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c Dipartimento di Matematica e Informatica, Università di Udine, Udine (Italy).

Abstract. Let Sn denote the class of hypergroups of type U on the right of size n with bilateral scalar
identity. In this paper we consider the hypergroups (H, ◦) ∈ S7 which own a proper and non-trivial
subhypergroup h. For these hypergroups we prove that h is closed if and only if (H − h) ◦ (H − h) = h.
Moreover we consider the set E7 of hypergroups in S7 that own the above property. On this set, we
introduce a partial ordering induced by the inclusion of hyperproducts. This partial ordering allows us to
give a complete characterization of hypergroups in E7 on the basis of a small set of minimal hypergroups,
up to isomorphisms. This analysis gives a partial (negative) answer to a problem raised in [5] concerning
the existence in Sn of proper hypergroups having singletons as special hyperproducts.

1. Introduction

Hypergroups of type U on the right were introduced in [12] to analyze properties of quotient hyper-
groups H/h of a hypergroup H with respect to a subhypergroup h ⊆ H ultraclosed on the right. The class of
hypergroups of type U on the right is rather wide and rich in results [2, 4–6, 12, 14, 16], since it includes that
of hypergroups of type C on the right [15, 16, 21] and, in particular, that of cogroups [3, 9, 17, 18] and that
of quotient hypergroups G/1 of a group G with respect to a non-normal subgroup 1 ⊆ G (D-hypergroups)
[9, 17, 18].

Also recently, several authors have studied diverse problems concerning existence and classification of
hyperstructures, see e.g., [1, 2, 4–7, 10, 11, 13, 19, 20]. For example, hypergroups of S5 have been classified
in [5, 6], where Sn denotes the class of hypergroups of type U on the right of size n with bilateral scalar
identity. In particular, in [5] the authors proved that if (H, ◦) belongs toS5 and owns the identity ε then the
following two properties are verified:

1. (H, ◦) is a group if and only if there exist x, y ∈ H − {ε} such that the hyperproduct x ◦ y is a singleton.
2. If (H, ◦) is not a group then, for every x, y ∈ H − {ε}, we have |x ◦ y| ≥ 3 and ε ∈ x ◦ y;
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Moreover, for every integer k ≥ 1, they provided an example of hypergroup (H, ◦) of class S2k that satisfies
the following conditions:

(H, ◦) is not a group; (1)
∃ x, y ∈ H − {ε} such that |x ◦ y| = 1. (2)

Now, since any hypergroup in S3 is isomorphic to the group Z3, the problem to determine the minimum
odd integer n such that there exists a hypergroup (H, ◦) ∈ Sn, satisfying (1) and (2) arises. This minimum
integer n is 7 or 9. In fact, in this paper we describe a hypergroup inS9 that satisfies the required conditions.
From experimental attempts performed by means of a computer program described in [6], which generates
tables of finite hypergroups, we have seen that the problem cannot be solved by a brute force approach in
S7, due to the huge computational cost. For this reason, we are motivated to study theoretical properties of
hypergroups inS7. In particular, we prove that such hypergroups own at most two proper and non-trivial
subhypergroups. Moreover, when the hypergroup (H, ◦) owns two proper and non-trivial subhypergroups,
then |x ◦ y| > 1, for every x, y ∈ H − {ε}, hence the condition (2) cannot be fulfilled. This result suggests to
distinguish the hypergroups in S7 according to the following three conditions:

1. (H, ◦) owns only one closed, proper and non-trivial subhypergroup;
2. (H, ◦) owns only one proper and non-trivial subhypergroup which is not closed;
3. (H, ◦) does not own any proper and non-trivial subhypergroup.

In this paper we perform a complete analysis of the first case. Next section introduces some basic definitions
and notations to be used throughout the paper. In Section 3, we recall some properties of closed subhy-
pergroups and introduce the notion of strongly conjugable extension, whereupon we deduce necessary
and sufficient conditions so that a hypergroup is a strongly conjugable extension. Section 4 contains the
main results about subhypergroups of hypergroups in S7. In particular we prove that every hypergroup
(H, ◦) ∈ S7 can own at most two proper and non-trivial subhypergroups. The closure on the left (resp., on
the right) of a subhypergroup h in (H, ◦) is a necessary and sufficient condition so that (H, ◦) is a strongly
conjugable extension of h. Moreover, if (H, ◦) is a strongly conjugable extension, then (H, ◦) owns only one
closed subhypergroup. In Section 5 we consider, unless isomorphisms, the set E7 of hypergroups in S7
which are strongly conjugable extensions. We prove some properties about the elements and the size of
hyperproducts of hypergroups in E7. In addition, we define a partial ordering that allows us to give a
complete characterization of hypergroups in E7 using a set of minimal hypergroups. Finally, with the help
of symbolic computation software, in last section we show that there are 182 minimal tables in E7, up to
isomorphisms.

In conclusion, we observe that the problem at the basis of our present work, namely, to establish if there
exists a hypergroup (H, ◦) ∈ S7 fulfilling conditions (1) and (2), remains still unsolved. By the way, that
problem is now circumscribed to the analysis of the last two subclasses of S7, that is, either (H, ◦) owns
only one proper and non-trivial subhypergroup which is not closed, or (H, ◦) does not own any proper and
non-trivial subhypergroup.

Remark 1.1. Throughout the paper, we will often show hyperproduct tables of hypergroups. These tables
are usually obtained after long arguments that are aimed at proving the existence of hypergroups having
certain properties. We inform the reader that, after these tables are obtained, we always check their
associativity, possibly by means of computer routines as those described in [6]. Hence, the corresponding
hypergroups are correctly defined, even if this is not always explicitly stated.

2. Basic definitions and results

A hypergroupoid is a nonempty set H endowed by a hyperproduct, that is, a mapping ◦ : H ×H 7→ ℘∗(H),
where ℘∗(H) denotes the family of nonempty subsets of H. A hypergroup is a hypergroupoid (H, ◦) whose
hyperproduct is associative and fulfills the reproducibility axiom

∀x ∈ H, x ◦H = H ◦ x = H. (3)
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A non-empty subset h of a hypergroup (H, ◦) is called a subhypergroup of H if x ◦ h = h ◦ x = h, for all x ∈ h.

A subhypergroup h of a hypergroup (H, ◦) is said

• proper if H , h;

• closed on the right (resp., on the left) if h ◦ (H − h) = H − h (resp., (H − h) ◦ h = H − h);

• closed if h ◦ (H − h) = (H − h) ◦ h = H − h;

• invertible on the right (resp., on the left) if for every x, y ∈ H, x ∈ y ◦ h ⇒ y ∈ x ◦ h (resp., x ∈ h ◦ y ⇒
y ∈ h ◦ x);

• invertible if it is invertible on the right and on the left;

• invariant or normal if x ◦ h = h ◦ x, for every x ∈ H;

• conjugable if it is closed and for every x ∈ H there exists an element y ∈ H such that x ◦ y ⊆ h.

We recall that if h is a conjugable subhypergroup, then h is invertible. Moreover, if h is invertible on the right,
then the family {x ◦ h}x∈H is a partition of H and the quotient H/h is hypergroup under the hyperproduct

(x ◦ h) ⊗ (y ◦ h) = {z ◦ h | z ∈ x ◦ h ◦ y ◦ h}.

If a hypergroup (H, ◦) contains an element ε with the property that, for all x ∈ H, one has x ∈ x ◦ ε (resp.,
x ∈ ε ◦ x), then we say that ε is a right identity (resp., left identity) of H. If x ◦ ε = {x} (resp., ε ◦ x = {x}), for
all x ∈ H, then ε is a right scalar identity (resp., left scalar identity). The element ε is said to be an identity
(resp., scalar identity or bilateral scalar identity), if it is both right and left identity (resp., right and left scalar
identity).
A hypergroup (H, ◦) is said to be of type U on the right [2, 4, 10–12] if there exists an element εwhich fulfills
the following axioms:

∀x ∈ H, x ◦ ε = {x} (4)
∀x, y ∈ H, x ∈ x ◦ y =⇒ y = ε. (5)

In this paper we denote by U1 the class of hypergroups of type U on the right in which the right scalar
identity is also left (not necessarily scalar) identity. Moreover, by S we mark the subclass of hypergroups
of type U on the right with bilateral scalar identity. For the sake of brevity these hypergroups are said to
be hypergroups with a scalar identity. In the finite case, Sn denotes the subclass of all hypergroups of size n
with scalar identity.

