Multipliers

Miroljub Jevtića ${ }^{\text {a }}$

${ }^{a}$ Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11001 Belgrade, p.p. 550, Serbia

Abstract

We describe the multiplier spaces $\left(H^{p, q, \alpha}, H^{\infty}\right)$, and $\left(H^{p, q, \alpha}, H^{\infty, v, \beta}\right)$, where $H^{p, q, \alpha}$ are mixed norm spaces of analytic functions in the unit disk \mathbb{D} and H^{∞} is the space of bounded analytic functions in \mathbb{D}. We extend some results from [7] and [3], particularly Theorem 4.3 in [3].

1. Introduction

For $0<p \leq \infty$, a function f analytic in the unit disk $\mathbb{D}, f \in H(\mathbb{D})$, is said to belong to the Hardy space H^{p} if

$$
\|f\|_{p}=\sup _{0<r<1} M_{p}(r, f)<\infty, \quad 0<p \leq \infty,
$$

where

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}<\infty, \quad 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{|z|=r}|f(z)|<\infty .
$$

It belongs to the mixed norm space $H^{p, q, \alpha}, 0<p, q \leq \infty, 0<\alpha<\infty$, if

$$
\|f\|_{p, q, \alpha}^{q}=\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, f)^{q} d r<\infty, \quad 0<q<\infty
$$

and

$$
\|f\|_{p, \infty, \alpha}=\sup _{0 \leq r<1}(1-r)^{\alpha} M_{p}(r, f)<\infty .
$$

$H_{0}^{p, \infty, \alpha}$ will be the subspace of $H^{p, \infty, \alpha}$ of functions f for which

$$
\lim _{r \rightarrow 1}(1-r)^{\alpha} M_{p}(r, f)=0
$$

[^0]Obviously, H^{∞} is the space of all bounded analytic functions in \mathbb{D}. A closed subspace of H^{∞} consisting of functions analytic in \mathbb{D}, continuous on $\overline{\mathbb{D}}$, will be denoted by $\mathcal{A}=\mathcal{A}(\mathbb{D})$.

Let $g(z)=\sum_{n=0}^{\infty} \hat{g}(n) z^{n}$ be analytic in \mathbb{D}. We define the multiplier transformation $D^{s} g$ of g, where s is any real number, by

$$
D^{s} g(z)=\sum_{n=0}^{\infty}(n+1)^{s} \hat{g}(n) z^{n}
$$

If $0<p \leq \infty, 0<q \leq \infty$ and $0<\alpha<\infty$, the space of all analytic functions f on \mathbb{D} such that

$$
\|f\|_{p, q, \alpha ; s}:=\left\|D^{\varsigma} f\right\|_{p, q, \alpha}<\infty
$$

is denoted by $D^{-s} H^{p, q, \alpha}$. Similarly, are defined the spaces $D^{-s} H_{0}^{p, \infty, \alpha}$. If $s \neq 0$ we also write $H_{s}^{p, q, \alpha}$ instead of $D^{-s} H^{p, q, \alpha}$.

Let A and B be two quasi-normed spaces of functions analytic in \mathbb{D}. A function $g(z)=\sum_{k=0}^{\infty} \hat{g}(k) z^{k}$ is said to be multiplier from A to B if, whenever $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ belongs to A, then

$$
(f \star g)(z)=\sum_{k=0}^{\infty} \hat{f}(k) \hat{g}(k) z^{k}
$$

belongs to B. The space C of all multipliers g from A to B with a quasi-norm

$$
\|g\|_{C}=\sup \left\{\|f \star g\|_{B}: f \in A, \quad\|f\|_{A} \leq 1\right\}
$$

will be denoted by (A, B).
We denote the space of all Abel summable sequences by $A S$. The $A S$-dual of a space E of analytic functions in \mathbb{D}, i.e. the space $(E, A S)$, is known as the Abel dual of E and will be denoted by E^{a}.

Our main goal of this paper is to describe the multiplier spaces $\left(H^{p, q, \alpha}, H^{\infty}\right)$, and $\left(H^{p, q, \alpha}, H^{\infty, v, \beta}\right)$. We extend some results from [7] and [3], especially Theorem 4.3 in [3].

