Filomat 27:6 (2013), 1127–1131 DOI 10.2298/FIL1306127S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# **Remarks on strongly star-Hurewicz spaces**

#### Yan-Kui Song<sup>a</sup>

<sup>a</sup> Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, P.R. China

**Abstract.** A space *X* is *strongly star-Hurewicz* if for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of *X* there exists a sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of *X* such that for each  $x \in X$ ,  $x \in St(A_n, \mathcal{U}_n)$  for all but finitely many *n*. In this paper, we continue to investigate topological properties of strongly star-Hurewicz spaces.

## 1. Introduction

By a space, we mean a topological space. In this section, we give definitions of terms which are used in this paper. Let  $\mathbb{N}$  denote the set of positive integers. Let X be a space and  $\mathcal{U}$  be a collection of subsets of X. For  $A \subseteq X$ , let  $St(A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}$ . As usual, we write  $St(x, \mathcal{U})$  instead of  $St(\{x\}, \mathcal{U})$ .

Let  $\mathcal{A}$  and  $\mathcal{B}$  be collections of subsets of a space X. Then the symbol  $S_1(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there exists a sequence  $(U_n : n \in \mathbb{N})$ such that for each  $n \in \mathbb{N}$ ,  $U_n \in \mathcal{U}_n$  and  $\{U_n : n \in \mathbb{N}\}$  is an element of  $\mathcal{B}$ . The symbol  $S_{fin}(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there exists a sequence  $(\mathcal{V}_n : n \in \mathbb{N})$  such that for each  $n \in \mathbb{N}$ ,  $\mathcal{V}_n$  is a finite subset of  $\mathcal{U}_n$  and  $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$  is an element of  $\mathcal{B}$  (see [9,15]).

Kočinac [10, 11, 12] introduced star selection hypothesis similar to the previous ones:

(A) The symbol  $S^*_{fin}(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there exists a sequence  $(\mathcal{V}_n : n \in \mathbb{N})$  such that for each  $n \in \mathbb{N}$ ,  $\mathcal{V}_n$  is a finite subset of  $\mathcal{U}_n$  and  $\bigcup_{n \in \mathbb{N}} \{St(V, \mathcal{U}_n) : V \in \mathcal{V}_n\}$  is an element of  $\mathcal{B}$ .

(B) The symbol  $SS^*_{fin}(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there exists a sequence  $(K_n : n \in N)$  of finite subsets of X such that  $\{St(K_n, \mathcal{U}_n) : n \in \mathbb{N}\} \in \mathcal{B}$ . Let O denote the collection of all open covers of X.

**Definition 1.1.** ([10, 11, 12]) A space X is said to be *star-Menger* (*strongly star-Menger*) if it satisfies the selection hypothesis  $S_{fin}^*(O, O)$  (resp.,  $SS_{fin}^*(O, O)$ ).

In 1925 in [7] (see also [8]), Hurewicz introduced the Hurewicz covering property for a space *X* in the following way:

H: For each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of *X* there exists a sequence  $(\mathcal{V}_n : n \in \mathbb{N})$  such that for each n,  $\mathcal{V}_n$  is a finite subset of  $\mathcal{U}_n$  and for each  $x \in X$ ,  $x \in \bigcup \mathcal{V}_n$  for all but finitely many n.

<sup>2010</sup> Mathematics Subject Classification. Primary 54D20; Secondary 54B05, 54B10

*Keywords*. Selection principles, star-Menger, strongly star-Menger, strongly star-compact, star-Hurewicz, strongly star-Hurewicz Received: 05 January 2013; Revised: 28 March 2013; Accepted: 30 March 2013

Communicated by Ljubiša D.R. Kočinac

The author acknowledges the support from the National Natural Science Foundation (Grant 11271036) of China *Email address:* songyankui@njnu.edu.cn (Yan-Kui Song)

In [1], two star versions of the Hurewicz property were introduced as follows:

SH: A space *X* satisfies the *star-Hurewicz property* if for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of *X* there exists a sequence  $(\mathcal{V}_n : n \in \mathbb{N})$  such that for each n,  $\mathcal{V}_n$  is a finite subset of  $\mathcal{U}_n$  and for each  $x \in X$ ,  $x \in St(\cup \mathcal{V}_n, \mathcal{U}_n)$  for all but finitely many n.

