Fredholm Perturbations and Seminorms Related to Upper Semi-Fredholm Perturbations

Boulbeba Abdelmoumen ${ }^{\text {a }}$, Hamadi Baklouti ${ }^{\text {b }}$
${ }^{a}$ Département de mathématiques, IPEIS, Sfax University
${ }^{b}$ Département de mathématiques, FSS, Sfax University

Abstract

In this paper, we investigate the stability in the set of Fredholm perturbations under composition with bounded operators. Moreover, we introduce the concept of a measure of non-Fredholm perturbations, which allows us to give a general approach to the question of obtaining perturbation theorems for semiFredholm operators. Finally, we prove some localization results about the Wolf, the Schechter and the Browder essential spectrum of bounded operators on a Banach space X.

1. Introduction

Let X and Y be two Banach spaces. We denote by $\mathcal{L}(X, Y)$ (respectively $\mathcal{K}(X, Y)$) the space of all bounded (respectively compact) linear operators from X into Y. If $T \in \mathcal{L}(X, Y)$, we write $\mathcal{N}(T) \subseteq X$ and $\operatorname{Ran}(T) \subseteq Y$ for the null space and the range of T. We set $\alpha(T):=\operatorname{dim} \mathcal{N}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$. The sets of upper and lower semi-Fredholm operators in $\mathcal{L}(X, Y)$ are denoted by $\Phi_{+}(X, Y)$ and $\Phi_{-}(X, Y)$. We use $\Phi_{ \pm}(X, Y):=\Phi_{+}(X, Y) \cup \Phi_{-}(X, Y)$ for the set of semi-Fredholm operators, and $\Phi(X, Y):=\Phi_{+}(X, Y) \cap \Phi_{-}(X, Y)$ for the set of Fredholm operators. If $T \in \Phi_{ \pm}(X, Y)$, then $i(T):=\alpha(T)-\beta(T)$ is called the index of T. If $X=Y$, we simply write $\mathcal{L}(X), \mathcal{K}(X), \Phi_{+}(X), \Phi_{-}(X), \Phi_{ \pm}(X)$ and $\Phi(X)$.

Set $\mathcal{N}^{\infty}(T)=\bigsqcup_{n} \mathcal{N}\left(T^{n}\right), \mathcal{R}^{\infty}(T)=\bigcap_{n} \operatorname{Ran}\left(T^{n}\right)$, and denote by $a(T)$ respectively $\delta(T)$, the ascent and the descent of $T \in \mathcal{L}(X)$. The sets of upper and lower semi-Browder operators are denoted by $\mathcal{B}_{+}(X)$ and $\mathcal{B}_{-}(X)$. The set of Browder operators on X is $\mathcal{B}(X)=\mathcal{B}_{+}(X) \cap \mathcal{B}_{-}(X)$.
In this paper we are concerned with the following essential spectra:
Wolf essential spectrum: $\sigma_{e}(T):=\{\lambda \in \mathbb{C}$ such that $\lambda-T \notin \Phi(X)\}$,
Schechter essential spectrum: $\sigma_{\text {ess }}(T):=\mathbb{C} \backslash\{\lambda-T \in \Phi(X)$ such that $i(\lambda-T)=0\}$,
Browder essential spectrum : $\sigma_{b}=\{\lambda \in \mathbb{C} ; \lambda-T \notin \mathcal{B}(X)\}$.
An operator $T \in \mathcal{L}(X, Y)$ is said to be left Atkinson if $T \in \Phi_{+}(X, Y)$ and $\operatorname{Ran}(T)$ is complemented. The operator $T \in \mathcal{L}(X, Y)$ is said to be right Atkinson if $T \in \Phi_{-}(X, Y)$ and $\mathcal{N}(T)$ is complemented. The class of left Atkinson operators and right Atkinson operators will be denoted by $\Phi_{l}(X, Y)$ and $\Phi_{r}(X, Y)$, respectively.

[^0]Clearly, we have $\Phi(X, Y) \subset \Phi_{l}(X, Y) \subset \Phi_{+}(X, Y)$ and $\Phi(X, Y) \subset \Phi_{r}(X, Y) \subset \Phi_{-}(X, Y)$. Moreover, $\Phi(X, Y)=$ $\Phi_{l}(X, Y) \cap \Phi_{r}(X, Y)$.
An operator $A \in \mathcal{L}(X, Y)$ is called a Fredholm perturbation, if $A+B \in \Phi(X, Y)$ whenever $B \in \Phi(X, Y)$. The operator A is called upper (respectively lower) semi-Fredholm perturbation if $A+B \in \Phi_{+}(X, Y)$ (respectively $\Phi_{-}(X, Y)$) whenever $B \in \Phi_{+}(X, Y)$ (respectively $\Phi_{-}(X, Y)$). The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted respectively by $\mathcal{F}(X, Y), \mathcal{F}_{+}(X, Y)$ and $\mathcal{F}_{-}(X, Y)$.
An operator $A \in \mathcal{L}(X, Y)$ is called a left (respectively right) Fredholm perturbation, if $A+B \in \Phi_{l}(X, Y)$ (respectively $\Phi_{r}(X, Y)$) whenever $B \in \Phi_{l}(X, Y)$ (respectively $\Phi_{r}(X, Y)$). The sets of left Fredholm and right Fredholm perturbation are denoted respectively by $\mathcal{F}_{l}(X, Y)$ and $\mathcal{F}_{r}(X, Y)$. If $\Phi(X, Y)=\emptyset$, we shall agree that $\mathcal{F}(X, Y)=\mathcal{L}(X, Y)$. It is well known that, if $\Phi(X, Y) \neq \emptyset$, then $\mathcal{F}(X, Y)=\mathcal{F}_{l}(X, Y)=\mathcal{F}_{r}(X, Y)$ (see, for example, [2, Theorem 3.16]). If $X=Y$, we use $\mathcal{F}(X), \mathcal{F}_{+}(X), \mathcal{F}_{-}(X), \mathcal{F}_{l}(X)$ and $\mathcal{F}_{r}(X)$.