2. The multiplier space ($H^{p, q, \alpha}, H^{\infty}$)

Let $\omega: R \rightarrow R$ be nonincreasing function of class C^{∞} such that $\omega(t)=1$, for $t \leq 1$, and $\omega(t)=0$, for $t \geq 2$. Let $\varphi(t)=\omega(t / 2)-\omega(t), t \in R$, and let

$$
w_{0}(z)=1+z, \quad \text { and } \quad w_{n}(z)=\sum_{k=2^{n-1}}^{2^{n+1}} \varphi\left(\frac{k}{2^{n-1}}\right) z^{k}, \quad n=1,2, \ldots .
$$

In [4] the authors showed that for any $f \in H(\mathbb{D})$ we have

$$
f(z)=\sum_{n=0}^{\infty}\left(w_{n} \star f\right)(z), \quad z \in \mathbb{D}
$$

and

$$
\left\|w_{n} \star f\right\|_{p} \leq C\|f\|_{p}, \quad 0<p \leq \infty, \quad n=0,1,2, \ldots
$$

For an extension of these results see [6].
The following two lemmas will be needed in sequel. For a proof of the first one see [3]. The proof of the second is not too much different.

Lemma 1. Let $0<p, q \leq \infty, 0<\alpha<\infty$ and $f \in H(\mathbb{D})$. Then the following statements are equivalent:
(i) $f \in H^{p, q, \alpha}$;
(ii) The sequence $\left\{2^{-n \alpha}\left\|w_{n} \star f\right\|_{p}\right\}$ belongs to l^{7};
(iii) The sequence $\left\{\left\|w_{n} \star D^{-\alpha} f\right\|_{p}\right\}$ belongs to 19 .

Here, as usual, l^{q} is the space of all sequences $\lambda=\left\{\lambda_{n}\right\}$ such that $\|\lambda\|_{l^{q}}^{q}=\|\lambda\|_{q}^{q}=\sum_{n=0}^{\infty}\left|\lambda_{n}\right|^{q}<\infty, 0<q<\infty$; l^{∞} is the space of all bounded sequences and c_{0} is its subspace consisting of zero sequences.
Lemma 2. Let $0<p \leq \infty, 0<\alpha<\infty$ and $f \in H(\mathbb{D})$. Then the following statements are equivalent:
(i) $f \in H_{0}^{p, \infty, \alpha}$;
(ii) The sequence $\left\{2^{-n a}\left\|w_{n} \star f\right\|_{p}\right\}$ belongs to c_{0};
(iii) The sequence $\left\{\left\|w_{n} \star D^{-\alpha} f\right\|_{p}\right\}$ belongs to c_{0}.

Recall that an analytic function f on the unit disk \mathbb{D} is a Cauchy transform if it admits representation

$$
\begin{equation*}
f(z)=C[\mu](z)=\int_{\mathbb{T}} \frac{1}{1-z e^{-i \theta}} d \mu\left(e^{i \theta}\right), \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

where $\mu \in M(\mathbb{T})$. Recall that $M(\mathbb{T})$ is a Banach space of all complex Borel measures μ on the boundary \mathbb{T} of \mathbb{D} under the total variation norm $\|\mu\|$.

The space M_{+}of all Cauchy transforms is a Banach space under the norm

$$
\|f\|_{M_{+}}=\inf \{\|\mu\|: \mu \in M(\mathbb{T}) \text { and (1) holds }\}
$$

First, we characterize the multipliers ($H^{p, q, \alpha}, H^{\infty}$), for $0<p \leq \infty$.
Theorem 1. Let $0<p, q \leq \infty, 0<\alpha<\infty, p_{0}=\min \{1, p\}, p_{1}=\max \{1, p\}, q_{1}=\max \{1, q\}$ and p_{1}^{\prime} and let q_{1}^{\prime} be the conjugate exponents of p_{1} and q_{1} respectively. Then

$$
\begin{equation*}
\left(H^{p, q, \alpha}, H^{\infty}\right)=H_{\alpha+1 / p_{0}}^{p_{1}^{\prime}, q_{1}^{\prime}, 1} . \tag{2}
\end{equation*}
$$

