Filomat 27:7 (2013), 1277–1283 DOI 10.2298/FIL1307277J Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Multipliers

Miroljub Jevtić^a

^aFaculty of Mathematics, University of Belgrade, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia

Abstract. We describe the multiplier spaces $(H^{p,q,\alpha}, H^{\infty})$, and $(H^{p,q,\alpha}, H^{\infty,v,\beta})$, where $H^{p,q,\alpha}$ are mixed norm spaces of analytic functions in the unit disk \mathbb{D} and H^{∞} is the space of bounded analytic functions in \mathbb{D} . We extend some results from [7] and [3], particularly Theorem 4.3 in [3].

1. Introduction

For 0 , a function <math>f analytic in the unit disk \mathbb{D} , $f \in H(\mathbb{D})$, is said to belong to the *Hardy space* H^p if

$$||f||_p = \sup_{0 < r < 1} M_p(r, f) < \infty, \quad 0 < p \le \infty,$$

where

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt\right)^{1/p} < \infty, \quad 0 < p < \infty,$$

and

$$M_{\infty}(r,f) = \sup_{|z|=r} |f(z)| < \infty.$$

It belongs to the *mixed norm space* $H^{p,q,\alpha}$, $0 < p,q \le \infty$, $0 < \alpha < \infty$, if

$$||f||_{p,q,\alpha}^{q} = \int_{0}^{1} (1-r)^{q\alpha-1} M_{p}(r,f)^{q} dr < \infty, \quad 0 < q < \infty,$$

and

$$||f||_{p,\infty,\alpha} = \sup_{0 \le r < 1} (1-r)^{\alpha} M_p(r,f) < \infty.$$

 $H_0^{p,\infty,\alpha}$ will be the subspace of $H^{p,\infty,\alpha}$ of functions *f* for which

$$\lim_{r \to 1} (1-r)^{\alpha} M_p(r,f) = 0.$$

Keywords. Hardy spaces, mixed-norm spaces, coefficient multipliers.

²⁰¹⁰ Mathematics Subject Classification. 30D55.

Received: 30 January 2013; Accepted: 30 April 2013

Communicated by Ivan Jovanović

The author is supported by MN Serbia, Project No. 174017

Email address: jevtic@matf.bg.ac.rs (Miroljub Jevtić)

Obviously, H^{∞} is the space of all bounded analytic functions in \mathbb{D} . A closed subspace of H^{∞} consisting of functions analytic in \mathbb{D} , continuous on $\overline{\mathbb{D}}$, will be denoted by $\mathcal{A} = \mathcal{A}(\mathbb{D})$.

Let $g(z) = \sum_{n=0}^{\infty} \hat{g}(n) z^n$ be analytic in \mathbb{D} . We define the multiplier transformation $D^s g$ of g, where s is any real number, by

$$D^{s}g(z) = \sum_{n=0}^{\infty} (n+1)^{s}\hat{g}(n)z^{n}.$$

If $0 , <math>0 < q \le \infty$ and $0 < \alpha < \infty$, the space of all analytic functions *f* on \mathbb{D} such that

$$||f||_{p,q,\alpha;s} := ||D^s f||_{p,q,\alpha} < \infty$$

is denoted by $D^{-s}H^{p,q,\alpha}$. Similarly, are defined the spaces $D^{-s}H^{p,\alpha,\alpha}_0$. If $s \neq 0$ we also write $H^{p,q,\alpha}_s$ instead of $D^{-s}H^{p,q,\alpha}$.

Let *A* and *B* be two quasi-normed spaces of functions analytic in D. A function $g(z) = \sum_{k=0}^{\infty} \hat{g}(k) z^k$ is said to be multiplier from *A* to *B* if, whenever $f(z) = \sum_{k=0}^{\infty} \hat{f}(k) z^k$ belongs to *A*, then

$$(f \star g)(z) = \sum_{k=0}^{\infty} \hat{f}(k)\hat{g}(k)z^k$$

belongs to *B*. The space *C* of all multipliers *q* from *A* to *B* with a quasi-norm

$$||g||_C = \sup\{||f \star g||_B : f \in A, ||f||_A \le 1\}$$

will be denoted by (A, B).

We denote the space of all Abel summable sequences by *AS*. The *AS*-dual of a space *E* of analytic functions in \mathbb{D} , i.e. the space (*E*, *AS*), is known as the Abel dual of *E* and will be denoted by *E*^{*a*}.