For reader’s convenience, we collect in the following lemma some preliminary results from [4, 10]:

Lemma 2.1. Let (H, ◦) be a hypergroup of type U on the right with right scalar identity ε. Then

1. if h is a subhypergroup of (H, ◦), then we have ε ∈ h. Moreover, if (H, ◦) ∈ U1 (resp., (H, ◦) ∈ S), then also
(h, ◦) ∈ U1 (resp., (h, ◦) ∈ S);

2. if (H, ◦) ∈ U1, for all x, y ∈ H, we have ε ∈ x ◦ y ⇐⇒ ε ∈ y ◦ x;
3. if (H, ◦) is finite and G is a subgroup of (H, ◦), then |G| divides |H|.

3. Strongly conjugable extensions

In this section we recall some properties of subhypergroups of a hypergroup that are closed on the left or
on the right and introduce the notion of strongly conjugable extension. Moreover we find some necessary
and sufficient conditions so that a hypergroup is a strongly conjugable extension and show a construction
of hypergroups in the class U1; under certain additional conditions, these hypergroups belong to the class
Sn and are strongly conjugable extensions.

We begin to observe that if h is a subhypergroup of a hypergroup (H, ◦), it can occur that h is not a subset
of (H − h) ◦ (H − h). An easy example is obtained by considering the set H = {a, b, c} endowed with the
hyperproduct represented by the table
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◦ a b c
a {a} H H
b H {b, c} {b, c}
c H {b, c} {b, c}

.

In fact, (H, ◦) is a hypergroup and h = {a} 1 (H − h) ◦ (H − h) = {b, c}. The inclusion h ⊆ (H − h) ◦ (H − h)
is verified when, for example, h is closed on the left or on the right. In fact, for reproducibility, for every
a ∈ h there exists an element y ∈ H such that a ∈ (H − h) ◦ y. Obviously y ∈ H − h, or else we have the
contradiction a ∈ (H − h) ◦ h = H − h. Therefore a ∈ (H − h) ◦ (H − h) and h ⊆ (H − h) ◦ (H − h).

Moreover we observe that the inclusion h ⊆ (H − h) ◦ (H − h) is a necessary but not sufficient condition
so that h is closed on the left or on the right. In fact, the set H = {a, b, c} endowed with the hyperproduct

◦ a b c
a {a} H H
b H H {b, c}
c H {b, c} H

is a hypergroup. The subset h = {a} is a subhypergroup of H such that h ⊂ (H − h) ◦ (H − h) = H but h is
neither closed on the left nor on the right.

Now we study the main properties of subhypergroups h which satisfy the equality (H − h) ◦ (H − h) = h.
We give the following

Definition 3.1. Let (H, ◦) be a hypergroup and h a subhypergroup of H. We say that (H, ◦) is a strongly
conjugable extension of h if h is proper and (H − h) ◦ (H − h) = h.

Lemma 3.1. Let h be a subhypergroup of a hypergroup (H, ◦). If (H, ◦) is a strongly conjugable extension of h, then
h is closed on the left in H if and only if h is closed on the right in H.

Proof. The claim is an obvious consequence of the fact that

(H − h) ◦ h = (H − h) ◦ (H − h) ◦ (H − h) = h ◦ (H − h).

Proposition 3.1. Let (H, ◦) be a strongly conjugable extension of h. Then
1. h is closed in H;
2. (H − h) ◦ y = y ◦ (H − h) = h, for every y ∈ H − h;
3. h ◦ y = y ◦ h = H − h, for every y ∈ H − h.

Proof. 1. If h ∩ (H − h) ◦ h , ∅, there exist a, b ∈ h and x ∈ H − h such that b ∈ x ◦ a. Therefore (H − h) ◦ b ⊆
(H − h) ◦ x ◦ a ⊆ (H − h) ◦ (H − h) ◦ a = h ◦ a = h,whence we obtain the contradiction

H = H ◦ b = [(H − h) ∪ h] ◦ b = [(H − h) ◦ b] ∪ h ◦ b ⊆ h ∪ h = h.

Hence h ∩ (H − h) ◦ h = ∅. Moreover, since

H = H ◦ h = [(H − h) ∪ h] ◦ h = [(H − h) ◦ h] ∪ h ◦ h = [(H − h) ◦ h] ∪ h

and H = (H− h)∪h,we obtain (H− h)◦h = H− h. Thus h is closed on the left and, for Lemma 3.1, it is closed
in H.

2. For every a ∈ h and y ∈ H − h, there exists b ∈ H such that a ∈ b ◦ y. From item 1., if b ∈ h then we
have the contradiction a ∈ h ◦ (H − h) = H − h. Hence, b ∈ H − h and a ∈ (H − h) ◦ y. Consequently,
h ⊆ (H − h) ◦ y ⊆ (H − h) ◦ (H − h) = h and (H − h) ◦ y = h. Analogously we can prove that y ◦ (H − h) = h.

3. For every x, y ∈ H−h, there exists a ∈ H such that x ∈ a◦ y. Since H is a strongly conjugable extension of h,
if a ∈ H−h then we have the contradiction x ∈ a◦y ⊆ (H−h)◦(H−h) = h. Therefore a ∈ h and x ∈ h◦y. So we
have the inclusion H−h ⊆ h◦y. Finally, since h is closed in H, we obtain that H−h ⊆ h◦y ⊆ h◦(H−h) = H−h,
that is h ◦ y = H − h. In the same way we can prove that y ◦ h = H − h.
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As an immediate consequence of Proposition 3.1 we have the following

Corollary 3.1. Let h be a subhypergroup of a hypergroup (H, ◦). If (H, ◦) is a strongly conjugable extension of h,
then h is conjugable and invariant.

The next proposition characterizes the strongly conjugable extensions by means of a theorem of Dresher-
Ore. We recall the statement from [8]: If h is a subhypergroup of a hypergroup (H, ◦), the quotient (H/h,⊗) is a
group if and only if h is a conjugable and invariant subhypergroup.

Proposition 3.2. Let h be a subhypergroup of a hypergroup (H, ◦); the following conditions are equivalent:

1. (H, ◦) is a strongly conjugable extension of h;
2. The quotient H/h is isomorphic to the group Z2.

Proof. We begin to prove that 1. ⇒ 2. From Corollary 3.1, h is a conjugable and invariant subhypergroup,
and so (H/h,⊗) is a group. By item 3. of Proposition 3.1, h and H − h are the classes of (H/h,⊗). Therefore
the quotient H/h is isomorphic to the group Z2.

Now we prove that 2. ⇒ 1. The subhypergroup h is conjugable because H/h is a group. Thus h is closed
in H and x ◦ h ⊆ H − h, for every x ∈ H− h. As H/h is isomorphic toZ2, we obtain x ◦ h = H − h. Therefore it
results x ∈ x ◦ h for every x ∈ H. Hence, if there exist x, y ∈ H − h such that x ◦ y ∩ (H − h) , ∅ then we have
x ◦ h ◦ y ◦ h ∩ (H − h) , ∅ and (x ◦ h) ⊗ (y ◦ h) , h, a contradiction. So [(H − h) ◦ (H − h)] ∩ (H − h) = ∅ and
obviously (H − h) ◦ (H − h) = h.

The next example shows a construction of hypergroups in the classU1. In some cases these hypergroups
are strongly conjugable extensions:

Example 3.1. Let (G, ·) be a group with identity 1 and let {A1}1∈G be a set family such that the following
conditions are verified:

(I) |A1| ≥ 3, for every 1 ∈ G;
(II) (A1, ◦) is a hypergroup of class U1 with identity ε such that for every a, b ∈ A1 − {ε} we have (i)

ε ∈ a ◦ b and (ii) |a ◦ b| ≥ 2.
Hence, we can define on H =

∪
1∈G A1 the following hyperproduct:

x • y =



x ◦ y if x, y ∈ A1;
{x} if x ∈ H − A1, y = ε;
{y} if x = ε, y ∈ H − A1;
A1 − {x} if x ∈ A1, y ∈ A1 − {ε}, 1 , 1;
A1 if x ∈ A1 − {ε}, y ∈ A1, 1 , 1;
A11′ if x ∈ A1, y ∈ A1′ , 1, 1′ ∈ G − {1}.