Proof. We consider the case $p=\infty$, since the remaining cases have been considered in [7]. We will use the fact that if $g \in H(\mathbb{D})$, then

$$
\begin{equation*}
\|g\|_{\left(H^{p, q, \alpha}, H^{\infty}\right)} \approx\left\|\left\{2^{n \alpha}\left\|w_{n} \star g\right\|_{\left(H^{p}, H^{\infty}\right)}\right\}\right\|_{p^{q_{1}^{\prime}}}, \quad \text { see }[7] . \tag{3}
\end{equation*}
$$

Since, by Lemma 1, we have

$$
\left\|D^{\alpha+1} g\right\|_{1, q_{1}^{\prime}, 1} \approx\left\|\left\{2^{-n}\left\|w_{n} \star D^{\alpha+1} g\right\|_{1}\right\}\right\|_{l^{\prime} 1_{1}^{\prime}} \approx\left\|\left\{2^{n \alpha}\left\|w_{n} \star g\right\|_{1}\right\}\right\|_{l_{1}^{q_{1}^{\prime}}}
$$

to prove (2), for $p=\infty$, by (3) it is sufficient to prove that

$$
\left\|w_{n} \star g\right\|_{\left(H^{\infty}, H^{\infty}\right)} \approx\left\|w_{n} \star g\right\|_{M_{+}} \approx\left\|w_{n} \star g\right\|_{1} .
$$

By the equality $\left(H^{\infty}, H^{\infty}\right)=M_{+}$, (see [2]), we have that the first relation holds .
Obviously, $\left\|w_{n} \star g\right\|_{1} \geq\left\|w_{n} \star g\right\|_{M_{+}}$.
Let $f_{r}(z)=(1-r z)^{-2}, 0<r<1$. Then

$$
\left\|w_{n} \star g \star f_{r}\right\|_{1} \leq\left\|w_{n} \star g\right\|_{M_{+}}\left\|f_{r}\right\|_{\left(M_{+}, H^{1}\right)}
$$

Recall that

$$
\left\|f_{r}\right\|_{\left(M_{+}, H^{1}\right)}=\sup \left\{\left\|f_{r} \star h\right\|_{1}: h \in M_{+},\|h\|_{M_{+}} \leq 1\right\}
$$

If $h \in M_{+}$and $\|h\|_{M_{+}} \leq 1$, then $h(z)=\int_{T} \frac{d \mu(\xi)}{1-z \bar{\xi}}$, where $\|\mu\| \leq 1$. Hence

$$
\left\|f_{r} \star h\right\|_{1}=\left\|D^{1} h\right\|_{1} \approx\left\|h_{r}^{\prime}\right\|_{1} \leq \frac{C}{1-r}
$$

By taking $r=1-2^{-n}$, we get

$$
2^{-n}\left\|w_{n} \star D^{1} g\right\|_{1} \approx\left\|w_{n} \star g\right\|_{1} \leq C\left\|w_{n} \star g\right\|_{M_{+}}
$$

A similar argument, based on Lemma 2, shows that the following is true:
Theorem 2. Let $0<p \leq \infty, 0<\alpha<\infty, p_{0}=\min \{1, p\}, p_{1}=\max \{1, p\}$, and p_{1}^{\prime} is the conjugate of p_{1}. Then

$$
\begin{equation*}
\left(H_{0}^{p, \infty, \alpha}, H^{\infty}\right)=H_{\alpha+1 / p_{0}}^{p_{1}^{\prime}, 1,1} \tag{4}
\end{equation*}
$$

3. Multipliers ($\boldsymbol{H}^{p, q, \alpha}, H^{\infty, v, \beta}$)

We define $a \ominus b=\infty$ if $a \leq b$, and

$$
\frac{1}{a \ominus b}=\frac{1}{b}-\frac{1}{a}, \quad \text { for } \quad 0<b<a
$$

If X is any quasi-normed space of analytic functions in \mathbb{D} that contains polynomials, then for $0<q \leq \infty$, we define the space

$$
X[q]=\left\{f \in H(\mathbb{D}):\|f\|_{X[q]}=\left\|\left\{\left\|w_{n} \star f\right\|_{X}\right\}\right\|_{l q}\right\}
$$

We will also write $X\left[l^{q}\right]$ instead of $X[q]$. We define $X\left[c_{0}\right]$ to be the subspace of $X\left[l^{\infty}\right]$ consisting of functions $f \in H(\mathbb{D})$ such that $\left\{\left\|w_{n} \star f\right\|_{X}\right\} \in c_{0}$.