These sets of operators are introduced and investigated in [7, 14]. In particular, it is shown that $\mathcal{F}(X, Y)$ is a closed linear subspace of $\mathcal{L}(X, Y)$ and $\mathcal{F}(X), \mathcal{F}_{+}(X), \mathcal{F}_{-}(X)$ are closed two-sided ideals of $\mathcal{L}(X)$. Moreover, $\mathcal{K}(X, Y) \subset \mathcal{S S}(X, Y) \subset \mathcal{F}_{+}(X, Y) \subset \mathcal{F}(X, Y)$, and $\mathcal{K}(X, Y) \subset \mathcal{C S}(X, Y) \subset \mathcal{F}_{-}(X, Y) \subset \mathcal{F}(X, Y)$, where $\mathcal{S S}(X, Y)$ and $C S(X, Y)$ are respectively the classes of strictly singular operators and strictly cosingular operators.

In this paper, we are interested in the properties of the class of Fredholm perturbations. This class of operators has been subject of interest for several authors (see for instance, [4, 7, 8, 12, 14]). Let X_{1}, X_{2}, Y_{1} and Y_{2} be Banach spaces, and consider $U \in \mathcal{L}\left(X_{2}, Y_{2}\right)$ and $V \in \mathcal{L}\left(Y_{1}, X_{1}\right)$. It is familiar that if $S \in \mathcal{K}\left(X_{1}, X_{2}\right)$, respectively $\mathcal{S S}\left(X_{1}, X_{2}\right)$, then $U S V \in \mathcal{K}\left(Y_{1}, Y_{2}\right)$, respectively $\mathcal{S S}\left(Y_{1}, Y_{2}\right)$. To study the stability problem in the class of Fredholm perturbations, it is natural to ask the following: For $S \in \mathcal{F}\left(X_{1}, X_{2}\right)$, under which conditions does $U S V \in \mathcal{F}\left(Y_{1}, Y_{2}\right)$? To answer this question I. Gohberg and all in [7, pp. 69-70] have shown the following:

Proposition 1.1. [7] Let X, Y, Z be Banach spaces. If at least one of the sets $\Phi(X, Y)$ or $\Phi(Y . Z)$ is not empty, then
(i) $S \in \mathcal{F}(X, Y), U \in \mathcal{L}(Y, Z)$, imply $U S \in \mathcal{F}(X, Z)$.
(ii) $S \in \mathcal{F}(Y, Z), V \in \mathcal{L}(X, Y)$, imply $S V \in \mathcal{F}(X, Z)$.

The purpose of this paper is to extend the above results and to give a positive answer in more general cases (see Theorem 2.4 in section 2).
The aim of section 3 is to treat the problem of stability in semi-Fredholm (respectively semi-Browder) operators set. For this, we construct a new measure called measure of non-upper semi-Fredholm perturbations and we prove some localization results about the essential spectra $\sigma_{e}, \sigma_{e s s}$ and σ_{b} of bounded operators on a Banach space X. These results provide, in particular, an extension of ones done by [1].

2. Fredholm perturbation

The purpose of this section is to extend the results of Proposition 1.1 in more general cases. First, we adopt the following definition:

Definition 2.1. Let X and Y be two Banach spaces. We say that Y is essentially stronger than X and write $X \leq Y$, if there exists $R \in \Phi_{l}(X, Y)$.

Remark 2.2. (i) It is clear that, for X a Banach space, $X \leq X$.
(ii) Let X_{1}, X_{2}, X_{3} be three Banach spaces such that $X_{1} \leq X_{2} \leq X_{3}$. Then there exists $R_{1} \in \Phi_{+}\left(X_{1}, X_{2}\right)$ and $R_{2} \in \Phi_{+}\left(X_{2}, X_{3}\right)$ with Ran $\left(R_{1}\right)$ complemented in X_{2} and Ran $\left(R_{2}\right)$ complemented in X_{3}. By [11, Theorem 14, p. 160], there exists S_{i} such that $S_{i} R_{i}=I_{X_{i}}+K_{i}$ with $K_{i} \in \mathcal{K}\left(X_{i}\right), i=1,2$. Hence, $\left(S_{1} S_{2}\right)\left(R_{2} R_{1}\right)=I_{X_{1}}+K_{1}+S_{1} K_{2} R_{1}$. Thus, by [13, Theorem 5.37, p. 126], $R_{2} R_{1} \in \Phi_{+}\left(X_{1}, X_{3}\right)$ with Ran $\left(R_{2} R_{1}\right)$ complemented in X_{3} which implies that $X_{1} \leq X_{3}$.
(iii) To deduce that " $\leq "$ is not antisymmetric, we notice that W.T. Gowers showed in [10] that there is a Banach space Z that is isomorphic to $Z \oplus Z \oplus Z$ but not isomorphic to $Z \oplus Z$.

An other important property is the following :
Lemma 2.3. Let X and Y be two Banach spaces. Suppose that $X \leq Y$, then $X^{*} \leq Y^{*}$.
Proof. We have $X \leq Y$, then there exist $R \in \Phi_{+}(X, Y)$ and $S \in \Phi_{-}(Y, X)$, such that $S R=I_{X}+K$, with $K \in \mathcal{K}(X)$. This implies that $R^{*} S^{*}=I_{X^{*}}+K^{*}$. Since $R^{*} \in \Phi_{-}\left(Y^{*}, X^{*}\right), S^{*} \in \Phi_{+}\left(X^{*}, Y^{*}\right)$ and $K^{*} \in \mathcal{K}\left(X^{*}\right)$, then we get $X^{*} \leq Y^{*}$. Q.E.D.