Our main goal of this paper is to describe the multiplier spaces $(H^{p,q,\alpha}, H^{\infty})$, and $(H^{p,q,\alpha}, H^{\infty,v,\beta})$. We extend some results from [7] and [3], especially Theorem 4.3 in [3].

2. The multiplier space $(H^{p,q,\alpha}, H^{\infty})$

Let $\omega : R \to R$ be nonincreasing function of class C^{∞} such that $\omega(t) = 1$, for $t \le 1$, and $\omega(t) = 0$, for $t \ge 2$. Let $\varphi(t) = \omega(t/2) - \omega(t)$, $t \in R$, and let

$$w_0(z) = 1 + z$$
, and $w_n(z) = \sum_{k=2^{n-1}}^{2^{n+1}} \varphi(\frac{k}{2^{n-1}}) z^k$, $n = 1, 2, ...$.

In [4] the authors showed that for any $f \in H(\mathbb{D})$ we have

$$f(z) = \sum_{n=0}^{\infty} (w_n \star f)(z), \quad z \in \mathbb{D}$$

and

$$||w_n \star f||_p \le C||f||_p, \quad 0$$

For an extension of these results see [6].

The following two lemmas will be needed in sequel. For a proof of the first one see [3]. The proof of the second is not too much different.

Lemma 1. Let $0 < p, q \le \infty, 0 < \alpha < \infty$ and $f \in H(\mathbb{D})$. Then the following statements are equivalent: (*i*) $f \in H^{p,q,\alpha}$;

- (*ii*) The sequence $\{2^{-n\alpha} || w_n \star f ||_p\}$ belongs to l^q ;
- (iii) The sequence $\{||w_n \star D^{-\alpha} f||_p\}$ belongs to l^q .

Here, as usual, l^q is the space of all sequences $\lambda = \{\lambda_n\}$ such that $\|\lambda\|_{l^q}^q = \|\lambda\|_q^q = \sum_{n=0}^{\infty} |\lambda_n|^q < \infty$, $0 < q < \infty$; l^{∞} is the space of all bounded sequences and c_0 is its subspace consisting of zero sequences.

Lemma 2. Let $0 , <math>0 < \alpha < \infty$ and $f \in H(\mathbb{D})$. Then the following statements are equivalent:

(i)
$$f \in H_0^{p,\infty,\alpha}$$

- (*ii*) The sequence $\{2^{-n\alpha} || w_n \star f ||_p\}$ belongs to c_0 ;
- (iii) The sequence $\{||w_n \star D^{-\alpha} f||_p\}$ belongs to c_0 .

Recall that an analytic function f on the unit disk \mathbb{D} is a Cauchy transform if it admits representation

$$f(z) = C[\mu](z) = \int_{\mathbb{T}} \frac{1}{1 - ze^{-i\theta}} d\mu(e^{i\theta}), \quad z \in \mathbb{D},$$
(1)

where $\mu \in M(\mathbb{T})$. Recall that $M(\mathbb{T})$ is a Banach space of all complex Borel measures μ on the boundary \mathbb{T} of \mathbb{D} under the total variation norm $\|\mu\|$.

The space M_+ of all Cauchy transforms is a Banach space under the norm

 $||f||_{M_+} = \inf \{ ||\mu|| : \mu \in M(\mathbb{T}) \text{ and } (1) \text{ holds } \}.$

First, we characterize the multipliers $(H^{p,q,\alpha}, H^{\infty})$, for 0 .

Theorem 1. Let $0 < p, q \le \infty, 0 < \alpha < \infty, p_0 = \min\{1, p\}, p_1 = \max\{1, p\}, q_1 = \max\{1, q\}$ and p'_1 and let q'_1 be the conjugate exponents of p_1 and q_1 respectively. Then

$$(H^{p,q,\alpha}, H^{\infty}) = H^{p'_1,q'_1,1}_{\alpha+1/p_0}.$$
(2)

Proof. We consider the case $p = \infty$, since the remaining cases have been considered in [7]. We will use the fact that if $g \in H(\mathbb{D})$, then

$$\|g\|_{(H^{p,q,\alpha},H^{\infty})} \approx \|\{2^{n\alpha}\|w_n \star g\|_{(H^p,H^{\infty})}\}\|_{p_1^{q_1^{\prime}}}, \quad \text{see [7]}.$$
(3)