For a proof of the next theorem see [3]
Theorem 3. Let $0<p, q, u, v \leq \infty, 0<\alpha, \beta<\infty$. Then
(i) $\left(H^{p}[q], H^{u}[v]\right)=\left(H^{p}, H^{u}\right)[q \ominus v]$.
(ii) $\left(H^{p, \infty, \alpha}[q], H^{u, \infty, \beta}[v]\right)=\left(H^{p, \infty, \alpha}, H^{u, \infty, \beta}\right)[q \ominus v]$.
(iii) $\left(H^{p}\left[c_{0}\right], H^{u}\left[l^{v}\right]=\left(H^{p}, H^{u}\right)\left[\left(c_{0}, l^{v}\right)\right]=\left(H^{p}, H^{u}\right)\left[l^{v}\right]\right.$;
(iv) $\left(H^{p}\left[c_{0}\right], H^{u}\left[c_{0}\right]\right)=\left(H^{p}, H^{u}\right)\left[\left(c_{0}, c_{0}\right)\right]=\left(H^{p}, H^{u}\right)\left[l^{\infty}\right]$;
(v) $\left(H^{p}\left[l^{\infty}\right], H^{u}\left[c_{0}\right]\right)=\left(H^{p}, H^{u}\right)\left[\left(l^{\infty}, c_{0}\right)\right]=\left(H^{p}, H^{u}\right)\left[c_{0}\right] ;$
(vi) $\left(H^{p}\left[l^{q}\right], H^{u}\left[c_{0}\right]\right)=\left(H^{p}, H^{u}\right)\left[\left(l^{q}, c_{0}\right)\right]=\left(H^{p}, H^{u}\right)\left[l^{\infty}\right], \quad 0<q<\infty$.

As a corollary we have

Theorem 4.

(i) $\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)=\left(H^{p, \infty, \alpha}, H^{u, \infty, \beta}\right)[q \ominus v], \quad 0<p, q, u, v \leq \infty, 0<\alpha, \beta<\infty$.
(ii) $\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)[q \ominus v]\right\}, \quad 0<p, q, u, v \leq \infty, 0<\alpha, \beta<\infty$.

Proof. (i) The statement (i) follows by Theorem 3 and the equalities

$$
H^{p, q, \alpha}=H^{p, \infty, \alpha}[q] \quad \text { and } \quad H^{u, v, \beta}=H^{u, \infty, \beta}[v] .
$$

(ii) This statement follows from the equalities

$$
H^{p, q, \alpha}=\left\{f \in H(\mathbb{D}): D^{-\alpha} f \in H^{p}[q]\right\}
$$

and

$$
H^{u, v, \beta}=\left\{f \in H(\mathbb{D}): D^{-\beta} f \in H^{u}[v]\right\},
$$

(see Lemma 1), and Theorem 3.

As a corollary of Theorem 4 we have
Corollary 1. Let $0<p, q, u, v \leq \infty, 0<\alpha, \beta<\infty$. Then

$$
\left(H^{p, \infty, \alpha}, H^{u, \infty, \beta}\right)[q \ominus v]=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)[q \ominus v]\right\} .
$$

Theorem 5.

(i) $\left(H_{0}^{p, \infty, \alpha}, H^{u, v, \beta}\right)=\left(H^{p, \infty, \alpha}, H^{u, v, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[l^{v}\right]\right\}$;
(ii) $\left(H_{0}^{p, \infty, \alpha}, H_{0}^{u, \infty, \beta}\right)=\left(H^{p, \infty, \alpha}, H^{u, \infty, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[l^{\infty}\right]\right\}$;
(iii) $\left(H^{p, \infty, \alpha}, H_{0}^{u, \infty, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[c_{0}\right]\right\}$;
(iv) $\left(H^{p, q, \alpha}, H_{0}^{u, \infty, \beta}\right)=\left(H^{p, q, \alpha}, H^{u, \infty, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[l^{\infty}\right]\right\}, \quad 0<q<\infty$.