Now, we are ready to state and prove the main result of this section.
Theorem 2.4. Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be two couples of Banach spaces satisfying $X_{1} \leq Y_{1}$. Consider $U \in \mathcal{L}\left(X_{2}, Y_{2}\right)$ and $V \in \mathcal{L}\left(Y_{1}, X_{1}\right)$.
(i) Suppose that $\Phi\left(X_{1}, X_{2}\right) \neq \emptyset$. If $S \in \mathcal{F}\left(X_{1}, X_{2}\right)$, then $U S V \in \mathcal{F}\left(Y_{1}, Y_{2}\right)$.
(ii) Suppose that $\Phi_{l}\left(X_{1}, X_{2}\right) \neq \emptyset$. If $S \in \mathcal{F}_{l}\left(X_{1}, X_{2}\right)$, then $U S V \in \mathcal{F}_{l}\left(Y_{1}, Y_{2}\right)$.
(iii) Suppose that $\Phi_{r}\left(X_{1}, X_{2}\right) \neq \emptyset$. If $S \in \mathcal{F}_{r}\left(X_{1}, X_{2}\right)$, then $U S V \in \mathcal{F}_{r}\left(Y_{1}, Y_{2}\right)$.

Proof. (i) Remark that the result is trivial if $\Phi\left(Y_{1}, Y_{2}\right)=\emptyset$. So let us assume that $\Phi\left(Y_{1}, Y_{2}\right) \neq \emptyset$. Since $X_{1} \leq Y_{1}$ and $\Phi\left(X_{1}, X_{2}\right) \neq \emptyset$, this yields $X_{2} \leq Y_{2}$. Hence, there exists $R_{i} \in \Phi_{+}\left(X_{i}, Y_{i}\right)$ and a closed subspace Z_{i} such that $Y_{i}:=\operatorname{Ran}\left(R_{i}\right) \oplus Z_{i}, i=1,2$. Without loss of generality, we can suppose that R_{1} and R_{2} are injective. For $i=1,2$ denote the following invertible operator

$$
\begin{aligned}
R_{i 0}: X_{i} & \longrightarrow \operatorname{Ran}\left(R_{i}\right) \\
x & \longmapsto R_{i 0}(x)=R_{i}(x) .
\end{aligned}
$$

By [11, Theorem 14, p. 160], there exists $R_{i}^{\prime} \in \mathcal{L}\left(Y_{i}, X_{i}\right)$ such that $R_{i}^{\prime} R_{i}=I_{X_{i}}+K_{i}$, with $K_{i} \in \mathcal{K}\left(X_{i}\right)$. We can choose R_{1}^{\prime} as follows:

$$
\begin{aligned}
& R_{1}^{\prime}: Y_{1}=\operatorname{Ran}\left(R_{1}\right) \oplus Z_{1} \longrightarrow X_{1} \\
& y=\left(y_{1}, z_{1}\right) \longmapsto R_{10}^{-1}\left(y_{1}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
R_{2} S R_{1}^{\prime}: Y_{1}=\operatorname{Ran}\left(R_{1}\right) \oplus Z_{1} \longrightarrow Y_{2}=\operatorname{Ran}\left(R_{2}\right) \oplus Z_{2} \\
y=\left(y_{1}, z_{1}\right) \longmapsto\left(R_{20} S R_{10}^{-1}\left(y_{1}\right), 0\right)=\left(\begin{array}{cc}
R_{20} S R_{10}^{-1} & 0 \\
0 & 0
\end{array}\right)\binom{y_{1}}{z_{1}}
\end{aligned}
$$

Since $S \in \mathcal{F}\left(X_{1}, X_{2}\right)$, then, by [7, pp. 69-70], we get $R_{20} S R_{10}^{-1} \in \mathcal{F}\left(\operatorname{Ran}\left(R_{1}\right), \operatorname{Ran}\left(R_{2}\right)\right)$. First, we claim that $F:=R_{2} S R_{1}^{\prime} \in \mathcal{F}\left(Y_{1}, Y_{2}\right)$.
Consider an arbitrary element $L=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Phi\left(Y_{1}, Y_{2}\right)$. It follows, by Atkinson theorem, that there exists $L_{0}=\left(\begin{array}{ll}A_{0} & B_{0} \\ C_{0} & D_{0}\end{array}\right) \in \Phi\left(Y_{2}, Y_{1}\right)$ and $K \in \mathcal{K}\left(Y_{2}\right)$ such that $L L_{0}=I+K$ on Y_{2}. Then

$$
(L+F) L_{0}=I+K+F L_{0}=K+\left(\begin{array}{cc}
I & R_{20} S R_{10}^{-1} B_{0} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I+R_{20} S R_{10}^{-1} A_{0} & 0 \\
0 & I
\end{array}\right)
$$