Since, by Lemma 1, we have

$$\|D^{\alpha+1}g\|_{1,q'_{1},1} \approx \|\{2^{-n}\|w_{n} \star D^{\alpha+1}g\|_{1}\}\|_{p'_{1}} \approx \|\{2^{n\alpha}\|w_{n} \star g\|_{1}\}\|_{p'_{1}},$$

to prove (2), for $p = \infty$, by (3) it is sufficient to prove that

$$\|w_n \star g\|_{(H^{\infty}, H^{\infty})} \approx \|w_n \star g\|_{M_+} \approx \|w_n \star g\|_1$$

By the equality $(H^{\infty}, H^{\infty}) = M_+$, (see [2]), we have that the first relation holds . Obviously, $||w_n \star g||_1 \ge ||w_n \star g||_{M_+}$. Let $f_r(z) = (1 - rz)^{-2}$, 0 < r < 1. Then

$$||w_n \star g \star f_r||_1 \le ||w_n \star g||_{M_+} ||f_r||_{(M_+, H^1)}.$$

Recall that

$$||f_r||_{(M_+,H^1)} = \sup\{||f_r \star h||_1 : h \in M_+, ||h||_{M_+} \le 1\}$$

If $h \in M_+$ and $||h||_{M_+} \le 1$, then $h(z) = \int_T \frac{d\mu(\xi)}{1 - z\overline{\xi}}$, where $||\mu|| \le 1$. Hence

$$||f_r \star h||_1 = ||D^1h||_1 \approx ||h'_r||_1 \le \frac{C}{1-r}$$

By taking $r = 1 - 2^{-n}$, we get

$$2^{-n} ||w_n \star D^1 g||_1 \approx ||w_n \star g||_1 \le C ||w_n \star g||_{M_+}$$

A similar argument, based on Lemma 2, shows that the following is true:

Theorem 2. Let $0 , <math>0 < \alpha < \infty$, $p_0 = \min\{1, p\}$, $p_1 = \max\{1, p\}$, and p'_1 is the conjugate of p_1 . Then

$$(H_0^{p,\infty,\alpha}, H^{\infty}) = H_{\alpha+1/p_0}^{p_1',1,1}.$$
(4)

3. Multipliers $(H^{p,q,\alpha}, H^{\infty,v,\beta})$

We define $a \ominus b = \infty$ if $a \le b$, and

$$\frac{1}{a \ominus b} = \frac{1}{b} - \frac{1}{a}, \quad \text{for} \quad 0 < b < a.$$

If *X* is any quasi-normed space of analytic functions in \mathbb{D} that contains polynomials, then for $0 < q \le \infty$, we define the space

$$X[q] = \{ f \in H(\mathbb{D}) : ||f||_{X[q]} = ||\{||w_n \star f||_X\} ||_{l^q} \}$$

We will also write $X[l^q]$ instead of X[q]. We define $X[c_0]$ to be the subspace of $X[l^{\infty}]$ consisting of functions $f \in H(\mathbb{D})$ such that $\{||w_n \star f||_X\} \in c_0$.

For a proof of the next theorem see [3]

Theorem 3. Let $0 < p, q, u, v \le \infty, 0 < \alpha, \beta < \infty$. Then (i) $(H^p[q], H^u[v]) = (H^p, H^u)[q \ominus v]$. (ii) $(H^{p,\infty,\alpha}[q], H^{u,\infty,\beta}[v]) = (H^{p,\infty,\alpha}, H^{u,\infty,\beta})[q \ominus v]$. (iii) $(H^p[c_0], H^u[l^v] = (H^p, H^u)[(c_0, l^v)] = (H^p, H^u)[l^v]$; (iv) $(H^p[c_0], H^u[c_0]) = (H^p, H^u)[(c_0, c_0)] = (H^p, H^u)[l^\infty]$; (v) $(H^p[l^\infty], H^u[c_0]) = (H^p, H^u)[(l^\infty, c_0)] = (H^p, H^u)[c_0]$; (vi) $(H^p[l^q], H^u[c_0]) = (H^p, H^u)[(l^q, c_0)] = (H^p, H^u)[l^\infty]$, $0 < q < \infty$.

As a corollary we have

Theorem 4.

