Remarks on strongly star-Hurewicz spaces

Yan-Kui Song ${ }^{\text {a }}$
${ }^{a}$ Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, P.R. China

Abstract

A space X is strongly star-Hurewicz if for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X there exists a sequence ($A_{n}: n \in N$) of finite subsets of X such that for each $x \in X, x \in \operatorname{St}\left(A_{n}, \mathcal{U}_{n}\right)$ for all but finitely many n. In this paper, we continue to investigate topological properties of strongly star-Hurewicz spaces.

1. Introduction

By a space, we mean a topological space. In this section, we give definitions of terms which are used in this paper. Let \mathbb{N} denote the set of positive integers. Let X be a space and \mathcal{U} be a collection of subsets of X. For $A \subseteq X$, let $S t(A, \mathcal{U})=U\{U \in \mathcal{U}: U \cap A \neq \emptyset\}$. As usual, we write $\operatorname{St}(x, \mathcal{U})$ instead of $\operatorname{St}(\{x\}, \mathcal{U})$.

Let \mathcal{A} and \mathcal{B} be collections of subsets of a space X. Then the symbol $S_{1}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(U_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, U_{n} \in \mathcal{U}_{n}$ and $\left\{U_{n}: n \in \mathbb{N}\right\}$ is an element of \mathcal{B}. The symbol $S_{f i n}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$ is an element of \mathcal{B} (see [9,15]).

Kočinac $[10,11,12]$ introduced star selection hypothesis similar to the previous ones:
(A) The symbol $S_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}}\left\{\operatorname{St}\left(V, \mathcal{U}_{n}\right): V \in \mathcal{V}_{n}\right\}$ is an element of \mathcal{B}.
(B) The symbol $S S_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(K_{n}: n \in N\right)$ of finite subsets of X such that $\left\{\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\} \in \mathcal{B}$.

Let O denote the collection of all open covers of X.
Definition 1.1. ([10, 11, 12]) A space X is said to be star-Menger (strongly star-Menger) if it satisfies the selection hypothesis $S_{f i n}^{*}(O, O)$ (resp., $S S_{f i n}^{*}(O, O)$).

In 1925 in [7] (see also [8]), Hurewicz introduced the Hurewicz covering property for a space X in the following way:

H : For each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X there exists a sequence $\left(\mathcal{V}_{n}: n \in N\right)$ such that for each n, \mathcal{V}_{n} is a finite subset of \mathcal{U}_{n} and for each $x \in X, x \in \bigcup \mathcal{V}_{n}$ for all but finitely many n.

[^0]In [1], two star versions of the Hurewicz property were introduced as follows:
SH: A space X satisfies the star-Hurewicz property if for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X there exists a sequence $\left(\mathcal{V}_{n}: n \in N\right)$ such that for each n, \mathcal{V}_{n} is a finite subset of \mathcal{U}_{n} and for each $x \in X$, $x \in S t\left(\cup \mathcal{V}_{n}, \mathcal{U}_{n}\right)$ for all but finitely many n.

SSH: A space X satisfies the strongly star-Hurewicz property if for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X there exists a sequence $\left(A_{n}: n \in N\right)$ of finite subsets of X such that for each $x \in X, x \in \operatorname{St}\left(A_{n}, \mathcal{U}_{n}\right)$ for all but finitely many n.

Definition 1.2. ([1]) A space X is said to be strongly star-Hurewicz (star-Hurewicz) if it satisfies the selection hypothesis strongly star-Hurewicz property (resp., star-Hurewicz property).

From the above definitions, we have the following diagram.