(6)

The set H, equipped with the hyperoperation •, is a hypergroup of class U1 with right scalar identity ε. We
omit to verify reproducibility and associativity, with the exception of the case (z • x) • y = z • (x • y), with
{x, y} ⊆ A1 − {ϵ} and z ∈ A1 , A1, because it involves all the hypotheses given in (I), (i) and (ii). In fact as
|A1| ≥ 3 we obtain

(z • x) • y = (A1 − {z}) • y =
∪

w∈A1−{z}
w • y =

∪
w∈A1−{z}

(A1 − {w}) = A1.

Moreover, by (i) and (ii), we have that

z • (x • y) = z • (x ◦ y) = (z • ε) ∪ [z • (x ◦ y − {ε})] = {z} ∪ (A1 − {z}) = A1.

Furthermore, we note that the hypergroup (H, •) satisfies the following properties of which we omit the
proofs:
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1. If (A1, ◦) ∈ S, then also (H, •) ∈ S;
2. If G′ is a subgroup of G, then the set h =

∪
1∈G′ A1 is a conjugable subhypergroup of (H, •);

3. If G′ is a normal subgroup of G, then the subgroup h =
∪
1∈G′ A1 is invariant in (H, •);

4. If |G| > 2 and G′ is a proper subgroup of G, then (H, •) is a strongly conjugable extension of h =
∪
1∈G′ A1

if and only if [G : G′] = 2. In particular, if |G| = 2, then (H, •) is a strongly conjugable extension of A1.

4. The class S7

In [5] the authors proved that a hypergroup (H, ◦) ∈ S5 is a group if and only if there exists at least a
pair (x, y) of elements not equal to the identity such that |x ◦ y| = 1. Thus they have raised the problem
to determine the minimum odd integer n such that there exists a hypergroup (H, ◦) ∈ Sn fulfilling the
conditions (1) and (2). For that minimum integer n it holds 5 < n ≤ 15. In fact, if (H, ◦) ∈ S5 is not a group,
then the direct product H ×Z3 is a proper hypergroup that satisfies the required conditions. Actually, we
can restrict the possibilities only to n = 7 or n = 9. The following example shows a hypergroup in S9
fulfilling (1) and (2).

Example 4.1. Let (G, ·) be a group with identity 1 and let 1 be a normal, proper and non-trivial subgroup of
(G, ·). We define on G the following hyperproduct:

x ◦ y =
{
{xy} if x ∈ 1 or y ∈ 1;
xy1 otherwise. (7)

Then, (G, ◦) is a hypergroup ofS and 1 is a subgroup of (G, ◦). We remark that the normality of 1 in (G, ·) is
exploited to prove (x ◦ y) ◦ z = x ◦ (y ◦ z) when x, y, z ∈ G − 1.

Next table shows a hypergroup (H, ◦) ∈ S9 which is isomorphic to the hypergroup arising from the
previous construction when G = Z9 and 1 is its subgroup having order 3. Using the notations H = {1, 2, . . . 9},
h = {1, 2, 3}, A = {4, 5, 6} and B = {7, 8, 9}we have:

◦ 1 2 3 4 5 6 7 8 9
1 {1} {2} {3} {4} {5} {6} {7} {8} {9}
2 {2} {3} {1} {5} {6} {4} {8} {9} {7}
3 {3} {1} {2} {6} {4} {5} {9} {7} {8}
4 {4} {5} {6} B B B h h h
5 {5} {6} {4} B B B h h h
6 {6} {4} {5} B B B h h h
7 {7} {8} {9} h h h A A A
8 {8} {9} {7} h h h A A A
9 {9} {7} {8} h h h A A A

(8)

Obviously, the hypergroup (H, ◦) ∈ S9 fulfills conditions (1) and (2).

Motivated by the initial problem, in this section we study the main properties of hypergroups in S7. In
particular, in this section we show that all proper and non-trivial subhypergroups h of a hypergroup (H, ◦)
in S7 are isomorphic to a certain hypergroup, denoted by B4 in what follows. Moreover we prove that a
hypergroup in S7 can own at most two proper and non-trivial subhypergroups. Finally we prove that the
closure on the left or on the right of h is a necessary and sufficient condition so that H is strongly conjugable
extension of h. In this case h is the only proper and non-trivial subhypergroup of H.

We begin to recall that the hypergroups of type U on the right of size 4 have been classified in [14],
unless isomorphisms, and so we can affirm that the hypergroups in Sn, with 2 ≤ n ≤ 4, are the groups
Z2,Z3,Z4,Z2 ×Z2 and the following two hypergroups:



M. De Salvo et al. / Filomat 27:6 (2013), 977–994 983

H4:

◦ ε b c d
ε {ε} {b} {c} {d}
b {b} {ε} {d} {c}
c {c} {d} {ε, b} {ε, b}
d {d} {c} {ε, b} {ε, b}

B4:

◦ ε b c d
ε {ε} {b} {c} {d}
b {b} {ε, c, d} {ε, c, d} {ε, c, d}
c {c} {ϵ, b, d} {ε, b, d} {ε, b, d}
d {d} {ε, b, c} {ε, b, c} {ε, b, c}

By means of these hypergroups and Lemma 2.1, we can characterize the subhypergroups of the hypergroups
in the class S7. If (H, ◦) ∈ U1, then the subhypergroup h = {ε} is said to be trivial.

Theorem 4.1. Let (H, ◦) ∈ S7 and let h be a proper and non-trivial subhypergroup. Then, h is isomorphic to B4.

Proof. From Lemma 2.1, we have that (h, ◦) ∈ S and, moreover, h is not isomorphic toZ2,Z3,Z4 andZ2×Z2
because |h| does not divide |H| = 7. For the same reason h is not isomorphic to H4 or else there is a subgroup
of size 2 in (H, ◦). So |h| ∈ {5, 6} or h � B4.

Let |h| = 6 and H = h∪{x}. For every element a ∈ h−{ε}, we have x ∈ H = H◦a = (h∪{x})◦a = h◦a∪x◦a.
Therefore x ∈ x ◦ a and a = ε, that is absurd.

Let |h| = 5 and H = h ∪ {x, y}. For every element a ∈ h − {ε}, we have H = H ◦ a = (h ∪ {x, y}) ◦ a =
h ◦ a ∪ x ◦ a ∪ y ◦ a = h ∪ x ◦ a ∪ y ◦ a. Thus, since x < x ◦ a and y < y ◦ a, we have

∀a ∈ h − {ε} , y ∈ x ◦ a, x ∈ y ◦ a. (9)

Now, taking an element b ∈ h−{ε} ,we have b◦b , {ε} otherwise S = {ε, b} is a subgroup of (H, ◦). Therefore,
since b < b◦b, there exists an element c ∈ h−{ε, b} such that c ∈ b◦b.By (9), we have that y ∈ x◦b∩x◦c.Moreover
we can put x◦ b =

{
y
}∪A,with A ⊆ h. Therefore y ∈ x◦ c ⊆ x◦ (b◦ b) = (x◦ b)◦ b = (

{
y
}∪A)◦ b = y◦ b∪A◦ b.

So, as A ◦ b ⊆ h, we have y ∈ y ◦ b and b = ε, that is impossible.

Thus |h| < {5, 6} and h � B4.

Corollary 4.1. Let h, k be proper and non-trivial subhypergroups of a hypergroup (H, ◦) ∈ S7. Then either h∩k = {ε}
or h = k.

Proof. By item 1. of Lemma 2.1, we have ε ∈ h ∩ k. For this reason h ∩ k = {ε} or there exists an element
x ∈ (h∩ k)− {ε}. In the latter case, by Theorem 4.1, considering the table of B4, we obtain h = x◦ x◦ x = k.