SSH: A space X satisfies the *strongly star-Hurewicz property* if for each sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of X there exists a sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of X such that for each  $x \in X$ ,  $x \in St(A_n, \mathcal{U}_n)$  for all but finitely many n.

**Definition 1.2.** ([1]) A space *X* is said to be *strongly star-Hurewicz* (*star-Hurewicz*) if it satisfies the selection hypothesis strongly star-Hurewicz property (resp., star-Hurewicz property).

From the above definitions, we have the following diagram.

 $\begin{array}{ccc} compact & \longrightarrow & strongly \ star-Hurewicz & \longrightarrow & strongly \ star-Menger \\ & \downarrow & & \downarrow \\ & star-Hurewicz & \longrightarrow & star-Menger \end{array}$ 

On the study of star-Hurewicz spaces, the readers can see the references [1, 2, 3, 12, 16]. The purpose of this paper is to continue to investigate topological properties of strongly star-Hurewicz spaces.

Throughout this paper, let  $\omega$  denote the first infinite cardinal,  $\omega_1$  the first uncountable cardinal and  $\mathfrak{c}$  the cardinality of the set of all real numbers. For each pair of ordinals  $\alpha$ ,  $\beta$  with  $\alpha < \beta$ , we write  $[\alpha, \beta] = \{\gamma : \alpha \le \gamma < \beta\}$ ,  $(\alpha, \beta) = \{\gamma : \alpha < \gamma < \beta\}$ ,  $(\alpha, \beta] = \{\gamma : \alpha < \gamma \le \beta\}$  and  $[\alpha, \beta] = \{\gamma : \alpha \le \gamma \le \beta\}$ . As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [6].

## 2. Main results

In this section, we study the topological properties of strongly star-Hurewicz spaces.

**Theorem 2.1.** A continuous image of a strongly star-Hurewicz space is strongly star-Hurewicz.

*Proof.* Let  $f : X \to Y$  be a continuous mapping from a strongly star-Hurewicz space X onto a space Y. Let  $(\mathcal{U}_n : n \in \mathbb{N})$  be a sequence of open covers of Y. For each  $n \in \mathbb{N}$ , let  $\mathcal{V}_n = \{f^{-1}(U) : U \in \mathcal{U}_n\}$ . Then  $(\mathcal{V}_n : n \in \mathbb{N})$  is a sequence of open covers of X. Since X is strongly star-Hurewicz, there exists a sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of X such that for each  $x \in X$ ,  $x \in St(A_n, \mathcal{U}_n)$  for all but finitely many n. Thus  $(f(A_n) : n \in \mathbb{N})$  is a sequence of finite subsets of Y such that for each  $y \in Y$ ,  $y \in St(f(A_n), \mathcal{U}_n)$  for all but finitely many n. In fact, let  $y \in Y$ . Then there is  $x \in X$  such that f(x) = y. Hence  $x \in St(A_n, \mathcal{V}_n)$  for all but finitely many n. Thus  $y = f(x) \in St(f(A_n), \{f(U) : U \in \mathcal{V}_n\}) = St(f(A_n), \mathcal{U}_n)$  for all but finitely many n, which shows that Y is strongly star-Hurewicz.  $\Box$ 

Next we turn to consider preimages. We shall give a consistent example showing that the preimage of a strongly star-Hurewicz space under a closed 2-to-1 continuous map need not be strongly star-Hurewicz by using the following example from [3]. We make use of one of the cardinals defined in [5]. Define  ${}^{\omega}\omega$  as the set of all functions from  $\omega$  to itself. For all  $f, g \in {}^{\omega}\omega$ , we say  $f \leq {}^{*}g$  if and only if  $f(n) \leq g(n)$  for all but finitely many n. The unbounding number, denoted by b, is the smallest cardinality of an unbounded subset of ( ${}^{\omega}\omega, \leq^{*}$ ). It is not difficult to show that  $\omega_1 \leq b \leq c$ . We also use the following example from [3].