On the study of star-Hurewicz spaces, the readers can see the references $[1,2,3,12,16]$. The purpose of this paper is to continue to investigate topological properties of strongly star-Hurewicz spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω_{1} the first uncountable cardinal and \mathfrak{c} the cardinality of the set of all real numbers. For each pair of ordinals α, β with $\alpha<\beta$, we write $[\alpha, \beta)=\{\gamma: \alpha \leq \gamma<\beta\},(\alpha, \beta)=\{\gamma: \alpha<\gamma<\beta\},(\alpha, \beta]=\{\gamma: \alpha<\gamma \leq \beta\}$ and $[\alpha, \beta]=\{\gamma: \alpha \leq \gamma \leq \beta\}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [6].

2. Main results

In this section, we study the topological properties of strongly star-Hurewicz spaces.
Theorem 2.1. A continuous image of a strongly star-Hurewicz space is strongly star-Hurewicz.
Proof. Let $f: X \rightarrow Y$ be a continuous mapping from a strongly star-Hurewicz space X onto a space Y. Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of Y. For each $n \in \mathbb{N}$, let $\mathcal{V}_{n}=\left\{f^{-1}(U): U \in \mathcal{U}_{n}\right\}$. Then $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ is a sequence of open covers of X. Since X is strongly star-Hurewicz, there exists a sequence $\left(A_{n}: n \in N\right)$ of finite subsets of X such that for each $x \in X, x \in \operatorname{St}\left(A_{n}, \mathcal{U}_{n}\right)$ for all but finitely many n. Thus $\left(f\left(A_{n}\right): n \in \mathbb{N}\right)$ is a sequence of finite subsets of Y such that for each $y \in Y, y \in \operatorname{St}\left(f\left(A_{n}\right), \mathcal{U}_{n}\right)$ for all but finitely many n. In fact, let $y \in Y$. Then there is $x \in X$ such that $f(x)=y$. Hence $x \in \operatorname{St}\left(A_{n}, \mathcal{V}_{n}\right)$ for all but finitely many n. Thus $y=f(x) \in \operatorname{St}\left(f\left(A_{n}\right),\left\{f(U): U \in \mathcal{V}_{n}\right\}\right)=\operatorname{St}\left(f\left(A_{n}\right), \mathcal{U}_{n}\right)$ for all but finitely many n, which shows that Y is strongly star-Hurewicz.

Next we turn to consider preimages. We shall give a consistent example showing that the preimage of a strongly star-Hurewicz space under a closed 2-to-1 continuous map need not be strongly star-Hurewicz by using the following example from [3]. We make use of one of the cardinals defined in [5]. Define ${ }^{\omega} \omega$ as the set of all functions from ω to itself. For all $f, g \epsilon^{\omega} \omega$, we say $f \leq^{*} g$ if and only if $f(n) \leq g(n)$ for all but finitely many n. The unbounding number, denoted by \mathfrak{b}, is the smallest cardinality of an unbounded subset of $\left({ }^{\omega} \omega, \leq^{*}\right)$. It is not difficult to show that $\omega_{1} \leq \mathfrak{b} \leq \mathfrak{c}$. We also use the following example from [3].

Example 2.2. ([3]) Let \mathcal{A} be an almost disjoint family of infinite subsets of ω (i.e., the intersection of every two distinct elements of \mathcal{A} is finite) and Let $X=\omega \cup \mathcal{A}$ be the Isbell-Mrówka space constructed from $\mathcal{A}([4],[6])$. Then X is strongly star-Hurewicz if and only if $|\mathcal{F}|<\mathfrak{b}$.

For a space X, recall that the Alexandorff duplicate $A(X)$ of X is constructed in the following way: The underlying set $A(X)$ is $X \times\{0,1\}$; each point of $X \times\{1\}$ is isolated and a basic neighborhood of $\langle x, 0\rangle \in X \times\{0\}$ is a set of the form $(U \times\{0\}) \cup((U \times\{1\}) \backslash\{\langle x, 1\rangle\})$, where U is a neighborhood of x in X.

Example 2.3. Assuming $\mathfrak{b}=\mathfrak{c}$ and $\neg C H$, there exists a closed 2-to-1 continuous map $f: X \rightarrow Y$ such that Y is a strongly star-Hurewicz space, but X is not strongly star-Hurewicz.