Corollary 4.2. Every hypergroup (H, ◦) ∈ S7 owns at most two proper and non-trivial subhypergroups.

Proof. If we suppose that (H, ◦) owns three proper and non-trivial subhypergroups h1, h2, h3, then, from
Theorem 4.1 and Corollary 4.1, we obtain |h1| = |h2| = |h3| = 4 and h1 ∩ h2 = h1 ∩ h3 = h2 ∩ h3 = {ε}. This fact
leds to |H| ≥ 10, that is a contradiction.

Corollary 4.3. Let (H, ◦) ∈ S7 be a hypergroup having two proper and non-trivial subhypergroups. Then |x ◦ y| > 1
for all x, y ∈ H − {ε}.

Proof. Let h and k be two distinct proper and non-trivial subhypergroups. By absurd, we suppose that
there exist x, y ∈ H − {ε} such that |x ◦ y| = 1. From Theorem 4.1 and Corollary 4.1, we have h � B4 � k
and h ∩ k = {ε}. Obviously, we must have H = h ∪ k = (h − {ε}) ∪ k. Since |x ◦ y| = 1, we can assume that
x ∈ h−{ε}, y ∈ k−{ε} and h−{ε} = {x, z,w}. Consequently (x◦x)◦ y = {ε, z,w}◦ y = {y}∪z◦ y∪w◦ y. Now, by
reproducibility of k and H, we have H = H◦ y = [(h−{ε})∪k]◦ y = [(h−{ε})◦ y]∪k◦ y = x◦ y∪z◦ y∪w◦ y∪k.
Since x < (x ◦ y) ∪ k we have x ∈ z ◦ y ∪ w ◦ y ⊂ (x ◦ x) ◦ y = x ◦ (x ◦ y). Finally, from axiom (5), we have
x ◦ y = {ε} and the contradiction y ∈ (x ◦ x) ◦ y = x ◦ (x ◦ y) = x ◦ ε = {x}.
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Next table shows an example of hypergroup in S7 with two proper and non-trivial subhypergroups:

◦ 1 2 3 4 5 6 7
1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 3, 4} {1, 3, 4} {1, 3, 4} H − {2} H − {2} H − {2}
3 {3} {1, 2, 4} {1, 2, 4} {1, 2, 4} H − {3} H − {3} H − {3}
4 {4} {1, 2, 3} {1, 2, 3} {1, 2, 3} H − {4} H − {4} H − {4}
5 {5} H − {5} H − {5} H − {5} {1, 6, 7} {1, 6, 7} {1, 6, 7}
6 {6} H − {6} H − {6} H − {6} {1, 5, 7} {1, 5, 7} {1, 5, 7}
7 {7} H − {7} H − {7} H − {7} {1, 5, 6} {1, 5, 6} {1, 5, 6}

The aforesaid subhypergroups are h = {1, 2, 3, 4} and k = {1, 5, 6, 7}. Obviously, in line with Corollary 4.1
and Corollary 4.3, it results h ∩ k = {1} and |x ◦ y| > 1, for all x, y ∈ H − {1}.

4.1. Strongly conjugable extensions in S7

In this section we study the case where a hypergroup (H, ◦) ∈ S7 owns a closed, proper and non-trivial
subhypergroup h. In this case, we will prove that (H, ◦) is a strongly conjugable extension of h. We premise
a proposition which is true for hypergroups in the class U1.

Proposition 4.1. If (H, ◦) ∈ U1 and h is a subhypergroup of (H, ◦), then the following conditions are equivalent:

1. h is closed in (H, ◦);
2. h is closed on the left in (H, ◦);
3. h is closed on the right in (H, ◦).

Proof. The implications 1. ⇒ 2. and 1. ⇒ 3. are obvious. So we prove that 2. ⇒ 3., whence 2. ⇒ 1. By
hypothesis (H − h) ◦ h = H − h. If h ◦ (H − h) ∩ h , ∅ then there exist a pair (a, b) of elements in h and an
element x ∈ H − h such that a ∈ b ◦ x. Moreover, from the reproducibility of h, there exists c ∈ h such that
ε ∈ c ◦ a. Thus we have ε ∈ c ◦ a ⊆ c ◦ (b ◦ x) = (c ◦ b) ◦ x and consequently there exists d ∈ c ◦ b ⊆ h such that
ε ∈ d ◦ x. Therefore, by Lemma 2.1, we obtain the contradiction ε ∈ x ◦ d ⊆ (H − h) ◦ h = H − h. So it must be
h◦(H−h)∩h = ∅ = (H−h)∩h.Finally, given that H = h◦H = h◦[(H − h) ∪ h] = [h◦(H−h)]∪h◦h = [h◦(H−h)]∪h
and H = (H − h) ∪ h,we obtain h ◦ (H − h) = H − h.

The proof of the implication 3.⇒ 2., whence 3.⇒ 1., is analogous.

Lemma 4.1. Let (H, ◦) ∈ S7 and let h be a closed, proper and non-trivial subhypergroup of (H, ◦). Then x ◦ b =
H − (h ∪ {x}), for all x ∈ H − h and b ∈ h − {ε}.

Proof. By Theorem 4.1, we have h � B4. Moreover, for every b ∈ h− {ε} and x ∈ H− h, we have |x ◦ b| ∈ {1, 2}.
In fact x ◦ b ⊂ (H − h) ◦ h = H − h, x < x ◦ b and |H − h| = 3. Now, since h � B4, if x ◦ b = {y}we obtain

y ◦ b = (x ◦ b) ◦ b = x ◦ (b ◦ b) = x ◦ (h − {b}) = {x} ∪ x ◦ (h − {ε, b}).

Thus, setting h−{ε, b} = {c, d} and H−h = {x, y, z}, we have x◦c = x◦d = {z} because y < y◦b e x < x◦(h−{ε, b}).
Therefore we obtain z ∈ x ◦ d ⊆ x ◦ (c ◦ c) = (x ◦ c) ◦ c = z ◦ c and c = ε, that is impossible. Finally |x ◦ b| = 2
and x ◦ b = H − (h ∪ {x}).

Corollary 4.4. Let (H, ◦) ∈ S7 and let h be a proper and non-trivial subhypergroup of (H, ◦). Then the following
conditions are equivalent:

1. h is closed in (H, ◦);
2. h is closed on the right in (H, ◦);
3. h is closed on the left in (H, ◦);
4. (H, ◦) is a strongly conjugable extension of h.
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Proof. The equivalence among the items 1., 2. and 3. follows from Proposition 4.1. The implication 4.⇒ 1.
descends from Proposition 3.1 and the fact that all conjugable subhypergroups are closed. Now we prove
that 1. ⇒ 4. Since h is closed it suffices to prove that (H − h) ◦ (H − h) ⊆ h. By axiom (5), if there exists a
triple (x, y, z) of elements in H − h such that z ∈ x ◦ y, necessarily z , x. Therefore, by Lemma 4.1, taking an
element b ∈ h− {ε} ,we obtain x ∈ z ◦ b ⊆ (x ◦ y) ◦ b = x ◦ (y ◦ b). Consequently ε ∈ y ◦ b ⊆ (H − h) ◦ h = H − h,
that is impossible. So, for every pair (x, y) of elements in H − h,we have x ◦ y ⊆ h.

Theorem 4.2. If (H, ◦) ∈ S7 is a strongly conjugable extension, then (H, ◦) owns exactly one subhypergroup of size
4.

Proof. Let (H, ◦) be a strongly conjugable extension of h. By definition, h is a proper subhypergroup.
Moreover h , {ε}. In fact, if h = {ε}, then for every x ∈ H − {ε} we have x ◦ x = {ε} and so k = {ε, x} is a
subgroup of (H, ◦), in contradiction with item 3. of Lemma 2.1. Therefore, for Theorem 4.1, h � B4. Now, if
k is another subhypergroup of size 4, we obtain k � B4 and h ∩ k , {ε}. In fact, if h ∩ k = {ε} then we get the
inclusion k = (k − {ε}) ◦ (k − {ε}) ⊆ (H − h) ◦ (H − h) = h, whence the contradiction k = h ∩ k = {ε}. Finally,
from Corollary 4.1, we obtain that h = k.