**Example 2.2.** ([3]) Let  $\mathcal{A}$  be an almost disjoint family of infinite subsets of  $\omega$  (i.e., the intersection of every two distinct elements of  $\mathcal{A}$  is finite) and Let  $X = \omega \cup \mathcal{A}$  be the Isbell-Mrówka space constructed from  $\mathcal{A}([4],[6])$ . Then X is strongly star-Hurewicz if and only if  $|\mathcal{A}| < b$ .

For a space *X*, recall that the Alexandorff duplicate *A*(*X*) of *X* is constructed in the following way: The underlying set *A*(*X*) is *X* × {0, 1}; each point of *X* × {1} is isolated and a basic neighborhood of  $\langle x, 0 \rangle \in X \times \{0\}$  is a set of the form (*U* × {0})  $\cup$  ((*U* × {1}) \ {(*x*, 1)}), where *U* is a neighborhood of *x* in *X*.

**Example 2.3.** Assuming b = c and  $\neg CH$ , there exists a closed 2-to-1 continuous map  $f : X \rightarrow Y$  such that Y is a strongly star-Hurewicz space, but X is not strongly star-Hurewicz.

*Proof.* Let  $Y = \omega \cup \mathcal{A}$  be the space *X* of Example 2.2 with  $|\mathcal{A}| = \omega_1$ . Then *Y* is strongly star-Hurewicz by Example 2.2.

Let X = A(Y). Then X is not strongly star-Hurewicz. In fact, since  $\mathcal{A}$  is a discrete closed subset of Y with  $|\mathcal{A}| = \omega_1$ , the set  $\mathcal{A} \times \{1\}$  is an open and closed subset of A(Y) with  $|\mathcal{A} \times \{1\}| = \omega_1$ , and each point  $\langle a, 1 \rangle$  is isolated for each  $a \in \mathcal{A}$ . Hence X is not strongly star-Hurewicz, since every open and closed subset of a strongly star-Hurewicz space is strongly star-Hurewicz and  $\mathcal{A} \times \{1\}$  is not strongly star-Hurewicz.

Let  $f : X \to Y$  be the projection. Then f is a closed 2-to-1 continuous map, which completes the proof.  $\Box$ 

From the proof of Example 2.3, it is not difficult to show the following result.

**Theorem 2.4.** If X is a  $T_1$ -space and A(X) is a strongly star-Hurewicz space, then  $e(X) < \omega_1$ .

*Proof.* Suppose that  $e(X) \ge \omega_1$ . Then there exists a discrete closed subset *B* of *X* such that  $|B| \ge \omega_1$ . Hence  $B \times \{1\}$  is a open and closed subset of A(X) and every point of  $B \times \{1\}$  is an isolated point. Thus A(X) is not strongly star-Hurewicz, since every open and closed subset of a strongly star-Hurewicz space is strongly star-Hurewicz and  $B \times \{1\}$  is not strongly star-Hurewicz.  $\Box$ 

**Remark 2.5.** The author does not know if the Alexandorff duplicate A(X) of a strongly star-Hurewicz space X with  $e(X) < \omega_1$  is strongly star-Hurewicz.

Now we give a positive result:

**Theorem 2.6.** *Let f be an open and closed, finite-to-one continuous map from a space* X *to a strongly star-Hurewicz space* Y. *Then* X *is strongly star-Hurewicz.* 

*Proof.* Let  $(\mathcal{U}_n : n \in \mathbb{N})$  be a sequence of open covers of X and let  $y \in Y$ . For each  $n \in \mathbb{N}$ , since  $f^{-1}(y)$  is finite, there exists a finite subcollection  $\mathcal{U}_{n_y}$  of  $\mathcal{U}_n$  such that  $f^{-1}(y) \subseteq \bigcup \mathcal{U}_{n_y}$  and  $U \cap f^{-1}(y) \neq \emptyset$  for each  $U \in \mathcal{U}_{n_y}$ . Since f is closed, there exists an open neighborhood  $V_{n_y}$  of y in Y such that  $f^{-1}(V_{n_y}) \subseteq \bigcup \{U : U \in \mathcal{U}_{n_y}\}$ . Since f is open, we can assume that