Proof. Let $Y=\omega \cup \mathcal{A}$ be the space X of Example 2.2 with $|\mathcal{A}|=\omega_{1}$. Then Y is strongly star-Hurewicz by Example 2.2.

Let $X=A(Y)$. Then X is not strongly star-Hurewicz. In fact, since \mathcal{A} is a discrete closed subset of Y with $|\mathcal{A}|=\omega_{1}$, the set $\mathcal{A} \times\{1\}$ is an open and closed subset of $A(Y)$ with $|\mathcal{A} \times\{1\}|=\omega_{1}$, and each point $\langle a, 1\rangle$ is isolated for each $a \in \mathcal{A}$. Hence X is not strongly star-Hurewicz, since every open and closed subset of a strongly star-Hurewicz space is strongly star-Hurewicz and $\mathcal{A} \times\{1\}$ is not strongly star-Hurewicz.

Let $f: X \rightarrow Y$ be the projection. Then f is a closed 2-to-1 continuous map, which completes the proof.
From the proof of Example 2.3, it is not difficult to show the following result.
Theorem 2.4. If X is a T_{1}-space and $A(X)$ is a strongly star-Hurewicz space, then $e(X)<\omega_{1}$.
Proof. Suppose that $e(X) \geq \omega_{1}$. Then there exists a discrete closed subset B of X such that $|B| \geq \omega_{1}$. Hence $B \times\{1\}$ is a open and closed subset of $A(X)$ and every point of $B \times\{1\}$ is an isolated point. Thus $A(X)$ is not strongly star-Hurewicz, since every open and closed subset of a strongly star-Hurewicz space is strongly star-Hurewicz and $B \times\{1\}$ is not strongly star-Hurewicz.

Remark 2.5. The author does not know if the Alexandorff duplicate $A(X)$ of a strongly star-Hurewicz space X with $e(X)<\omega_{1}$ is strongly star-Hurewicz.

Now we give a positive result:
Theorem 2.6. Let f be an open and closed, finite-to-one continuous map from a space X to a strongly star-Hurewicz space Y. Then X is strongly star-Hurewicz.

Proof. Let $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ be a sequence of open covers of X and let $y \in Y$. For each $n \in \mathbb{N}$, since $f^{-1}(y)$ is finite, there exists a finite subcollection $\mathcal{U}_{n_{y}}$ of \mathcal{U}_{n} such that $f^{-1}(y) \subseteq \bigcup \mathcal{U}_{n_{y}}$ and $U \cap f^{-1}(y) \neq \emptyset$ for each $U \in \mathcal{U}_{n_{y}}$. Since f is closed, there exists an open neighborhood $V_{n_{y}}$ of y in Y such that $f^{-1}\left(V_{n_{y}}\right) \subseteq \bigcup\left\{U: U \in \mathcal{U}_{n_{y}}\right\}$. Since f is open, we can assume that

$$
\begin{equation*}
V_{n_{y}} \subseteq \bigcap\left\{f(U): U \in \mathcal{U}_{n_{y}}\right\} \tag{1}
\end{equation*}
$$

For each $n \in \mathbb{N}$, taking such open set $V_{n_{y}}$ for each $y \in Y$, we have an open cover $\mathcal{V}_{n}=\left\{V_{n_{y}}: y \in Y\right\}$ of Y. Thus $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ is a sequence of open covers of Y, so that there exists a sequence $\left(A_{n}: n \in \mathbb{N}\right)$ of finite subsets of Y such that for each $y \in Y, y \in \operatorname{St}\left(A_{n}, \mathcal{V}_{n}\right)$ for all but finitely many n, since Y is strongly star-Hurewicz. Since f is finite-to-one, the sequence $\left(f^{-1}\left(A_{n}\right): n \in N\right)$ is a sequence of finite subsets of X. We show that for each $x \in X, x \in \operatorname{St}\left(f^{-1}\left(A_{n}\right), \mathcal{U}_{n}\right)$ for all but finitely many n. Let $x \in X$. Then $f(x) \in \operatorname{St}\left(A_{n}, \mathcal{V}_{n}\right)$ for all but finitely many n. If $f(x) \in \operatorname{St}\left(A_{n}, \mathcal{V}_{n}\right)$, then there exists $y \in Y$ such that $f(x) \in V_{n_{y}}$ and $V_{n_{y}} \cap A_{n} \neq \emptyset$. Since

