

t→∞
EV̄(x(t)) ≤ Kλ−1.

Since

|x(t)|µ =
∣∣∣∣∣ N∑

i=1

x2
i (t)
∣∣∣∣∣ µ2 ≤ N

µ
2 max

1≤i≤N
xµi (t) ≤ N

µ
2

N∑
i=1

xµi (t) = N
µ
2 V̄(x(t)),

we get
lim sup

t→∞
E|x(t)|µ ≤ lim sup

t→∞
E(N

µ
2 V̄(x(t))) ≤ N

µ
2 Kλ−1.

Thus, by taking C = N
µ
2 Kλ−1, we obtain the desired assertion of this lemma.

Theorem 2. Assume that conditions of Lemma 1 are fulfilled, then the solution of system (4) is stochastically
ultimately bounded.
Proof. The proof of this theorem is motivated by the idea of Theorem 2 in [5]. By Lemma 1, we can see that
if we take some fixed θ ∈ (0, 2 mini{θii} ∧ 1), then there is C > 0 such that

lim sup
t→∞

E|x(t)|θ ≤ C.

It follows from Markov’s inequality that

P{|x(t)| > H} ≤ E|x(t)|θ
Hθ

.

For any ε > 0, set H =
(C
ε

)1/θ
. Therefore,

lim sup
t→∞

P{|x(t)| > H} ≤ ε,

which implies
lim sup

t→∞
P{|x(t)| ≤ H} ≥ 1 − ε.

Thus we complete the proof.

4. Asymptotic moment estimation

As no explicit solution of system (4) has yet been found, it is reasonable to investigate an asymptotic
moment estimation of the solution. The following theorem shows that the average in time of the pth
moment of the solution will be bounded.
Theorem 3. Suppose that conditions of Theorem 1 are fulfilled and p ∈ (0, 2 maxi{θii}), then there exists a
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positive constant C, which is independent of the initial value {x(t) : −∞ < t ≤ 0} satisfying (5) such that the
solution x(t) of system (4) satisfies

lim sup
t→∞

1
t

E
∫ t

0

N∑
i=1

xp
i (s)ds ≤ C.

Proof. The proof of this theorem is motivated by the idea of Theorem 3 in [5]. We start from the relation
(8), where F(x(t)) is given by (9),

d[V(x(t)) + V1(x(t)) + V2(x(t))] ≤ F(x(t))dt + γ
N∑

i, j=1

σ̂i j(x
γ
i (t) − 1)xθi j

j (t)dB j(t). (11)

Then we take

F1(x(t)) = F(x(t)) +
N∑

i=1

xp
i (t).

Because conditions (6) and (7) hold and p ∈ (0, 2 maxi{θii}), by the same way of Theorem 1, we can deduce
that F1(x) is bounded. So there is a positive constant C such that F1(x) ≤ C. In other words, we have

F(x(t)) ≤ C −
N∑

i=1

xp
i (t).

If we employ this estimation, (11) becomes

d[V(x(t)) + V1(x(t)) + V2(x(t))] ≤
[
C −

N∑
i=1

xp
i (t)
]
dt + γ

N∑
i, j=1

σ̂i j(x
γ
i (t) − 1)xθi j

j (t)dB j(t).

Integrating the above inequality from 0 to τk ∧ t and then taking expectation lead to

EV(x(τk ∧ t)) + EV1(x(τk ∧ t)) + EV2(x(τk ∧ t))

≤ V(x(0)) + V1(x(0)) + V2(x(0)) + CE(τk ∧ t) − E
∫ τk∧t

0

N∑
i=1

xp
i (s)ds.

By letting k→∞, we have

E
∫ t

0

N∑
i=1

xp
i (s)ds ≤ V(x(0)) + V1(x(0)) + V2(x(0)) + Ct,

which shows the required statement.
Remark. M. Vasilova and M. Jovanović [5] studied the following stochastic Gilpin-Ayala competition model
with infinite delay:

dxi(t) = xi(t)
[
ri −

d∑
j=1

ai jx
αi j

j (t) −
d∑

j=1

bi jx
βi j

j (t − τi j) −
d∑

j=1

ci j

∫ 0

−∞
Ki j(s)xγi j

i (t + s)xδi j

j (t + s)ds
]
dt

+

d∑
j=1

σi jxi(t)x
θi j

j (t)dw j(t), i = 1, 2, . . . , d

with initial value
xi(θ) = φi(θ) > 0, −∞ < θ ≤ 0; sup

−∞<θ≤0
|φ(θ)| < ∞,
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where φi, i = 1, 2, . . . , d are continuous functions on (−∞, 0]. Under some conditions, the authors obtained
some asymptotic properties of the positive solutions to the above system. It is easy to see that our model
generalizes the above system into more complicated and realistic case.
Acknowledgement. The authors thank the referees for their comments and suggestions on the original
manuscript which led to its improvement.
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