 $\begin{aligned} &(\mathrm{i}) \ (H^{p,q,\alpha}, H^{u,v,\beta}) = (H^{p,\infty,\alpha}, H^{u,\infty,\beta})[q \ominus v], \quad 0 < p,q,u,v \le \infty, 0 < \alpha, \beta < \infty. \\ &(\mathrm{i}) \ (H^{p,q,\alpha}, H^{u,v,\beta}) = \left\{ g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[q \ominus v] \right\}, \quad 0 < p,q,u,v \le \infty, 0 < \alpha, \beta < \infty. \end{aligned}$

Proof. (i) The statement (*i*) follows by Theorem 3 and the equalities

$$H^{p,q,\alpha} = H^{p,\infty,\alpha}[q]$$
 and $H^{u,v,\beta} = H^{u,\infty,\beta}[v].$

(ii) This statement follows from the equalities

$$H^{p,q,\alpha} = \{ f \in H(\mathbb{D}) : D^{-\alpha}f \in H^p[q] \}$$

and

$$H^{u,v,\beta} = \left\{ f \in H(\mathbb{D}) : D^{-\beta} f \in H^u[v] \right\},$$

(see Lemma 1), and Theorem 3.

As a corollary of Theorem 4 we have

Corollary 1. Let $0 < p, q, u, v \le \infty, 0 < \alpha, \beta < \infty$. Then

$$(H^{p,\infty,\alpha}, H^{u,\infty,\beta})[q \ominus v] = \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[q \ominus v]\}.$$

Theorem 5.

$$\begin{aligned} \text{(i)} & (H_0^{p,\infty,\alpha}, H^{u,v,\beta}) = (H^{p,\infty,\alpha}, H^{u,v,\beta}) = \left\{ g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[l^v] \right\};\\ \text{(ii)} & (H_0^{p,\infty,\alpha}, H_0^{u,\infty,\beta}) = (H^{p,\infty,\alpha}, H^{u,\infty,\beta}) = \left\{ g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[l^\infty] \right\};\\ \text{(iii)} & (H^{p,\infty,\alpha}, H_0^{u,\infty,\beta}) = \left\{ g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[c_0] \right\};\\ \text{(iv)} & (H^{p,q,\alpha}, H_0^{u,\infty,\beta}) = (H^{p,q,\alpha}, H^{u,\infty,\beta}) = \left\{ g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[l^\infty] \right\}, \quad 0 < q < \infty. \end{aligned}$$

Proof. We prove (i) only, the proofs of (ii) through (iv) being similar.

By Lemma 2

$$H_0^{p,\infty,\alpha} = \{ f \in H(\mathbb{D}) : D^{-\alpha}f \in H^p[c_0] \},\$$

and, by Lemma 1,

$$H^{u,v,\beta} = \{ f \in H(\mathbb{D}) : D^{-\beta}f \in H^u[l^v] \}.$$

From this we conclude that

$$\begin{aligned} (H_0^{p,\infty,\alpha},H^{u,v,\beta}) &= \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p[c_0],H^u[l^v]) \} \\ &= \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p,H^u)[l^v] \}, \end{aligned}$$

by Theorem 3.

The equality $(H^{p,\infty,\alpha}, H^{u,v,\beta}) = \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^u)[l^v]\}$ is proved in Theorem 4.

The next theorem is a consequence of the equality $(H^p, H^\infty) = H^{p'}$, 1 , and Theorem 4.

Theorem 6. Let 1 and <math>p + p' = pp'. Then

$$(H^{p,q,\alpha}, H^{\infty,v,\beta}) = H^{p',q\ominus v,\beta}_{\alpha}.$$

Corollary 2. Let 1 and <math>p + p' = pp'. Then (i) $(H_0^{p,\infty,\alpha}, H^{\infty,v,\beta}) = H_{\alpha}^{p',v,\beta}$; (ii) $(H_0^{p,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = H_{\alpha}^{p',\infty,\beta}$; (iii) $(H^{p,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = D^{-\alpha}H_0^{p',\infty,\beta}$;

(iv) $(H^{p,q,\alpha}, H_0^{\infty,\infty,\beta}) = H_{\alpha}^{p',\infty,\beta}, \quad q \neq \infty.$

Proof. The statements (i), (ii) and (iv) follow from Theorem 5 and Theorem 6. We prove the statement (iii). By using Theorem 5 we get

$$\begin{aligned} (H^{p,\infty,\alpha}, H_0^{\infty,\infty,\beta}) &= \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^p, H^\infty)[c_0]\} \\ &= \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in H^{p'}[c_0]\} \\ &= D^{-\alpha}H_0^{p',\infty,\beta}, \end{aligned}$$

by Lemma 2. 🛛

Theorem 7. $(H^{\infty,q,\alpha}, H^{\infty,v,\beta}) = H^{1,q \ominus v,\beta}_{\alpha}$.