Notice that $\Phi\left(X_{1}, X_{2}\right) \neq \emptyset$ implies $\Phi\left(\operatorname{Ran}\left(R_{1}\right), \operatorname{Ran}\left(R_{2}\right)\right) \neq \emptyset$. According to [7, pp. 69-70], $R_{20} S R_{10}^{-1} \in$ $\mathcal{F}\left(\operatorname{Ran}\left(R_{1}\right), \operatorname{Ran}\left(R_{2}\right)\right)$, yields that $R_{20} S R_{10}^{-1} A_{0} \in \mathcal{F}\left(\operatorname{Ran}\left(R_{2}\right)\right)$. Thus, $I+R_{20} S R_{10}^{-1} A_{0} \in \Phi\left(\operatorname{Ran}\left(R_{2}\right)\right)$ which implies that $\left(\begin{array}{cc}I+R_{20} S R_{10}^{-1} A_{0} & 0 \\ 0 & I\end{array}\right)$ is Fredholm. Observing that $\left(\begin{array}{cc}I & R_{20} S R_{10}^{-1} B_{0} \\ 0 & I\end{array}\right)$ is invertible, with inverse $\left(\begin{array}{cc}I & -R_{20} S R_{10}^{-1} B_{0} \\ 0 & I\end{array}\right)$, we get $(L+F) L_{0} \in \Phi\left(Y_{2}\right)$. Hence, $(L+F) \in \Phi\left(Y_{1}, Y_{2}\right)$ and therefore $F \in \mathcal{F}\left(Y_{1}, Y_{2}\right)$. Our claim is proved.
Now, since $R_{i}^{\prime} R_{i}=I_{X_{i}}+K_{i}$, then

$$
\begin{aligned}
U S V & =U\left(R_{2}^{\prime} R_{2}-K_{2}\right) S\left(R_{1}^{\prime} R_{1}-K_{1}\right) V \\
& =U R_{2}^{\prime}\left(R_{2} S R_{1}^{\prime}\right) R_{1} V+K^{\prime}
\end{aligned}
$$

with $K^{\prime} \in \mathcal{K}\left(Y_{1}, Y_{2}\right)$. Finally, the result follows by Proposition 1.1, since $U R_{2}^{\prime} \in \mathcal{L}\left(Y_{2}\right)$ and $R_{1} V \in \mathcal{L}\left(Y_{1}\right)$. (ii)-(iii) The proof is analogous to the previous one.
Q.E.D.

Remark 2.5. Notice that if $\Phi\left(X_{1}, X_{2}\right)=\emptyset$ and $\Phi\left(Y_{1}, Y_{2}\right) \neq \emptyset$, then the results in the above theorem need not hold. Consider the Banach space Z constructed by Gowers in [10] (see Remark 2.2(iii)). If we take $X_{1}=Z$ and $X_{2}=Y_{1}=Y_{2}=Z \oplus Z$, then $F:=i d_{X_{2}} \circ i \circ p \notin \mathcal{F}\left(Y_{1}, Y_{2}\right)$, where i and p are respectively the natural embedding and the projection.

As a consequence of Theorem 2.4, we have:
Corollary 2.6. Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be two couples of Banach spaces such that $X_{1} \leq Y_{1}$. Assume that $\Phi\left(X_{1}, X_{2}\right) \neq \emptyset$.
(i) If $\mathcal{F}\left(Y_{1}, Y_{2}\right)=\mathcal{K}\left(Y_{1}, Y_{2}\right)$, then $\mathcal{F}\left(X_{1}, X_{2}\right)=\mathcal{K}\left(X_{1}, X_{2}\right)$.
(ii) If $\mathcal{F}\left(Y_{1}, Y_{2}\right)=\mathcal{S S}\left(Y_{1}, Y_{2}\right)$, then $\mathcal{F}\left(X_{1}, X_{2}\right)=\mathcal{S}\left(X_{1}, X_{2}\right)$.

Proof. We shall prove (i), the proof of $(i i)$ is similar. Since $X_{i} \leq Y_{i}, i=1,2$, then there exists $R_{1} \in \Phi_{+}\left(X_{1}, Y_{1}\right)$ and $R_{2} \in \Phi_{+}\left(X_{2}, Y_{2}\right)$ with $\operatorname{Ran}\left(R_{1}\right)$ complemented in Y_{1} and $\operatorname{Ran}\left(R_{2}\right)$ complemented in Y_{2}. By [11, Theorem 14, p. 160], there exists R_{i}^{\prime} such that $R_{i}^{\prime} R_{i}=I_{X_{i}}+K_{i}$ with $K_{i} \in \mathcal{K}\left(X_{i}\right), i=1,2$. Let $T \in \mathcal{F}\left(X_{1}, X_{2}\right)$. The use of Theorem 2.4 leads to $R_{2} T R_{1}^{\prime} \in \mathcal{F}\left(Y_{1}, Y_{2}\right)=\mathcal{K}\left(Y_{1}, Y_{2}\right)$. Thus, $R_{2}^{\prime} R_{2} T R_{1}^{\prime} R_{1}=T+K_{2} T+K_{2} T K_{1} \in \mathcal{K}\left(X_{1}, X_{2}\right)$ and therefore $T \in \mathcal{K}\left(X_{1}, X_{2}\right)$.
Q.E.D.

Corollary 2.7. Let X be a Banach space satisfying $X \leq L_{p}(\mu)$, for some $p \geq 1$, then $\mathcal{F}(X)=\mathcal{S S}(X)=\mathcal{C S}(X)$.
Proof. By [16] we have $\mathcal{F}\left(L_{p}(\mu)\right)=\mathcal{S} \mathcal{S}\left(L_{p}(\mu)\right)$. Since $X \leq L_{p}(\mu)$ then by Corollary 2.6 (ii), we get $\mathcal{F}(X)=$ $\mathcal{S S}(X)$.
Now, consider $F \in \mathcal{F}(X)$, then $F^{*} \in \mathcal{F}\left(X^{*}\right)$. Since $X \leq L_{p}(\mu)$ then by Lemma 2.3, $X^{*} \leq L_{p}^{*}(\mu)=L_{q}(\mu)$ for some $q \geq 1$. Again by Corollary 2.6, $\mathcal{F}\left(X^{*}\right)=\mathcal{S S}\left(X^{*}\right)$. Hence $F^{*} \in \mathcal{S S}\left(X^{*}\right)$, and therefore $F \in \mathcal{C S}(X)$. This yields $\mathcal{F}(X) \subset C \mathcal{S}(X)$, and we get the result since we have $C S(X) \subset \mathcal{F}(X)$.
Q.E.D.