An example of hypergroup in S7, which is a strongly conjugable extension, can be obtained by means
of the construction in Example 3.1. In fact, if |G| = 2 and H = A1 ∪ A2 with A1 � B4 and |A2| = 3, then the
hypergroup (H, •) belongs to the classS7 and is a strongly conjugable extension of A1. In particular, setting
A1 = {1, 2, 3, 4} and A2 = {5, 6, 7}, the hyperproduct is given by the following multiplicative table:

• 1 2 3 4 5 6 7
1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 3, 4} {1, 3, 4} {1, 3, 4} A2 A2 A2

3 {3} {1, 2, 4} {1, 2, 4} {1, 2, 4} A2 A2 A2

4 {4} {1, 2, 3} {1, 2, 3} {1, 2, 3} A2 A2 A2

5 {5} {6, 7} {6, 7} {6, 7} A1 A1 A1

6 {6} {5, 7} {5, 7} {5, 7} A1 A1 A1

7 {7} {5, 6} {5, 6} {5, 6} A1 A1 A1

(10)

Lastly, we observe that in the class S7 there exist hypergroups (H, ◦) with a subhypergroup of size 4 which
is not closed. Obviously, such hypergroups are not strongly conjugable extensions. Here is an example:

◦ 1 2 3 4 5 6 7
1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 3, 4} {1, 3, 4} {1, 3, 4} H − {2} H − {2} H − {2}
3 {3} {1, 2, 4} {1, 2, 4} {1, 2, 4} H − {3} H − {3} H − {3}
4 {4} {1, 2, 3} {1, 2, 3} {1, 2, 3} H − {4} H − {4} H − {4}
5 {5} H − {5} H − {5} H − {5} H − {5} H − {5} H − {5}
6 {6} H − {6} H − {6} H − {6} H − {6} H − {6} H − {6}
7 {7} H − {7} H − {7} H − {7} H − {7} H − {7} H − {7}

The set h = {1, 2, 3, 4} is a non-closed subhypergroup of (H, ◦).
Remark 4.1. Previous results obtained in the present section and, in particular, Corollary 4.2, Corollary 4.3,
Corollary 4.4 and Theorem 4.2, suggest to tackle the problem open in [5] and quoted at the beginning of
this section by discriminating between three subcases:

1. (H, ◦) owns only one closed, proper and non-trivial subhypergroup;
2. (H, ◦) owns only one proper and non-trivial subhypergroup which is not closed;
3. (H, ◦) does not own any proper and non-trivial subhypergroup.

In what follows we address the first subcase; to this aim, we denote by E7 the subclass of hypergroups in
S7 that are strongly conjugable extensions.
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5. Structure of the class E7

In this section we deepen the knowledge of the class E7. In particular, we introduce a partial ordering
induced by the inclusion of hyperproducts, which allows us to give a complete characterization of hyper-
groups in E7 on the basis of a small set of minimal hypergroups. A similar description is obtained in [7] for
the hypergroups of type U on the right having order 6 whose right scalar identity is not also a left identity.

For Theorem 4.2 and Corollary 3.1, every hypergroup (H, ◦) ∈ E7 owns exactly one conjugable and
invariant subhypergroup h � B4. Moreover, from Lemma 4.1, we know that x ◦ b = H − (h ∪ {x}), for every
x ∈ H − h and b ∈ h − {ε}. Thus, setting H = {1, 2, 3, 4, 5, 6, 7} and h = {1, 2, 3, 4}, up to isomorphisms, we
obtain the partial hyperproduct table

⋆ 1 2 3 4 5 6 7
1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 3, 4} {1, 3, 4} {1, 3, 4} X1 X2 X3

3 {3} {1, 2, 4} {1, 2, 4} {1, 2, 4} X4 X5 X6

4 {4} {1, 2, 3} {1, 2, 3} {1, 2, 3} X7 X8 X9

5 {5} {6, 7} {6, 7} {6, 7} Y1 Y2 Y3

6 {6} {5, 7} {5, 7} {5, 7} Y4 Y5 Y6

7 {7} {5, 6} {5, 6} {5, 6} Y7 Y8 Y9

(11)

where the sets Xi and Yi for i = 1, 2, . . . , 9 are non-empty subsets of H − h and h, respectively.
In what follows, we prove some properties pertaining to the sets Xi, Yi. These results will be useful in the

next section to determine the isomorphism classes of certain minimal hypergroups inE7. In the forthcoming
results we will tacitly refer to the table (11), in particular whenever we make use of the notations Xi,Yi.

Lemma 5.1. If b ∈ h − {1} and x, y ∈ H − h, with x , y, then

b ◦ x = {y} ⇒ b ◦ y = y ◦ b = H − (h ∪ {y}).

Proof. By hypothesis we have x ∈ y ◦ b = H − (h ∪ {y}) and (h − {b}) ◦ x = (b ◦ b) ◦ x = b ◦ (b ◦ x) = b ◦ y.
Moreover, from Proposition 3.1, we obtain H − h = h ◦ x = (h − {b}) ◦ x∪ b ◦ x = b ◦ y∪ {y}, and so |b ◦ y| ≥ 2.
Finally, since |y ◦ b| = 2 and b ◦ y ⊆ b ◦ (x ◦ b) = (b ◦ x) ◦ b = y ◦ b, we have that b ◦ y = y ◦ b = H− (h∪ {y}).

Proposition 5.1. For every i = 1, 2, . . . , 9, we have |Xi| ≥ 2.

Proof. Suppose that there exists i ∈ {1, 2, . . . , 9} such that |Xi| = 1. Obviously there exist b ∈ h − {1} and
x, y ∈ H − h such that Xi = b ◦ x = {y}. We distinguish two cases:

1. Case x = y: We have (h − {b}) ◦ x = (b ◦ b) ◦ x = b ◦ (b ◦ x) = b ◦ x = {x}, and so h ◦ x = {x}. Furthermore,
since h is invariant, we obtain H − h = x ◦ h = h ◦ x = {x}.

2. Case x , y: Assuming H − h = {x, y, z}, from Lemma 5.1, we have b ◦ y = {x, z} and (h − {1, b}) ◦ x ⊆
(b ◦ b) ◦ x = b ◦ (b ◦ x) = b ◦ y = {x, z}. Now, if there exists c ∈ h − {1, b} such that x ∈ c ◦ x, we have the
contradiction y ∈ b ◦ x ⊆ b ◦ (c ◦ x) = (b ◦ c) ◦ x = (h − {b}) ◦ x = {x} ∪ (h − {1, b}) ◦ x ⊆ {x, z}. Thus

(h − {1, b}) ◦ x = {z}.

At last, putting h − {1, b} = {c, d}, we have c ◦ x = d ◦ x = {z}. Then, from Lemma 5.1, we obtain that
c ◦ z = {x, y}, and moreover z ∈ d ◦ x ⊆ (c ◦ c) ◦ x = c ◦ (c ◦ x) = c ◦ z = {x, y}.

Hence, in both cases, we come to a contradiction. So |Xi| ≥ 2.

The forthcoming proposition concerns the sets Yi. We premise the following

Lemma 5.2. For every i = 1, 2 . . . , 9, we have:
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1. Yi ◦ 2 = Yi ◦ 3 = Yi ◦ 4;
2. Yi < {{1}, {1, 2}, {1, 3}, {1, 4}}.

Proof. Let x, y ∈ {5, 6, 7} and Yi = x ◦ y, for some i ∈ {1, 2, . . . , 9}.

1. From (11), we have y ◦ 2 = y ◦ 3 = y ◦ 4. Consequently we obtain

x ◦ (y ◦ 2) = x ◦ (y ◦ 3) = x ◦ (y ◦ 4),

and so Yi ◦ 2 = Yi ◦ 3 = Yi ◦ 4.
2. If Yi = x ◦ y = {1}, by item 1., we obtain

2 = 1 ◦ 2 = Yi ◦ 2 = Yi ◦ 3 = 1 ◦ 3 = 3,

that is a contradiction. Moreover, if Yi = x ◦ y = {1, 2}, then we have

Yi ◦ 2 = {1, 2} ◦ 2 = 1 ◦ 2 ∪ 2 ◦ 2 = {2} ∪ (h − {2}) = h;

Yi ◦ 3 = {1, 2} ◦ 3 = 1 ◦ 3 ∪ 2 ◦ 3 = {3} ∪ (h − {2}) = (h − {2}),

that is impossible by 1. Hence Yi , {1, 2}. Analogously one can prove that Yi , {1, 3} and Yi , {1, 4}.