Proof. We prove (i) only, the proofs of (ii) through (iv) being similar.
By Lemma 2

$$
H_{0}^{p, \infty, \alpha}=\left\{f \in H(\mathbb{D}): D^{-\alpha} f \in H^{p}\left[c_{0}\right]\right\},
$$

and, by Lemma 1,

$$
H^{u, v, \beta}=\left\{f \in H(\mathbb{D}): D^{-\beta} f \in H^{u}\left[l^{v}\right]\right\} .
$$

From this we conclude that

$$
\begin{aligned}
\left(H_{0}^{p, \infty, \alpha}, H^{u, v, \beta}\right) & =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}\left[c_{0}\right], H^{u}\left[l^{v}\right]\right)\right\} \\
& =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[l^{v}\right]\right\}
\end{aligned}
$$

by Theorem 3.
The equality $\left(H^{p, \infty, \alpha}, H^{u, v, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{u}\right)\left[l^{v}\right]\right\}$ is proved in Theorem 4.

The next theorem is a consequence of the equality $\left(H^{p}, H^{\infty}\right)=H^{p^{\prime}}, 1<p<\infty$, and Theorem 4.
Theorem 6. Let $1<p<\infty$ and $p+p^{\prime}=p p^{\prime}$. Then

$$
\left(H^{p, q, \alpha}, H^{\infty, v, \beta}\right)=H_{\alpha}^{p^{\prime}, q \ominus v, \beta} .
$$

Corollary 2. Let $1<p<\infty$ and $p+p^{\prime}=p p^{\prime}$. Then
(i) $\left(H_{0}^{p, \infty, \alpha}, H^{\infty, v, \beta}\right)=H_{\alpha}^{p^{\prime}, v, \beta}$;
(ii) $\left(H_{0}^{p, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=H_{\alpha}^{p^{\prime}, \infty, \beta}$;
(iii) $\left(H^{p, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=D^{-\alpha} H_{0}^{p^{\prime}, \infty, \beta}$;
(iv) $\left(H^{p, q, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=H_{\alpha}^{p^{\prime}, \infty, \beta}, \quad q \neq \infty$.

Proof. The statements (i), (ii) and (iv) follow from Theorem 5 and Theorem 6. We prove the statement (iii).
By using Theorem 5 we get

$$
\begin{aligned}
\left(H^{p, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right) & =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{p}, H^{\infty}\right)\left[c_{0}\right]\right\} \\
& =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in H^{p^{\prime}}\left[c_{0}\right]\right\} \\
& =D^{-\alpha} H_{0}^{p^{\prime}, \infty, \beta}
\end{aligned}
$$

by Lemma 2.

Theorem 7. $\left(H^{\infty, q, \alpha}, H^{\infty, v, \beta}\right)=H_{\alpha}^{1, q \ominus v, \beta}$.
Theorem is a consequence of Theorem 4 and the following theorem
Theorem 8. Let $0<\alpha, \beta<\infty$. Then

$$
\left(H^{\infty, \infty, \alpha}, H^{\infty, \infty, \beta}\right)=H_{\alpha}^{1, \infty, \beta}
$$

Proof. We will use the equalities $\left(H_{0}^{\infty, \infty, \alpha}\right)^{a}=H_{\alpha+1}^{1,1,1},\left(H_{0}^{\infty, \infty, \beta}\right)^{a}=H_{\beta+1}^{1,1,1},\left(H_{\alpha+1}^{1,1,1}\right)^{a}=H^{\infty, \infty, \alpha}$ and $\left(H_{\beta+1}^{1,1,1}\right)^{a}=H^{\infty, \infty, \beta}$. All these results follows from Theorem 1 and Theorem 2, since the Abel dual of separable mixed norm space $H^{p, q, \alpha}$ coincides with the space ($H^{p, q, \alpha}, H^{\infty}$), (see [7], [8], [5]). See also [1].