$$
x \in f^{-1}\left(V_{n_{y}}\right) \subseteq \bigcup \mathcal{U}_{n_{y}},
$$

we can choose $U \in \mathcal{U}_{n_{y}}$ with $x \in U$. Then $V_{n_{y}} \subseteq f(U)$ by (1). Hence $U \cap f^{-1}\left(A_{n}\right) \neq \emptyset$. Therefore $x \in \operatorname{St}\left(f^{-1}\left(A_{n}\right), \mathcal{U}_{n}\right)$. Consequently $x \in \operatorname{St}\left(f^{-1}\left(A_{n}\right), \mathcal{U}_{n}\right)$ for all but finitely many n, which shows that X is strongly star-Hurewicz.

For strongly star-Hurewicz spaces, we give a consistent example showing that the product of a strongly star-Hurewicz space and a compact space need not be strongly star-Hurewicz. For the example, we need the following Lemmas.

Lemma 2.7. ([2]) A space X is a strongly star-Hurewicz space if and only if for every sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X there exists a sequence $\left(A_{n}: n \in \mathbb{N}\right)$ of finite subsets of X such that for every $x \in X, \operatorname{St}\left(x, \mathcal{U}_{n}\right) \cap A_{n} \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Example 2.8. Assuming $\mathfrak{b}=\mathfrak{c}$ and $\neg C H$, there exist a strongly star-Hurewicz space X and a compact space Y such that $X \times Y$ is not strongly star-Hurewicz.

Proof. Assuming $\mathfrak{b}=\mathfrak{c}$ and $\neg C H$, let $X=\omega \cup \mathcal{A}$ be the same space as Example 2.2 with $|\mathcal{A}|=\omega_{1}$. Then X is strongly star-Hurewicz by Example 2.2. Let $D=\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ be the discrete space of cardinality ω_{1} and let $Y=D \cup\left\{d^{*}\right\}$ be the one-point compactification of D. Then Y is strongly star-Hurewicz, since Y is compact. Let us show that $X \times Y$ is not strongly star-Hurewicz. Since $|\mathcal{A}|=\omega_{1}$, we can enumerate \mathcal{A} as $\left\{a_{\alpha}: \alpha<\omega_{1}\right\}$. For each $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}=\left\{\left(\left\{a_{\alpha}\right\} \cup a_{\alpha}\right) \times\left(Y \backslash\left\{d_{\alpha}\right\}\right): \alpha<\omega_{1}\right\} \cup\left\{X \times\left\{d_{\alpha}\right\}: \alpha<\omega_{1}\right\} \cup\{\omega \times Y\} .
$$

Then all the \mathcal{U}_{n} 's are the same and \mathcal{U}_{n} is an open cover of $X \times Y$ for each $n \in \mathbb{N}$. Let us consider the sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of open covers of $X \times Y$. It suffices to show that for any sequence ($A_{n}: n \in \mathbb{N}$) of finite subsets of $X \times Y$ there exists a point $a \in X \times Y$ such that $\operatorname{St}\left(a, \mathcal{U}_{n}\right) \cap A_{n} \neq \emptyset$ for all $n \in \mathbb{N}$ by Lemma 2.7. Let $\left(A_{n}: n \in \mathbb{N}\right)$ be any sequence of finite subsets of $X \times Y$. For each $n \in \mathbb{N}$, since A_{n} is finite, there exists $\alpha_{n}<\omega_{1}$ such that

$$
A_{n} \cap\left(X \times\left\{d_{\alpha}\right\}\right)=\emptyset \text { for each } \alpha>\alpha_{n}
$$