3. Seminorm related to upper semi-Fredholm perturbations

3.1. Basic construction and properties

Let X be a Banach space. We write M_{X} for the family of all nonempty and bounded subset of X. Given α the Kuratowski measure of noncompactness, we define, for $T \in \mathcal{L}(X)$, the two non-negative quantities associated with T by:

$$
\alpha(T)=\sup \left\{\frac{\alpha(T(A))}{\alpha(A)} ; A \in M_{X}, \alpha(A)>0\right\} \text { and } \beta(T)=\inf \left\{\frac{\alpha(T(A))}{\alpha(A)} ; A \in M_{X}, \alpha(A)>0\right\}
$$

For more detail of some fundamental properties satisfied by α and β we refer to $[1,6]$.
Definition 3.1. For $T \in \mathcal{L}(X)$, we define the non-negative quantity:

$$
\varphi(T)=\sup \{\beta(T+S), \beta(S)=0\}
$$

In what follows, we give some fundamental properties satisfied by $\varphi($.$) .$
Proposition 3.2. (i) $\varphi(T)=0$ if and only if $T \in \mathcal{F}_{+}(X)$.
(ii) $\varphi(T+S)=\varphi(S)$, for all $T \in \mathcal{F}_{+}(X)$.
(iii) $\varphi(\lambda T)=|\lambda| \varphi(T)$.
(iv) $\beta(T) \leq \varphi(T) \leq \alpha(T)$.
(v) $\varphi(T)-\alpha(S) \leq \varphi(T+S) \leq \varphi(T)+\alpha(S)$.
(vi) $\varphi(T) \leq\|T\|_{\mathcal{F}_{+}} \leq\|T\|_{\mathcal{K}}$, where $\|T\|_{\mathcal{K}}=\inf \{\|T-K\| ; K \in \mathcal{K}(X)\}$ and
$\|T\|_{\mathscr{F}_{+}}=\inf \left\{\|T-K\| ; K \in \mathcal{F}_{+}(X)\right\}$.
(vii) $\varphi(S T) \geq \varphi(T) \beta(S)$, for all $S \in \mathcal{L}(X)$.
(viii) If $\varphi(T)=0$, then, for all $S \in \mathcal{L}(X), \varphi(T S)=\varphi(S T)=0$.

Proof. (i) It follows immediately from the fact that $\beta(T)>0$ if and only if $T \in \Phi_{+}(X)$.
(ii) Due to the fact that for $T \in \mathcal{F}_{+}(X), \beta(S)=0$ if and only if $\beta(T+S)=0$.
(iii) - (v) Follow from the definition of $\varphi($.$) and the fact that \beta(T) \leq \alpha(T)$.
(vi) Deduction of (ii) and (iv).
(vii) Let $S, S_{1} \in \mathcal{L}(X)$. According to [2, Theorem 1.46], we have

$$
\beta\left(S_{1}\right)=0 \Longrightarrow \beta\left(S S_{1}\right)=0
$$

On the other hand, we have

$$
\beta\left(S T+S S_{1}\right)=\beta\left(S\left(T+S_{1}\right)\right) \geq \beta\left(T+S_{1}\right) \beta(S) .
$$

Hence,

$$
\sup _{\beta\left(S S_{1}\right)=0} \beta\left(S T+S S_{1}\right) \geq \sup _{\beta\left(S_{1}\right)=0} \beta\left(T+S_{1}\right) \beta(S)
$$

and therefore, $\varphi(S T) \geq \varphi(T) \beta(S)$.
(viii) The fact that $\mathcal{F}_{+}(X)$ is a two-sided ideal of $\mathcal{L}(X)$ together with (i) gives immediately the assertion (viii). Q.E.D.

Remark 3.3. (i) Notice that φ is not a non-compactness measure. Endeed, using the Rademcher functions, the author in [3] constructs a strictly singular operator $T \in \mathcal{L}\left(L_{p}[-1,1]\right),(p \geq 1)$, hence $\varphi(T)=0$. The proof of Theorem X.5.2 in [3] shows that $\alpha(T)=1$.
(ii) The assertion (viii) is equivalent to say that $\mathcal{F}_{+}(X)$ is a two-sided ideal of $\mathcal{L}(X)$. Moreover by $(v),|\varphi(T)-\varphi(S)| \leq$ $\alpha(T-S) \leq\|T-S\|$. This implies that the measure φ is continuous. Hence, it follows from (i) that $\mathcal{F}_{+}(X)$ is closed.

3.2. Applications

In the following theorems we establish a stability properties in the upper semi-Fredholm and semiBrowder operators sets. In [12], V. Rakoc̆ević proves that the upper (lower) semi-Fredholm operators with finite ascent (descent) is closed under commuting operator perturbations that belongs to the perturbation class associated with the set of upper (lower) semi-Fredholm operators. In the following theorem we extend in some way the result of Rakoc̆ević.
Theorem 3.4. Let T, S be two bounded operators on X.
(i) If $\varphi(T)<\beta(S)$, then $T+S \in \Phi_{+}(X)$ and $i(T+S)=i(S)$.