$$V_{n_{y}} \subseteq \bigcap \{ f(U) : U \in \mathcal{U}_{n_{y}} \}.$$

$$\tag{1}$$

For each  $n \in \mathbb{N}$ , taking such open set  $V_{n_y}$  for each  $y \in Y$ , we have an open cover  $\mathcal{V}_n = \{V_{n_y} : y \in Y\}$  of Y. Thus  $(\mathcal{V}_n : n \in \mathbb{N})$  is a sequence of open covers of Y, so that there exists a sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of Y such that for each  $y \in Y$ ,  $y \in St(A_n, \mathcal{V}_n)$  for all but finitely many n, since Y is strongly star-Hurewicz. Since f is finite-to-one, the sequence  $(f^{-1}(A_n) : n \in \mathbb{N})$  is a sequence of finite subsets of X. We show that for each  $x \in X$ ,  $x \in St(f^{-1}(A_n), \mathcal{U}_n)$  for all but finitely many n. Let  $x \in X$ . Then  $f(x) \in St(A_n, \mathcal{V}_n)$  for all but finitely many n. If  $f(x) \in St(A_n, \mathcal{V}_n)$ , then there exists  $y \in Y$  such that  $f(x) \in V_{n_y}$  and  $V_{n_y} \cap A_n \neq \emptyset$ . Since

$$x \in f^{-1}(V_{n_y}) \subseteq \bigcup \mathcal{U}_{n_y},$$

we can choose  $U \in \mathcal{U}_{n_y}$  with  $x \in U$ . Then  $V_{n_y} \subseteq f(U)$  by (1). Hence  $U \cap f^{-1}(A_n) \neq \emptyset$ . Therefore  $x \in St(f^{-1}(A_n), \mathcal{U}_n)$ . Consequently  $x \in St(f^{-1}(A_n), \mathcal{U}_n)$  for all but finitely many n, which shows that X is strongly star-Hurewicz.  $\Box$ 

For strongly star-Hurewicz spaces, we give a consistent example showing that the product of a strongly star-Hurewicz space and a compact space need not be strongly star-Hurewicz. For the example, we need the following Lemmas.

**Lemma 2.7.** ([2]) A space X is a strongly star-Hurewicz space if and only if for every sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of X there exists a sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of X such that for every  $x \in X$ ,  $St(x, \mathcal{U}_n) \cap A_n \neq \emptyset$  for all but finitely many  $n \in \mathbb{N}$ .

**Example 2.8.** Assuming b = c and  $\neg CH$ , there exist a strongly star-Hurewicz space X and a compact space Y such that  $X \times Y$  is not strongly star-Hurewicz.

*Proof.* Assuming b = c and  $\neg CH$ , let  $X = \omega \cup \mathcal{A}$  be the same space as Example 2.2 with  $|\mathcal{A}| = \omega_1$ . Then X is strongly star-Hurewicz by Example 2.2. Let  $D = \{d_\alpha : \alpha < \omega_1\}$  be the discrete space of cardinality  $\omega_1$  and let  $Y = D \cup \{d^*\}$  be the one-point compactification of D. Then Y is strongly star-Hurewicz, since Y is compact. Let us show that  $X \times Y$  is not strongly star-Hurewicz. Since  $|\mathcal{A}| = \omega_1$ , we can enumerate  $\mathcal{A}$  as  $\{a_\alpha : \alpha < \omega_1\}$ . For each  $n \in \mathbb{N}$ , let

$$\mathcal{U}_n = \{(\{a_\alpha\} \cup a_\alpha) \times (Y \setminus \{d_\alpha\}) : \alpha < \omega_1\} \cup \{X \times \{d_\alpha\} : \alpha < \omega_1\} \cup \{\omega \times Y\}.$$