Theorem is a consequence of Theorem 4 and the following theorem

Theorem 8. *Let* $0 < \alpha, \beta < \infty$ *. Then*

$$(H^{\infty,\infty,\alpha},H^{\infty,\infty,\beta})=H^{1,\infty,\beta}_{\alpha}.$$

Proof. We will use the equalities $(H_0^{\infty,\infty,\alpha})^a = H_{\alpha+1}^{1,1,1}, (H_0^{\infty,\infty,\beta})^a = H_{\beta+1}^{1,1,1}, (H_{\alpha+1}^{1,1,1})^a = H^{\infty,\infty,\alpha}$ and $(H_{\beta+1}^{1,1,1})^a = H^{\infty,\infty,\beta}$. All these results follows from Theorem 1 and Theorem 2, since the Abel dual of separable mixed norm space $H^{p,q,\alpha}$ coincides with the space $(H^{p,q,\alpha}, H^{\infty})$, (see [7], [8], [5]). See also [1].

Using this we find that

$$\begin{aligned} (H_0^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta}) &\subset ((H_0^{\infty,\infty,\beta})^a, (H_0^{\infty,\infty,\alpha})^a) = (H_{\beta+1}^{1,1,1}, H_{\alpha+1}^{1,1,1}) \\ &\subset ((H_{\alpha+1}^{1,1,1})^a, (H_{\beta+1}^{1,1,1})^a) = (H^{\infty,\infty,\alpha}, H^{\infty,\infty,\beta}). \end{aligned}$$

Now let $\lambda \in (H^{\infty,\infty,\alpha}, H^{\infty,\infty,\beta})$. Then $\lambda \in (H_0^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta})$ since λ maps polynomials into polynomials and these are dense in $H_0^{\infty,\infty,\alpha}$ and in $H_0^{\infty,\infty,\beta}$. Thus,

$$(H_0^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = (H^{\infty,\infty,\alpha}, H^{\infty,\infty,\beta}) = (H_{\beta+1}^{1,1,1}, H_{\alpha+1}^{1,1,1}) = H_{\alpha}^{1,\infty,\beta}.$$

For the last equality see Theorem 10 below. \Box

Corollary 3.

(i)
$$(H_0^{\infty,\infty,\alpha}, H^{\infty,\nu,\beta}) = H_\alpha^{1,\nu,\beta};$$

(ii) $(H_0^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = H_\alpha^{1,\infty,\beta};$
(iii) $(H^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = D^{-\alpha} H_0^{1,\infty,\beta};$
(iv) $(H^{\infty,q,\alpha}, H_0^{\infty,\infty,\beta}) = H_\alpha^{1,\infty,\beta}, \quad q \neq \infty.$

Proof. We should only prove (iii). By using Theorem 5 we obtain

$$(H^{\infty,\infty,\alpha},H_0^{\infty,\infty,\beta}) = \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in (H^\infty,H^\infty)[c_0]\}$$
$$= \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in M_+[c_0]\}.$$

Since $||w_n \star D^{\alpha-\beta}g||_{M_+} \approx ||w_n \star D^{\alpha-\beta}g||_{H^1}$, (see Section 2), we get

$$(H^{\infty,\infty,\alpha}, H_0^{\infty,\infty,\beta}) = \{g \in H(\mathbb{D}) : D^{\alpha-\beta}g \in H^1[c_0]\}$$
$$= D^{-\alpha}H_0^{1,\infty,\beta},$$

by Lemma 2. 🛛

Corollary 4. $(\mathcal{B}, H^{\infty, v, \beta}) = H^{1, v, \beta} \text{ and } (\mathcal{B}, H_0^{\infty, \infty, \beta}) = H_0^{1, \infty, \beta}.$