Suppose moreover that $S T=T S$.
(ii) If $\varphi(T)<\beta(S)$, then $(a(S)<\infty \Rightarrow a(T+S)<\infty)$.
(iii) Suppose that there exists $n \in \mathbb{N}^{*}$ such that $\varphi\left(T^{n}\right)<\beta\left(S^{n}\right)$, then we get
(a) If $S \in \mathcal{B}_{+}(X)$, then $T+S \in \mathcal{B}_{+}(X)$.
(b) If $S \in \mathcal{B}(X)$, then $T+S \in \mathcal{B}(X)$.

Proof. (i) Suppose that $\beta(T+S)=0$. Then $\beta(S)=\beta(T-(T+S))<\varphi(T)$. Hence, if $\varphi(T)<\beta(S)$, then $\beta(T+S)>0$ and therefore $T+S \in \Phi_{+}(X)$. Let $t \in[0,1]$, then $\varphi(t T)<\beta(S)$, and so, by what we have just proved, $t T+S \in \Phi_{+}(X)$. Thus, by the continuity of the index on $\Phi_{+}(X)$, we get $i(T+S)=i(S)$.
(ii) For $t \in[0,1]$, we have $\varphi(t T)<\beta(S)$, then, by $(i), t T+S \in \Phi_{+}(X)$. Since S and T are commuting, then according to [9, Theorem 3],

$$
\overline{\mathcal{N}^{\infty}(t T+S)} \cap \mathcal{R}^{\infty}(t T+S)=\overline{\mathcal{N}^{\infty}(s T+S)} \cap \mathcal{R}^{\infty}(s T+S)
$$

for all s in some open disk with center t. Hence, $\overline{\mathcal{N}^{\infty}(t T+S)} \cap \mathcal{R}^{\infty}(t T+S)$ is locally constant function of t on the interval $[0,1]$. This yields that for all $t \in[0,1]$,

$$
\overline{\mathcal{N}^{\infty}(t T+S)} \cap \mathcal{R}^{\infty}(t T+S)=\overline{\mathcal{N}^{\infty}(S)} \cap \mathcal{R}^{\infty}(S)
$$

Now, since $a(S)<\infty$, then from [17, Proposition 1.6(i)] :

$$
\mathcal{N}^{\infty}(S) \cap \mathcal{R}^{\infty}(S)=\overline{\mathcal{N}^{\infty}(S)} \cap \mathcal{R}^{\infty}(S)=\{0\}
$$

Hence,

$$
\overline{\mathcal{N}^{\infty}(T+S)} \cap \mathcal{R}^{\infty}(T+S)=\{0\} .
$$

Thus,

$$
\mathcal{N}^{\infty}(T+S) \cap \mathcal{R}^{\infty}(T+S)=\{0\}
$$

and again by [17, Proposition 1.6(i)], it follows that $a(T+S)<\infty$.
(iii)(a) Let $t \in[0,1]$. Since $\varphi\left((t T)^{n}\right)<\beta\left(S^{n}\right)$, by (i), $t T+S \in \Phi_{+}(X)$. Arguing as in the proof of (ii), we get the result.
(iii)(b) Since $S \in \mathcal{B}(X)$, then $i(S)=0$. Arguing as in the proof of (i), we get $i(T+S)=0$. On the other hand, (ii) yields $a(T+S)<\infty$. According to [15, Theorem $4.5(d)]$, we get $\delta(T+S)<\infty$.
Q.E.D.

Recall the essential spectral radius $r_{e}(T):=\max \{|\lambda| ; T-\lambda I \notin \Phi(X)\}$, defined for $T \in \mathcal{L}(X)$. According to [5, Section 1.4], we have $r_{e}(T)=\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|_{\mathcal{K}}^{\frac{1}{n}}$. By Theorem 3.4 and Proposition 3.2, we can deduce:

Corollary 3.5. $r_{e}(T)=\lim _{n \rightarrow+\infty}\left(\varphi\left(T^{n}\right)\right)^{\frac{1}{n}}$
Proof. From Proposition 3.2(vi) it follows $r_{e}(T) \geq \lim _{n \rightarrow+\infty}\left(\varphi\left(T^{n}\right)\right)^{\frac{1}{n}}$. To prove the opposite inequality, let $\lambda \in \mathbb{C}$ be such that $|\lambda|>\left(\varphi\left(T^{n}\right)\right)^{\frac{1}{n}}$ for some $n \in \mathbb{N}$, then by Theorem 3.4 (i) it follows that $\lambda-T \in \Phi(X)$. Hence $r_{e}(T) \leq\left(\varphi\left(T^{n}\right)\right)^{\frac{1}{n}}$ for every $n \in \mathbb{N}$.
Q.E.D.

For $T \in \mathcal{L}(X)$, define $\beta_{0}(T)$ to be the limit of the sequence $\left(\beta\left(T^{n}\right)\right)^{\frac{1}{n}}$. For the existence of the quantity $\beta_{0}(T)$ see [11, Lemma 1.21]. As an application of Theorem 3.4, we prove some localization results about the essential spectra $\sigma_{e}, \sigma_{e s s}$ and σ_{b} of bounded operators on X. We use $\mathbb{D}(0, r)$ for the disc with center 0 and radius r and $\overline{\mathbb{D}}(0, r)$ for the closure of $\mathbb{D}(0, r)$. We write $C\left[r_{1}, r_{2}\right]=\overline{\mathbb{D}}\left(0, r_{2}\right) \backslash \mathbb{D}\left(0, r_{1}\right)$, for $r_{1} \leq r_{2}$.