Let $\beta=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\beta<\omega_{1}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cap\left(X \times\left\{d_{\alpha}\right\}\right)=\emptyset \text { for each } \alpha>\beta .
$$

Let $\alpha>\beta$. Since $X \times\left\{d_{\alpha}\right\}$ is the only element of \mathcal{U}_{n} containing the point $\left\langle a_{\alpha}, d_{\alpha}\right\rangle$ for each $n \in \mathbb{N}$, $\operatorname{St}\left(\left\langle a_{\alpha}, d_{\alpha}\right\rangle, \mathcal{U}_{n}\right)=X \times\left\{d_{\alpha}\right\}$ for each $n \in \mathbb{N}$. Thus $\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cap\left(X \times\left\{d_{\alpha}\right\}\right)=\emptyset$, which shows that $X \times Y$ is not strongly star-Hurewicz.

Remark 2.9. Assuming $\mathfrak{b}=\mathfrak{c}$ and $\neg C H$, Example 2.8 shows that the preimage of a strongly star-Hurewicz space under an open perfect map need not be strongly star-Hurewicz, and also shows that Theorem 2.6 fails to be true if "open and closed, finite-to-one" is replaced by "open perfect". The author does not know if in ZFC, there exist a strongly star-Hurewicz space X and a compact space Y such that $X \times Y$ is not strongly star-Hurewicz.

However, the product of two strongly star-Hurewicz spaces need not be strongly star-Hurewicz. In fact, the following well-known example shows that the product of two countably compact (hence strongly star-Hurewicz) spaces need not be strongly star-Hurewicz. Here we give the proof roughly for the sake of completeness.

Example 2.10. There exist two Tychonoff countably compact (hence strongly star-Hurewicz) spaces X and Y such that $X \times Y$ is not strongly star-Hurewic.

Proof. Let D be a discrete space of cardinality c. We can define $X=\bigcup_{\alpha<\omega_{1}} E_{\alpha}$ and $Y=\bigcup_{\alpha<\omega_{1}} F_{\alpha}$, where E_{α} and F_{α} are the subsets of βD which are defined inductively so as to satisfy the following conditions (1),(2) and (3):
(1) $E_{\alpha} \cap F_{\beta}=D$ if $\alpha \neq \beta$;
(2) $\left|E_{\alpha}\right| \leq c$ and $\left|F_{\beta}\right| \leq c$;
(3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp., $F_{\alpha+1}$).

These sets E_{α} and F_{α} are well-defined since every infinite closed set in βD has cardinality at least 2^{c} (see [14]). Then $X \times Y$ is not strongly star-Hurewicz. In fact, the diagonal $\{\langle d, d\rangle: d \in D\}$ is an open and closed subset of $X \times Y$ with cardinality c and $\{\langle d, d\rangle\}$ is isolated for each $d \in D$. Thus $X \times Y$ is not strongly starHurewicz, since the open and closed subsets of strongly star-Hurewicz spaces are strongly star-Hurewicz and the diagonal $\{\langle d, d\rangle: d \in D\}$ is not strongly star-Hurewicz.

In [4, Example 3.3.3], van Douwen et al. gave an example showing that there exist a countably compact (and hence strongly star-Hurewicz) space X and a Lindelöf space Y such that $X \times Y$ is not strongly starLindelöf. Therefore, this example shows that the product of a strongly star-Hurewicz space X and a Lindelöf space Y need not be strongly star-Hurewicz, since every strongly star-Hurewicz space is strongly star-Lindelöf.