- As usual $\mathcal{B} = H_1^{\infty,\infty,1}$ denote the Bloch space and \mathcal{B}_0 is the little Bloch space. If $v = \infty$, more is true
- **Theorem 9.** $(\mathcal{A}, H^{\infty,\infty,\beta}) = (\mathcal{B}, H^{\infty,\infty,\beta}) = H^{1,\infty,\beta}$. In particular, $(\mathcal{A}, \mathcal{P}) = (\mathcal{P}, \mathcal{P}) = (\mathcal{P}, \mathcal{P}) = (\mathcal{P}, \mathcal{P})$

$$(\mathcal{A},\mathcal{B})=(\mathcal{B},\mathcal{B})=H_1^{1,\infty,1}.$$

1282

Proof. It suffices to show that $(\mathcal{A}, H^{\infty,\infty,\beta}) \subset H^{1,\infty,\beta}$. Now we give the proof of this inclusion.

$$\begin{aligned} (\mathcal{A}, H^{\infty,\infty,\beta}) &\subset ((H^{\infty,\infty,\beta})^a, \mathcal{A}^a) = (H^{1,1,1}_{\beta+1}, M^+) \\ &\subset (H^{1,1,1}_{\beta+1}, H^{1,\infty,1+\beta}_{1+\beta}) = (H^{1,1,1}, H^{1,\infty,1+\beta}) \\ &= H^{1,\infty,1+\beta}_1 = H^{1,\infty,\beta}. \end{aligned}$$

Here, we used the fact that $\mathcal{R}^a = M_+$, (see [9]).

Note that Theorem 9 represents an extension of Theorem 4.3 in [3].

As final remark we note the multipliers $(H^{p,q,\alpha}, H^{u,v,\beta})$, for $0 , <math>p \le u \le \infty$, are characterized in [7]. See also [3].

Theorem 10. ([7]) *Let* $0 , <math>p \le u \le \infty, 0 < q, v \le \infty, 0 < \alpha, \beta < \infty$. *Then*

$$(H^{p,q,\alpha}, H^{u,v,\beta}) = \{g \in H(\mathbb{D}) : D^{\alpha+1/p-1}g \in H^{u,q \ominus v,\beta}\} = H^{u,q \ominus v,\beta}_{\alpha+1/p-1}.$$

In particular, $(H^{p,q,\alpha}, H^{\infty,v,\beta}) = H^{\infty,q\ominus v,\beta}_{\alpha+1/p-1}$.

Corollary 5. ([5]) *Let* 0 .*Then*

(i)
$$(H_0^{p,\infty,\alpha}, H^{u,v,\beta}) = H_{\alpha+1/p-1}^{u,v,\beta}$$

(ii) $(H_0^{p,\infty,\alpha}, H_0^{u,\infty,\beta}) = H_{\alpha+1/p-1}^{u,\infty,\beta}$;
(iii) $(H^{p,\infty,\alpha}, H_0^{u,\infty,\beta}) = D^{-\alpha-(1/p)+1}H_0^{u,\infty,\beta}$;
(iv) $(H^{p,q,\alpha}, H_0^{u,\infty,\beta}) = H_{\alpha+1/p-1}^{u,\infty,\beta}$, if $0 < q < \infty$.

We note that the statements (*i*), (*ii*) and (*iv*) also follow from Theorem 10 and Theorem 5. A different proof of these statements is given in [5].

References

- [1] P.Ahern, M. Jevtić, Duality and multipliers for mixed norm spaces, Michigan Math. J., 30 (1983), 53-64.
- [2] J. Caveny, Bounded Hadamard products of H^p functions, Duke Math. J. 33 (1966), 389-394.
- [3] M.Jevtić, M.Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged), 64(1998), 531-545.
- [4] M. Jevtić, M. Pavlović, On multipliers fom H^p to l^q , 0 < q < p < 1, Arch. Math. **56** (1991), 174-180.
- [5] M. Lengfield, A nested embedding theorem for Hardy-Lorentz spaces with applications to coefficient multiplier problems, Rocky Mountain J. Math. 38 (2008), 1215-1251.
- [6] M. Pavlović, Introduction to function spaces on the disk, Matematički Institut Sanu, Beograd, 2004.
- [7] M. Pavlović, Mixed norm spaces of analytic and harmonic functions I, Publications de l'Institute mathematique 40(54) (1986), 117-141.
- [8] M. Pavlović, Mixed norm spaces of analytic and harmonic functions II, Publications de l'Institute mathematique 41(55) (1987), 97-110.
- [9] J.H. Wells, Some results concerning multipliers of *H^p*, J.London Math. Soc. 2 (1970), 549–556.

1283