Corollary 3.6. Let T be a bounded operator on X, we have :
(i) $\sigma_{\text {ess }}(T) \subset \overline{\mathbb{D}}\left(0, r_{e}(T)\right)$.
(ii) If $T \in \Phi_{-}(X)$, then $\sigma_{e}(T) \subset C\left[\beta_{0}(T), r_{e}(T)\right]$.
(iii) If $0 \notin \sigma_{e s s}(T)$, then $\sigma_{e s s}(T) \subset C\left[\beta_{0}(T), r_{e}(T)\right]$.
(iv) $\sigma_{b}(T) \subset \mathbb{D}\left(0, r_{e}(T)\right)$.
(v) If $0 \notin \sigma_{b}(T)$, then $\sigma_{b}(T) \subset C\left[\beta_{0}(T), r_{e}(T)\right]$.

Proof. Let $n \in \mathbb{N}^{*}$ and suppose that $|\lambda|^{n}>\varphi\left(T^{n}\right)$, then, by Theorem 3.4(i), we have $\lambda-T \in \Phi(X)$ and $i(\lambda-T)=0$. Hence, if $|\lambda|>r_{e}(T)$, then $\lambda \notin \sigma_{\text {ess }}(T)$, this proves (i).
Notice that if $\beta(T)=0$, then $\beta_{0}(T)=0$ and the results are all trivial. Suppose that $\beta(T)>0$. For $|\lambda|<\beta_{0}(T)$, there exists $n \in \mathbb{N}^{*}$ such that $|\lambda|^{n}<\beta\left(T^{n}\right)$. Then, by Theorem 3.4(i), we have $\lambda-T \in \Phi_{+}(X)$ and $i(\lambda-T)=i(T)$. Hence, we get easily (ii) and (iii).
(iv) For $|\lambda|>r_{e}(T)$, there exists $n \in \mathbb{N}^{*}$ such that $|\lambda|^{n}>\varphi\left(T^{n}\right)$. By Theorem 3.4, we have $\lambda-T \in \mathcal{B}(X)$. The result follows since we can choose n arbitrary large.
(v) Since $0 \notin \sigma_{b}(T)$, then $T \in \Phi(X)$ and hence $\beta(T)>0$. For $|\lambda|<\beta_{0}(T)$, there exists $n \in \mathbb{N}^{*}$ such that $|\lambda|^{n}<\beta\left(T^{n}\right)$. Theorem 3.4 implies that $\lambda-T \in \mathcal{B}(X)$ since $T \in \mathcal{B}(X)$.
Q.E.D.

3.3. Weighted shift operators

Let $\omega=\left(\omega_{n}\right)_{n \in \mathbb{N}}$ be a bounded complex sequence. Consider the unilateral backward weighted shift operator $W(\omega, p)$ defined on $X=l_{r}(\mathbb{N}, \mathbb{C}), r \geq 1$, by :

$$
W(\omega, p)\left(x_{0}, x_{1}, \ldots\right)=\left(\omega_{p} x_{p}, \omega_{p+1} x_{p+1}, \ldots\right)
$$

Lemma 3.7. If 0 is a cluster point of the sequence $\left(\omega_{n}\right)_{n}$, then $\beta(W(\omega, p))=0$.
Proof. By hypothesis, there exists $\left(\omega_{\rho(n)}\right)_{n}$ such that $\lim _{n \rightarrow+\infty} \omega_{\rho(n)}=0$. Let $\lambda=\left(\lambda_{n}\right)_{n}$ be the sequence defined by:

$$
\left\{\begin{aligned}
\lambda_{\rho(n)} & =\omega_{\rho(n)} \\
\lambda_{n} & =0 \quad \text { if } n \notin \operatorname{Ran}(\rho)
\end{aligned}\right.
$$

For $n \geq p$, define the operator of finite rank on X :

$$
K_{n}:\left(x_{k}\right)_{k} \rightarrow\left(\lambda_{p} x_{p}, \ldots, \lambda_{n} x_{n}, 0,0, \ldots\right)
$$

Since $\left\|W(\lambda, p)-K_{n}\right\|=\sup _{k \geq n}\left|\lambda_{k}\right| \rightarrow 0$ when $n \rightarrow 0$, then $W(\lambda, p)$ is a compact operator. On the other hand, $\operatorname{dim} N(W(\omega, p)-W(\lambda, p))=\infty$. Hence, $W(\omega, p) \notin \Phi_{+}(X)$ and therefore, $\beta(W(\omega, p))=0$.
Q.E.D.

The following proposition extends the results of [1, Proposition 2.2] where one has shown that

$$
\begin{equation*}
\alpha(W(\omega, p)) \leq \limsup _{n \rightarrow+\infty}\left|\omega_{n}\right| \text { and } \beta(W(\omega, p)) \geq \liminf _{n \rightarrow+\infty}\left|\omega_{n}\right| \tag{1}
\end{equation*}
$$

Proposition 3.8. (i) $\alpha(W(\omega, p))=\limsup _{n \rightarrow+\infty}\left|\omega_{n}\right|$.
(ii) $\beta(W(\omega, p))=\liminf _{n \rightarrow+\infty}\left|\omega_{n}\right|$.
(iii) $\varphi(W(\omega, p))=\underset{n \rightarrow+\infty}{\limsup }\left|\omega_{n}\right|$.