Next we give a condition that implies Lindelöfness. Recall that a space X is meta-Lindelöf if every open cover \mathcal{U} of X has a point countable open refinement.

Theorem 2.11. Every meta-Lindelöf strongly star-Hurewicz space is Lindelöf.
Proof. Let X be a meta-Lindelöf strongly star-Hurewicz space and \mathcal{U} be an open cover of X. Then there exists a point countable open refinement \mathcal{V} of \mathcal{U}. Since X is strongly star-Hurewicz, there exists a sequence $\left(A_{n}: n \in N\right)$ of finite subsets of X such that for each $x \in X, x \in \operatorname{St}\left(A_{n}, \mathcal{V}\right)$ for all but finitely many n.

For each $n \in \mathbb{N}$, let

$$
\mathcal{V}_{n}=\left\{V \in \mathcal{V}: V \cap A_{n} \neq \emptyset\right\} .
$$

Then \mathcal{V}_{n} is a countable subset of \mathcal{V}. Let $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$. Then \mathcal{W} is a countable open cover of X. For each $V \in \mathcal{W}$, choose $U_{V} \in \mathcal{U}$ such that $V \subseteq U_{V}$. Then $\left\{U_{V}: V \in \mathcal{W}\right\}$ is a countable subcover of \mathcal{U}, which shows that X is Lindelöf. Thus we complete the proof.

Recall that a space X is para-Lindelöf if every open cover \mathcal{U} of X has a locally countable open refinement. Since every para-Lindelöf space is meta-Lindelöf, the following Corollary follows from Theorem 2.11.

Corollary 2.12. A para-Lindelöf strongly star-Hurewicz space X is Lindelöf.

Since every Lindelöf space is meta-Lindelöf and para-Lindelöf, the following Corollaries follows from Theorem 2.11.

Corollary 2.13. Let X be a strongly star-Hurewicz space. Then X is meta-Lindelöf if and only if X is Lindelöf.
Corollary 2.14. Let X be a strongly star-Hurewicz space. Then X is para-Lindelöf if and only if X is Lindelöf.

Acknowledgments. The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions.

References

[1] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, Star-Hurewicz and related spaces, Applied General Topology 5 (2004) 79-89.
[2] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, M.V. Matveev, On weaker froms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik 61 (2009) 13-23.
[3] M. Bonanzinga, M.V. Matveev, Some covering properties for Ψ-spaces, Mat. Vesnik 61 (2009) 3-11.
[4] E.K. van Douwen, G.K. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991) 71-103.
[5] E.K. van Douwen, The integers and topology, In: Handbook of Set-theoretic Topology, (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167.
[6] R. Engelking General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
[7] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925) 401-421.
[8] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 8 (1927) 193-204.
[9] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996) 241-266.
[10] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999) 421-431.
[11] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat (Niš) 13 (1999) 129-140.
[12] Lj.D.R. Kočinac, Selected results on selection principles, In: Proc. 3rd Seminar Geometry and Topology (Sh. Rezapour, ed.), July 15-17, 2004, Tabriz, Iran, pp. 71-104.
[13] M.V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No. 330 (1998).
[14] R.C. Walker The Stone-Čech compactification, Berlin, 1974.
[15] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31-62.
[16] Y.-K. Song, R. Li, A note on star-Huerwicz spaces, Filomat 27:6 (2013), 1091-1095.

[^0]: 2010 Mathematics Subject Classification. Primary 54D20; Secondary 54B05, 54B10
 Keywords. Selection principles, star-Menger, strongly star-Menger, strongly star-compact, star-Hurewicz, strongly star-Hurewicz Received: 05 January 2013; Revised: 28 March 2013; Accepted: 30 March 2013
 Communicated by Ljubiša D.R. Kočinac
 The author acknowledges the support from the National Natural Science Foundation (Grant 11271036) of China
 Email address: songyankui@njnu.edu.cn (Yan-Kui Song)