Proposition 5.2. For every i = 1, 2, . . . , 9, we have 1 ∈ Yi and |Yi| ≥ 3.

Proof. Let i ∈ {1, 2, . . . , 9} and x, y ∈ H − h such that Yi = x ◦ y. From Proposition 5.1, we have |a ◦ x| ≥ 2 for
every a ∈ h − {1}. Hence, since a ◦ x ⊆ H − h = {5, 6, 7}, we obtain that a ◦ x ∈ {{5, 6}, {5, 7}, {6, 7}, {5, 6, 7}}, for
every a ∈ h − {1}. Therefore we can distinguish two cases:

Case 1: If 2 ◦ x ∩ 3 ◦ x ∩ 4 ◦ x = ∅ then, withous loss of generality, we can suppose 2 ◦ x = {5, 6}, 3 ◦ x = {5, 7}
and 4 ◦ x = {6, 7}. Thus, if we suppose by absurd that 1 < Yi = x ◦ y, by axiom (5) we have

2 < 2 ◦ x ◦ y = 5 ◦ y ∪ 6 ◦ y;
3 < 3 ◦ x ◦ y = 5 ◦ y ∪ 7 ◦ y;
4 < 4 ◦ x ◦ y = 6 ◦ y ∪ 7 ◦ y.

Consequently we obtain 5 ◦ y ⊆ {1, 4}, 6 ◦ y ⊆ {1, 3} and 7 ◦ y ⊆ {1, 5}. Whence, since 1 < h ◦ y and H ◦ y = H,
there exists a ∈ H − h such that 1 ∈ a ◦ y and |a ◦ y| ≤ 2. This fact contradicts Lemma 5.2. Hence 1 ∈ Yi.

Case 2: If there exists an element t ∈ 2 ◦ x ∩ 3 ◦ x ∩ 4 ◦ x then, by (11) we have t ◦ y ⊂ h. Now, for Lemma
5.2, we know that t ◦ y , {1} and so t ◦ y∩ (h − {1}) , ∅. Moreover, taking an element a ∈ t ◦ y∩ (h − {1}), we
have t ∈ a ◦ x and thus a ∈ t ◦ y ⊆ (a ◦ x) ◦ y = a ◦ (x ◦ y). Consequently, also in this case, by axiom (5) we
obtain that 1 ∈ x ◦ y = Yi.

Finally, again for Lemma 5.2, we have that |Yi| ≥ 3, for every i ∈ {1, 2, . . . 9}.

As an immediate consequence of Proposition 5.1 and Proposition 5.2, due to the structure of the hyper-
groups in E7 shown in (11), we obtain the following result:

Theorem 5.1. If (H, ◦) ∈ E7 then |x ◦ y| ≥ 2 whenever x, y are two elements different from the identity.
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5.1. A semiordering in E7

Earlier in this section, we proved that all the hypergroups in E7 can be described by the table (11),
and fulfil the conditions stated in Propositions 5.1 and 5.2. Hence, we are motivated to consider E7 as the
set of all hypergroups whose hyperoperation is represented as in (11). We stress the fact that, with this
convention, every hypergroup in S7 that is a strongly conjugable extension, is isomorphic to (at least) one
hypergroup in E7.

For notational and descriptive simplicity, hereafter we will use a shorthand notation to represent the
multiplicative table of hypergroups (H, ◦) ∈ E7. More precisely, we denote with B, XH, A and YH the arrays

B =

{1} {2} {3} {4}
{2} {1, 3, 4} {1, 3, 4} {1, 3, 4}
{3} {1, 2, 4} {1, 2, 4} {1, 2, 4}
{4} {1, 2, 3} {1, 2, 3} {1, 2, 3}

XH =

{5} {6} {7}
X1 X2 X3

X4 X5 X6

X7 X8 X9

A =
{5} {6, 7} {6, 7} {6, 7}
{6} {5, 7} {5, 7} {5, 7}
{7} {5, 6} {5, 6} {5, 6}

YH =

Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

.

With these notations, we can represent the hyperproduct table (11) in a compact way by means of the
following block table:

B XH
A YH

. (12)

Furthermore, we can define two special subsets of E7 as follows: Let

X =

{5} {6} {7}
{5, 6, 7} {5, 6, 7} {5, 6, 7}
{5, 6, 7} {5, 6, 7} {5, 6, 7}
{5, 6, 7} {5, 6, 7} {5, 6, 7}

(13)

Y =

{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

. (14)

We denote by E7(X) (resp., E7(Y)) the set of hypergroups in E7 with block tables (12) such that XH = X
(resp., YH = Y). Obviously the sets E7(X) and E7(Y) share only the hypergroup (H, •) defined in (10), whose
block table is

B X
A Y . (15)

In what follows, we prove that E7 owns a rather special structure with respect to the partial ordering given
here below. This structure allows us to obtain all hypergroups in E7 starting from the minimal elements in
that set.

Definition 5.1. Given two hypergroupoids (H, ◦) and (H, ∗), we say that (H, ◦) is a hyperproduct restriction of
(H, ∗) if x ◦ y ⊆ x ∗ y, for all x, y ∈ H. In this case we say also that (H, ∗) a hyperproduct extension of (H, ◦), and
we write (H, ◦) ≼ (H, ∗).

Definition 5.2. A hypergroup (H, ◦) ∈ E7 is said to be minimal if there exists no hypergroup in E7 different
from (H, ◦) which is a hyperproduct restriction of (H, ◦).
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We observe that, in the light of these definitions, the hypergroup represented from the block table (15)
is maximum in the partially ordered set (E7 ,≼).

Henceforth, we denote by M7 (resp., M7(X) and M7(Y)) the set of hypergroups in E7 (resp., in E7(X)
and E7(Y)) that are minimal according to Definition 5.2. Every hypergroup in E7 −M7 can be obtained by
hyperproduct extension of some hypergroups inM7. Moreover, every hypergroup inM7 owns non-trivial
hyperproduct extensions belonging to E7. These results descend from Theorem 5.2; its proof is largely
based on the following preliminary results:

Lemma 5.3. Let (H, ◦) ∈ E7. For every a, b ∈ h − {1} and u, v, x, y ∈ H − h, we have

1. if u , v then (x ◦ u) ∪ (x ◦ v) = h;
2. if x , y then (x ◦ u) ∪ (y ◦ u) = h;
3. if u , v then (a ◦ u) ∪ (a ◦ v) = H − h;
4. if a , b then {u} ∪ (a ◦ u) ∪ (b ◦ u) = H − h.

Proof. 1. If u , v then we can set H − h = {t, u, v}. Thus, if x ∈ H − h then, by Proposition 5.2, there exist two
distinct elements a, b ∈ h − {1} such that x ◦ t ⊇ {1, a, b}. So, by (11), we have (x ◦ u) ∪ (x ◦ v) = x ◦ {u, v} =
x ◦ (t ◦ 2) = (x ◦ t) ◦ 2 ⊇ {1, a, b} ◦ 2 = h, whence the claim follows.

2. Let x , y and H − h = {x, y, z}. If u ∈ H − h then, by Proposition 5.1, we know that |2 ◦ u| ≥ 2. Hence, from
(11) and item 1.we have that (x ◦ u) ∪ (y ◦ u) =

{
x, y
} ◦ u = (z ◦ 2) ◦ u = z ◦ (2 ◦ u) = h.

3. Let {t,u, v} = H − h and a ∈ h − {1}. By Proposition 5.1 we have |a ◦ t| ≥ 2. Therefore, from (11), we obtain
(a ◦ u) ∪ (a ◦ v) = a ◦ {u, v} = a ◦ (t ◦ 2) = (a ◦ t) ◦ 2 = H − h.