Proof. Consider

$$
\omega_{+}:=\limsup _{n \rightarrow+\infty}\left|\omega_{n}\right|, \omega_{-}:=\liminf _{n \rightarrow+\infty}\left|\omega_{n}\right| .
$$

There exists $\left(\omega_{\rho_{+}(n)}\right)_{n}$ and $\left(\omega_{\rho_{-}(n)}\right)_{n}$ such that $\left|\omega_{\rho_{+}(n)}\right| \rightarrow \omega_{+}$and $\left|\omega_{\rho_{-}(n)}\right| \rightarrow \omega_{-}$when $n \rightarrow+\infty$. Let c_{+}(respectively c_{-}) be a cluster point of $\left(\omega_{\rho_{+}(n)}\right)_{n}$ (respectively $\left.\left(\omega_{\rho_{-}(n)}\right)_{n}\right)$. We have $\left|c_{+}\right|=\omega_{+}$and $\left|c_{-}\right|=\omega_{-}$. There exists $\left(\omega_{\psi_{+}(n)}\right)_{n}$ and $\left(\omega_{\psi_{-}(n)}\right)_{n}$ such that $\omega_{\psi_{+}(n)} \rightarrow c_{+}$and $\omega_{\psi_{-}(n)} \rightarrow c_{-}$when $n \rightarrow+\infty$. Let

$$
W_{+}(\omega, p)=c_{+}\left(x_{p}, x_{p+1}, \ldots\right), W_{-}(\omega, p)=c_{-}\left(x_{p}, x_{p+1}, \ldots\right)
$$

Observe that

$$
\alpha\left(W_{+}(\omega, p)\right)=\beta\left(W_{+}(\omega, p)\right)=\left|c_{+}\right| \text {and } \alpha\left(W_{-}(\omega, p)\right)=\beta\left(W_{-}(\omega, p)\right)=\left|c_{-}\right| .
$$

Since, 0 is a cluster point of the sequences $\left(\omega_{n}-c_{+}\right)_{n}$ and $\left(\omega_{n}-c_{-}\right)_{n}$, then by Lemma 3.7, $\beta\left(W(\omega, p)-W_{+}(\omega, p)\right)=$ $\beta\left(W(\omega, p)-W_{-}(\omega, p)\right)=0$.
(i) According to [1, Proposition 2.1(vi)], we have

$$
\beta\left(W_{+}(\omega, p)\right)-\alpha(W(\omega, p)) \leq \beta\left(W(\omega, p)-W_{+}(\omega, p)\right)=0
$$

which implies that $\alpha(W(\omega, p)) \geq \omega_{+}$. The result follows from (1).
(ii) Since $\beta(W(\omega, p)) \leq \beta\left(W(\omega, p)-W_{-}(\omega, p)\right)+\alpha\left(W_{-}(\omega, p)\right)$, then $\beta(W(\omega, p)) \leq \omega_{-}$. The result follows from (1).
(iii) Let $S=W\left(c_{+}-\omega, p\right)$, then $\beta(S)=0$. We have:

$$
\begin{aligned}
\varphi(W(\omega, p)) & \geq \beta(W(\omega, p)+S) \\
& \geq \beta\left(W\left(c_{+}, p\right)\right)=\alpha(W(\omega, p))
\end{aligned}
$$

Hence, the result follows since $\alpha(W(\omega, p)) \geq \varphi(W(\omega, p))$.
Q.E.D.

As an immediate result from Proposition 3.8, we obtain the following :
Corollary 3.9. $W(\omega, p) \in \mathcal{F}_{+}\left(l_{r}(\mathbb{N}, \mathbb{C})\right)$ if and only if $W(\omega, p) \in \mathcal{K}\left(l_{r}(\mathbb{N}, \mathbb{C})\right)$ if and only if ω converges to 0 .

References

[1] B. Abdelmoumen and H. Baklouti, Perturbation results on semi-Fredholm operators and applications, J. Ineq. Appl., (2009) Article ID 284526, 13 pages doi:10.1155/2009/284526.
[2] P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, Venez, 2007.
[3] J. M. Ayerbe Toledano, T, Dominguez Benavides, G. López Azedo, Measure of noncompactness in metric fixed point theory, Borkhäuser, Basel, 1997.
[4] H. Baklouti, T-Fredholm analysis and application to operator theory, J. Math. An. and App. 369 (2010) 283-289.
[5] D. E. Edmuns and W. D. Evans, Spectral theory and differential operators, Oxford Science Publications (1987).
[6] M. Furi, M. Martelli and A. Vignoli, Contributions to the spectral theory for nonlinear operators in Banach spaces, ann. Mat. Pura Appl. (4) 118 (1978), 229-294.
[7] I. Gohberg, A. Markus and I. A. Feldman, Normally solvable operators and ideals associated with them, Amer. Math. Soc. Trans. Ser 2, 61 (1967), 63-84.
[8] M. González, The perturbation classes problem in Fredholm theory, Journal of Fonctional Analysis 200 (2003) 65-70.
[9] M. A. Goldmann and S. N. Kračkovskiǐ, Behaviour of the space of zero elements with finite-dimensional saliant on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk. SSSR. 221 (1975), 532-534 (in Russian); English transl : Soviet Math. Dokl. 16 (1975), 370-373.
[10] W. T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996), 297-304.
[11] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser (2007).
[12] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 150 (1970), 445-455.
[13] M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.
[14] M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 64 (1968), 1139-1144.
[15] Angus E. Taylor, Theorem on ascent, descent, nullity and defect of linear operators, Math. Annalen, 163 (1966), 18-49.
[16] L. Weis, On perurbation of Fredolm operators in $L_{p}(\mu)$-spaces, Proc. Amer. Math. Soc. 67 (1977), 287-292.
[17] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146.

[^0]: 2010 Mathematics Subject Classification. Primary 47A53; Secondary 47A55, 47A68
 Keywords. Measure of noncompactness, Fredholm operators, Fredholm perturbations, Essential spectra.
 Received: 05 December 2012; Accepted: 15 March 2013
 Communicated by Dragana Cvetkovic-Ilic
 Email addresses: Boulbeba.Abdelmoumen@ipeis.rnu.tn (Boulbeba Abdelmoumen), h.baklouti@gmail.com (Hamadi Baklouti)