Then all the  $\mathcal{U}_n$ 's are the same and  $\mathcal{U}_n$  is an open cover of  $X \times Y$  for each  $n \in \mathbb{N}$ . Let us consider the sequence  $(\mathcal{U}_n : n \in \mathbb{N})$  of open covers of  $X \times Y$ . It suffices to show that for any sequence  $(A_n : n \in \mathbb{N})$  of finite subsets of  $X \times Y$  there exists a point  $a \in X \times Y$  such that  $St(a, \mathcal{U}_n) \cap A_n \neq \emptyset$  for all  $n \in \mathbb{N}$  by Lemma 2.7. Let  $(A_n : n \in \mathbb{N})$  be any sequence of finite subsets of  $X \times Y$ . For each  $n \in \mathbb{N}$ , since  $A_n$  is finite, there exists  $\alpha_n < \omega_1$  such that

$$A_n \cap (X \times \{d_\alpha\}) = \emptyset$$
 for each  $\alpha > \alpha_n$ .

Let  $\beta = \sup\{\alpha_n : n \in \mathbb{N}\}$ . Then  $\beta < \omega_1$  and

$$(\bigcup_{n\in\mathbb{N}}A_n)\cap (X\times\{d_\alpha\})=\emptyset \text{ for each }\alpha>\beta.$$

Let  $\alpha > \beta$ . Since  $X \times \{d_{\alpha}\}$  is the only element of  $\mathcal{U}_n$  containing the point  $\langle a_{\alpha}, d_{\alpha} \rangle$  for each  $n \in \mathbb{N}$ ,  $St(\langle a_{\alpha}, d_{\alpha} \rangle, \mathcal{U}_n) = X \times \{d_{\alpha}\}$  for each  $n \in \mathbb{N}$ . Thus  $(\bigcup_{n \in \mathbb{N}} A_n) \cap (X \times \{d_{\alpha}\}) = \emptyset$ , which shows that  $X \times Y$  is not strongly star-Hurewicz.  $\Box$ 

**Remark 2.9.** Assuming b = c and  $\neg CH$ , Example 2.8 shows that the preimage of a strongly star-Hurewicz space under an open perfect map need not be strongly star-Hurewicz, and also shows that Theorem 2.6 fails to be true if "open and closed, finite-to-one" is replaced by "open perfect". The author does not know if in ZFC, there exist a strongly star-Hurewicz space *X* and a compact space *Y* such that *X* × *Y* is not strongly star-Hurewicz.

However, the product of two strongly star-Hurewicz spaces need not be strongly star-Hurewicz. In fact, the following well-known example shows that the product of two countably compact (hence strongly star-Hurewicz) spaces need not be strongly star-Hurewicz. Here we give the proof roughly for the sake of completeness.

**Example 2.10.** There exist two Tychonoff countably compact (hence strongly star-Hurewicz) spaces X and Y such that  $X \times Y$  is not strongly star-Hurewic.

*Proof.* Let *D* be a discrete space of cardinality c. We can define  $X = \bigcup_{\alpha < \omega_1} E_\alpha$  and  $Y = \bigcup_{\alpha < \omega_1} F_\alpha$ , where  $E_\alpha$  and  $F_\alpha$  are the subsets of  $\beta D$  which are defined inductively so as to satisfy the following conditions (1),(2) and (3):

(1) 
$$E_{\alpha} \cap F_{\beta} = D$$
 if  $\alpha \neq \beta$ ;

(2)  $|E_{\alpha}| \leq \mathfrak{c}$  and  $|F_{\beta}| \leq \mathfrak{c}$ ;

(3) every infinite subset of  $E_{\alpha}$  (resp.,  $F_{\alpha}$ ) has an accumulation point in  $E_{\alpha+1}$  (resp.,  $F_{\alpha+1}$ ).