4. Let a , b and {a, b, c} = h − {1}. By (11), we have (c ◦ c) ◦ u = {1, a, b} ◦ u = {u} ∪ a ◦ u ∪ b ◦ u. Moreover, by
Proposition 5.1, we can suppose that there exist two distinct elements x, y ∈ H − h such that {x, y} ⊆ c ◦ u.
Then, by the preceding item 3., we have c◦(c◦u) ⊇ c◦{x, y} = (c◦x)∪(c◦y) = H−h. So {u}∪a◦u∪b◦u = H−h
and the proof is complete.

Lemma 5.4. Let (H, ◦) ∈ E7. For every a, b, c ∈ h − {1} and x, y, z ∈ H − h, we have

1. a ◦ b ◦ c = h;
2. a ◦ b ◦ x = a ◦ x ◦ b = x ◦ a ◦ b = H − h;
3. a ◦ x ◦ y = x ◦ a ◦ y = x ◦ y ◦ a = h;
4. x ◦ y ◦ z = H − h.

Proof. Firstly, we observe that (H, ◦) is a strongly conjugable extension of the subhypergroup h and so, by
Proposition 3.1, we have

a ◦ b ◦ x ∪ a ◦ x ◦ b ∪ x ◦ a ◦ b ⊆ H − h;
a ◦ x ◦ y ∪ x ◦ a ◦ y ∪ x ◦ y ◦ a ⊆ h;
x ◦ y ◦ z ⊆ H − h.

1. It is obvious since h � B4.
2. By Proposition 5.1, there exist two distinct elements u, v ∈ H − h such that {u, v} ⊆ b ◦ x. Hence, from

item 3. of Lemma 5.3, we have a ◦ b ◦ x ⊇ a ◦ {u, v} = (a ◦ u) ∪ (a ◦ v) = H − h.
Analogously, if {u, v} ⊆ a ◦ x then, by (11) we deduce a ◦ x ◦ b ⊇ {u, v} ◦ b = (u ◦ b) ∪ (v ◦ b) = H − h.
Moreover, we can set H − h = {x, y, z} and x ◦ a = {y, z}. Thus x ◦ a ◦ b = {y, z} ◦ b = y ◦ b∪ z ◦ b = H − h.

3. For Proposition 5.2, there exists an element b ∈ h − {1} such that {1, b} ⊂ x ◦ y. Hence, by (11), we have
a ◦ x ◦ y ⊇ a ◦ {1, b} = {a} ∪ a ◦ b = h.
If we set H− h = {x, z,w} and x◦ a = {z,w} then, by item 2. of Lemma 5.3, we have x◦ a◦ y = {z,w} ◦ y =
z ◦ y ∪ w ◦ y = h.
Moreover, for Proposition 5.2, we know that there exist two distinct elements b, c ∈ h − {1} such that
{1, b, c} ⊂ x ◦ y. Therefore, by (11), we get that x ◦ y ◦ a ⊇ {1, b, c} ◦ a = h.
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4. Lastly, we can suppose that {1, b} ⊂ y◦z. Hence, by (11), we have x◦ y◦z ⊇ x◦{1, b} = {x}∪x◦b = H−h.

We observe that the content of the preceding lemma leads to the following conclusion: Let (H, ◦) ∈ E7
and let ◦3 denote the ternary extension of the hyperoperation ◦. Then, the ternary hypergroup (H, ◦3) is
Abelian.

Theorem 5.2. Let (H, •) be the hypergroup described in (15), and let (H, ◦) and (H, ∗) be two hypergroupoids. If
(H, ◦) ∈ E7 and (H, ◦) ≼ (H, ∗) ≼ (H, •) then (H, ∗) ∈ E7.

Proof. If (H, ◦) ∈ E7 and x ◦ y ⊆ x ∗ y ⊆ x • y for every x, y ∈ H then the hyperoperation ∗ fulfills the axioms
(3), (4) and (5). It remains to prove associativity. For every x, y, z ∈ H − {1}, we have

(x ◦ y) ◦ z ⊆ (x ∗ y) ∗ z ⊆ (x • y) • z, x ◦ (y ◦ z) ⊆ x ∗ (y ∗ z) ⊆ x • (y • z).

By virtue of Lemma 5.4, we have x ◦ y ◦ z = x • y • z, hence we get that (x ∗ y) ∗ z = x ∗ (y ∗ z) and we have
the claim. The remaining case, when one of x, y, z is the identity, associativity is trivial.

The subsequent theorem shows that every hypergroup in E7 can be obtained from those belonging to
E7(X) and E7(Y). This fact will allow us to obtain the tables of minimal hypergroups of E7 starting from
minimal hypergroups of E7(X) and E7(Y). The description of these tables will be given in the next section.

Theorem 5.3. Using the notations (13) and (14) we have:

1. (H, ◦) = B XH
A YH

∈ E7 =⇒ (H, ⋄) = B XH
A Y ∈ E7(Y);

2. (H, ◦) = B XH
A YH

∈ E7 =⇒ (H, ∗) = B X
A YH

∈ E7(X);

3. (H, ⋄) = B XH
A Y ∈ E7(Y) and (H, ∗) = B X

A YH
∈ E7(X) =⇒

(H, ◦) = B XH
A YH

∈ E7.

Proof. The first two items follow at once from Theorem 5.2. In fact, if (H, •) is the hypergroup described
in (15), then we get (H, ◦) ≼ (H, ⋄) ≼ (H, •) and (H, ◦) ≼ (H, ∗) ≼ (H, •). Therefore (H, ⋆) and (H, ⋄) are
hypergroups respectively in E7(X) and E7(Y).

In order to prove the third item, it suffices to show that the hyperoperation ◦ is associative for every
triple of elements in H − {1}. We proceed by cases, supposing that a, b, c ∈ h − {1} and x, y, z ∈ H − h.

1. Associativity for the triple (a, b, c) is obvious.
2. (a, b, x): From hypotheses and Lemma 5.4, we get that

(a ◦ b) ◦ x = (a ⋄ b) ⋄ x = H − h = a ⋄ (b ⋄ x) = a ◦ (b ◦ x).

Essentially in the same way, we can prove associativity for triples (a, x, b) and (x, a, b).
3. (a, x, y): From hypotheses and Lemma 5.4, we have a◦(x◦y) = a∗(x∗y) = h and (a◦x)◦y ⊆ h. Moreover,

for Proposition 5.1, there exist two distinct elements u, v ∈ H− h such that {u, v} ⊆ a ⋄ x. Hence, for the
second item of Lemma 5.3, we obtain that (a◦x)◦ y = (a⋄x)◦ y = (a⋄x) ∗ y ⊇ {u, v} ∗ y = u ∗ y∪v ∗ y = h.
Hence a ◦ (x ◦ y) = h = (a ◦ x) ◦ y.

4. (x, a, y): The proof is similar to the previous item. In this case we suppose that {u, v} ⊆ a ⋄ y and use
the first item of Lemma 5.3.

5. (x, y, a): From hypotheses and Lemma 5.4, we get

(x ◦ y) ◦ a = (x ∗ y) ∗ a = h = x ∗ (y ∗ a) = x ◦ (y ◦ a).
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6. (x, y, z): From hypotheses and Lemma 5.4, we have x◦ (y◦ z) = x ∗ (y ∗ z) = H− h and (x◦ y)◦ z ⊆ H− h.
Besides, for Proposition 5.2, there exist two distinct elements a, b ∈ h − {1} such that {1, a, b} ⊆ x ∗ y.
Thus, from the fourth item of Lemma 5.3, we obtain that (x ◦ y) ◦ z = (x ∗ y) ◦ z ⊇ {1, a, b} ◦ z =
{z} ∪ a ◦ z ∪ b ◦ z = {z} ∪ a ⋄ z ∪ b ⋄ z = H − h. Hence x ◦ (y ◦ z) = H − h = (x ◦ y) ◦ z.

The following corollary is an immediate consequence of Theorem 5.3; it is exploited in the next section
to characterizeM7 in terms ofM7(X) andM7(Y).

Corollary 5.1. IfM7, M7(X) andM7(Y) are respectively the sets of minimal hypergroups in E7, E7(X) and E7(Y),
then a hypergroup (H, ◦) ∈M7 if and only if there exist two hypergroups

(H, ⋄) = B XH
A Y ∈M7(Y) and (H, ∗) = B X

A YH
∈M7(X)

such that (H, ◦) = B XH
A YH

.