These sets  $E_{\alpha}$  and  $F_{\alpha}$  are well-defined since every infinite closed set in  $\beta D$  has cardinality at least 2<sup>c</sup> (see [14]). Then  $X \times Y$  is not strongly star-Hurewicz. In fact, the diagonal { $\langle d, d \rangle : d \in D$ } is an open and closed subset of  $X \times Y$  with cardinality c and { $\langle d, d \rangle$ } is isolated for each  $d \in D$ . Thus  $X \times Y$  is not strongly star-Hurewicz, since the open and closed subsets of strongly star-Hurewicz spaces are strongly star-Hurewicz and the diagonal { $\langle d, d \rangle : d \in D$ } is not strongly star-Hurewicz.  $\Box$ 

In [4, Example 3.3.3], van Douwen et al. gave an example showing that there exist a countably compact (and hence strongly star-Hurewicz) space X and a Lindelöf space Y such that  $X \times Y$  is not strongly star-Lindelöf. Therefore, this example shows that the product of a strongly star-Hurewicz space X and a Lindelöf space Y need not be strongly star-Hurewicz, since every strongly star-Hurewicz space is strongly star-Lindelöf.

Next we give a condition that implies Lindelöfness. Recall that a space X is meta-Lindelöf if every open cover  $\mathcal{U}$  of *X* has a point countable open refinement.

#### Theorem 2.11. Every meta-Lindelöf strongly star-Hurewicz space is Lindelöf.

*Proof.* Let X be a meta-Lindelöf strongly star-Hurewicz space and  $\mathcal{U}$  be an open cover of X. Then there exists a point countable open refinement  $\mathcal{V}$  of  $\mathcal{U}$ . Since X is strongly star-Hurewicz, there exists a sequence  $(A_n : n \in N)$  of finite subsets of X such that for each  $x \in X$ ,  $x \in St(A_n, \mathcal{V})$  for all but finitely many n.

For each  $n \in \mathbb{N}$ , let

$$\mathcal{V}_n = \{ V \in \mathcal{V} : V \cap A_n \neq \emptyset \}.$$

Then  $\mathcal{V}_n$  is a countable subset of  $\mathcal{V}$ . Let  $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ . Then  $\mathcal{W}$  is a countable open cover of X. For each  $V \in \mathcal{W}$ , choose  $U_V \in \mathcal{U}$  such that  $V \subseteq U_V$ . Then  $\{U_V : V \in \mathcal{W}\}$  is a countable subcover of  $\mathcal{U}$ , which shows that *X* is Lindelöf. Thus we complete the proof.  $\Box$ 

Recall that a space X is *para-Lindelöf* if every open cover  $\mathcal{U}$  of X has a locally countable open refinement. Since every para-Lindelöf space is meta-Lindelöf, the following Corollary follows from Theorem 2.11.

**Corollary 2.12.** A para-Lindelöf strongly star-Hurewicz space X is Lindelöf.

Since every Lindelöf space is meta-Lindelöf and para-Lindelöf, the following Corollaries follows from Theorem 2.11.

**Corollary 2.13.** Let X be a strongly star-Hurewicz space. Then X is meta-Lindelöf if and only if X is Lindelöf.

**Corollary 2.14.** Let X be a strongly star-Hurewicz space. Then X is para-Lindelöf if and only if X is Lindelöf.

Acknowledgments. The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions.

#### References

- [1] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, Star-Hurewicz and related spaces, Applied General Topology 5 (2004) 79–89.
- [2] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, M.V. Matveev, On weaker froms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik 61 (2009) 13-23.
- [3] M. Bonanzinga, M.V. Matveev, Some covering properties for  $\Psi$ -spaces, Mat. Vesnik 61 (2009) 3–11.
- [4] E.K. van Douwen, G.K. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991) 71–103.
  [5] E.K. van Douwen, The integers and topology, In: Handbook of Set-theoretic Topology, (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167.
- [6] R. Engelking General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [7] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925) 401–421.
- [8] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 8 (1927) 193-204.
- [9] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996) 241–266.
- [10] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999) 421–431.
- [11] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat (Niš) 13 (1999) 129-140. [12] Lj.D.R. Kočinac, Selected results on selection principles, In: Proc. 3rd Seminar Geometry and Topology (Sh. Rezapour, ed.), July
- 15-17, 2004, Tabriz, Iran, pp. 71-104.
- [13] M.V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No. 330 (1998).
- [14] R.C. Walker The Stone-Čech compactification, Berlin, 1974.
- [15] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31-62.
- [16] Y.-K. Song, R. Li, A note on star-Huerwicz spaces, Filomat 27:6 (2013), 1091-1095.