6. Computation of minimal hypergroups in E7

In this section we present transversal sets for the classes M7(X) and M7(Y) defined in the preceding
section. In the light of Corollary 5.1, these two lists are sufficient to completely describe the class M7.
We recall that, owing to Theorem 5.2, all hypergroups in E7 can be obtained, modulo isomorphisms, as
hyperproduct extensions of the hypergroups in M7. To produce these lists, we employ two algorithms
described in the Appendix of the paper [6]. The first routine, which is called findHgroups, determines
all the hypergroups in a given class specified by an incomplete hyperproduct table. The second routine,
called sieveHgroups, takes as input a hypergroup list and produces as output a list of representatives of
its isomorphism classes. For brevity, we illustrate only the construction of the transversal set ofM7(X); the
construction of the corresponding list forM7(Y) is almost completely analogous.

Firstly, we produce a complete listing of the hypergroups inE7(X); to this aim we make use of the routine
findHgroups, adapted to the hyperproduct structure described in (11) having fixed the hyperproducts
Xi = {4, 5, 6} for i = 1, . . . , 9. The hyperproducts Y1, . . . ,Y9 must fulfil the conditions in Proposition 5.2.
Hence, an high-level description of the routine findHgroups adapted to our pourposes is the following:

E7(X) = ∅
Y = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}
for all Y1 ∈ Y

for all Y2 ∈ Y
for all Y3 ∈ Y

for all Y4 ∈ Y
for all Y5 ∈ Y

for all Y6 ∈ Y
for all Y7 ∈ Y

for all Y8 ∈ Y
for all Y9 ∈ Y

define (H, ◦) as in (11) with X1 = . . . = X9 = {4, 5, 6}
if (H, ◦) is associative and reproducible then

add (H, ◦) to E7(X)
End.

On termination, the list E7(X) contains 11776 hypergroups. Next, we compute M7(X). Starting from the
list E7(X), we discard those hypergroups that are extensions of some other hypergroups in the same set.
The selection is performed in the following way: Let H1, . . . ,Hk denote the hypergroups in E7(X). To each
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Nr. Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
1 123 124 134 124 123 1234 134 1234 123
2 123 124 134 124 123 1234 134 1234 124
3 123 124 134 124 123 1234 1234 134 123
4 123 124 134 124 123 1234 1234 134 124
5 123 124 134 124 134 123 134 123 124
6 123 124 134 124 1234 123 1234 134 124
7 123 124 134 134 123 124 124 134 123
8 123 124 134 134 123 1234 1234 134 124
9 123 124 134 134 1234 123 124 123 1234
10 123 124 134 134 1234 123 124 134 1234
11 123 124 134 134 1234 123 1234 123 124
12 123 124 134 134 1234 123 1234 134 124
13 123 124 1234 124 123 1234 1234 1234 134
14 123 124 1234 1234 1234 134 124 123 1234

Table 1: Hyperproducts Y1, . . . ,Y9 defining the isomorphism classes ofM7(X).

Nr. X1 X2 X3 X4 X5 X6 X7 X8 X9
1 56 57 67 57 67 56 67 56 57
2 56 57 67 57 67 56 67 57 56
3 56 57 67 57 567 56 567 67 56
4 56 57 67 67 57 56 67 57 56
5 56 57 567 57 56 67 67 57 56
6 56 57 567 57 56 67 67 567 57
7 56 57 567 57 67 56 567 56 67
8 56 57 567 57 567 67 67 56 57
9 57 56 67 56 67 57 67 57 56
10 57 56 567 56 57 67 67 57 56
11 57 56 567 56 57 67 567 67 57
12 57 56 567 56 57 567 567 57 67
13 57 56 567 56 67 57 567 57 67

Table 2: Hyperproducts X1, . . . ,X9 defining the isomorphism classes ofM7(Y).

hypergroup, associate a binary-valued variable flag whose value is set initially to one. Then, we perform
the following algorithm:

M7(X) = ∅
for i = 1, . . . , k

for j = 1, . . . , k
if [i , j and flag( j) = 1] then

if Hi ≼ H j then
flag( j) := 0
add Hi toM7(X)

End.

Upon termination, those hypergroups whose corresponding flag is set to 1 are minimal. In particular,
the number of flag variables whose value is one gives the cardinality ofM7(X). This number is 390.

Finally, we employ the routine sieveHgroups to select a set of pairwise not isomorphic hypergroups
from M7(X). To speed up the construction of that transversal set, it is opportune to identify the smallest
possible set of candidate isomorphisms in E7. By observing the structure of the hyperproduct table (11),
we conclude that every permutation π ∈ S7 that is also a hypergroup isomorphism in E7 necessarily fulfills
the equations π(1) = 1, π({2, 3, 4}) = {2, 3, 4} and π({5, 6, 7}) = {5, 6, 7}. The possible permutations are 36
and consitute a group isomorphic to S3 × S3. By applying sieveHgroups to the list M7(X) with these
permutations we obtain 14 hypergroups pairwise not isomorphic. With reference to (11), we show in Table
1 the sets Y1, . . . ,Y9 characterizing this transversal set.
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The construction of a transversal ofM7(Y) proceeds analogously, having fixed the hyperproducts Yi =
{1, 2, 3, 4} for i = 1, . . . , 9. The condition to be satisfied by the sets X1, . . . ,X9 is the one given in Proposition 5.1.
Hence, we let Xi ∈ X = {{5, 6}, {5, 7}, {6, 7}, {5, 6, 7}} in the routine findHgroups. As a result, the cardinality of
E7(Y) is 19268, and that ofM7(Y) is 49. Finally, the selection of pairwise non-isomorphic hypergroups ends
up with 14 representatives, that are listed in Table 2.

Therefore, from Corollary 5.1 we obtain the following result:

Theorem 6.1. There exist 182 isomorphism classes in M7. A transversal is given by the hyperproduct table (11)
when the hyperproducts Yi are chosen from the rows of Table 1 and the hyperproducts Xi from the rows of Table 2.

A rigorous proof of this theorem should exploit the following fact, which is rather self-apparent: in the
block-notations analogous to those in Corollary 5.1, let

(H, ⋄) = B XH
A YH

∈M7(Y) and (H, ∗) = B X′H
A Y′H

∈M7(X).

Hence, if f is a isomorphism, (H, ⋄) f−→ (H, ∗), then the same f determines also the following isomorphisms:

B X
A YH

f−→ B X
A Y′H

,
B XH
A Y

f−→ B X′H
A Y .

7. Conclusions

In this paper we have analyzed hypergroups that are strongly conjugable extensions of one of their
subhypergroups, see Definition 3.1. Successively, we considered the class S7 of hypergroups of type U on
the right having bilateral scalar identity and order 7. The interest in this class arises from various facts
recently discovered in closely related hypergroup classes, see e.g., [2, 5–7]. In particular, we have shown
that a nontrivial subhypergroup h of a hypergroup (H, ◦) ∈ S7 is closed if and only if (H, ◦) ∈ S7 is a strongly
conjugable extension of h. We have developed the analysis of this kind of hypergroups and we have found
that they can be characterized by means of a small set of hypergroups that are minimal with respect to
a semiordering induced by hyperproduct inclusion. This approach to the representation of hypergroup
classes was firstly proposed in [7] and is quite relevant to hyperstructure theory since the generality of
hyperproduct operations hinders the study of the automorphism group and the isomorphism classes of
this kind of hyperstructures.

Finally, we observe that the problem raised in [5], namely, to establish the minimal (odd) cardinality n of a
hypergroup inSn fulfilling conditions (1) and (2) remains still unsolved. Nevertheless, the results presented
herein considerably simplify its solution. Indeed, we know from [5] that n > 5, and the hypergroup
presented in (8) shows that n ≤ 9. By Theorem 5.1, the problem is now circumscribed to two subclasses of
S7, that is, the hypergroups that own only one proper and non-trivial subhypergroup which is not closed,
and those that do not own any proper and non-trivial subhypergroup.
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