Using this we find that

$$
\begin{aligned}
\left(H_{0}^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right) & \subset\left(\left(H_{0}^{\infty, \infty, \beta}\right)^{a},\left(H_{0}^{\infty, \infty, \alpha}\right)^{a}\right)=\left(H_{\beta+1}^{1,1,1}, H_{\alpha+1}^{1,1,1}\right) \\
& \subset\left(\left(H_{\alpha+1}^{1,1,1}\right)^{a},\left(H_{\beta+1}^{1,1,1}\right)^{a}\right)=\left(H^{\infty, \infty, \alpha}, H^{\infty, \infty, \beta}\right) .
\end{aligned}
$$

Now let $\lambda \in\left(H^{\infty, \infty, \alpha}, H^{\infty, \infty, \beta}\right)$. Then $\lambda \in\left(H_{0}^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)$ since λ maps polynomials into polynomials and these are dense in $H_{0}^{\infty, \infty, \alpha}$ and in $H_{0}^{\infty, \infty, \beta}$. Thus,

$$
\left(H_{0}^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=\left(H^{\infty, \infty, \alpha}, H^{\infty, \infty, \beta}\right)=\left(H_{\beta+1}^{1,1,1}, H_{\alpha+1}^{1,1,1}\right)=H_{\alpha}^{1, \infty, \beta}
$$

For the last equality see Theorem 10 below.

Corollary 3.

(i) $\left(H_{0}^{\infty, \infty, \alpha}, H^{\infty, v, \beta}\right)=H_{\alpha}^{1, v, \beta}$;
(ii) $\left(H_{0}^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=H_{\alpha}^{1, \infty, \beta}$;
(iii) $\left(H^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=D^{-\alpha} H_{0}^{1, \infty, \beta}$;
(iv) $\left(H^{\infty, q, \alpha}, H_{0}^{\infty, \infty, \beta}\right)=H_{\alpha}^{1, \infty, \beta}, \quad q \neq \infty$.

Proof. We should only prove (iii). By using Theorem 5 we obtain

$$
\begin{aligned}
\left(H^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right) & =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in\left(H^{\infty}, H^{\infty}\right)\left[c_{0}\right]\right\} \\
& =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in M_{+}\left[c_{0}\right]\right\} .
\end{aligned}
$$

Since $\left\|w_{n} \star D^{\alpha-\beta} g\right\|_{M_{+}} \approx\left\|w_{n} \star D^{\alpha-\beta} g\right\|_{H^{1}}$, (see Section 2), we get

$$
\begin{aligned}
\left(H^{\infty, \infty, \alpha}, H_{0}^{\infty, \infty, \beta}\right) & =\left\{g \in H(\mathbb{D}): D^{\alpha-\beta} g \in H^{1}\left[c_{0}\right]\right\} \\
& =D^{-\alpha} H_{0}^{1, \infty, \beta}
\end{aligned}
$$

by Lemma 2.
Corollary 4. $\left(\mathcal{B}, H^{\infty, v, \beta}\right)=H^{1, v, \beta}$ and $\left(\mathcal{B}, H_{0}^{\infty, \infty, \beta}\right)=H_{0}^{1, \infty, \beta}$.
As usual $\mathcal{B}=H_{1}^{\infty, \infty, 1}$ denote the Bloch space and \mathcal{B}_{0} is the little Bloch space.
If $v=\infty$, more is true
Theorem 9. $\left(\mathcal{A}, H^{\infty, \infty, \beta}\right)=\left(\mathcal{B}, H^{\infty, \infty, \beta}\right)=H^{1, \infty, \beta}$.
In particular,

$$
(\mathcal{A}, \mathcal{B})=(\mathcal{B}, \mathcal{B})=H_{1}^{1, \infty, 1} .
$$

Proof. It suffices to show that $\left(\mathcal{A}, H^{\infty, \infty, \beta}\right) \subset H^{1, \infty, \beta}$. Now we give the proof of this inclusion.

$$
\begin{aligned}
\left(\mathcal{A}, H^{\infty, \infty, \beta}\right) & \subset\left(\left(H^{\infty, \infty, \beta}\right)^{a}, \mathcal{A}^{a}\right)=\left(H_{\beta+1}^{1,1,1}, M^{+}\right) \\
& \subset\left(H_{\beta+1}^{1,1,1}, H_{1+\beta}^{1, \infty, 1+\beta}\right)=\left(H^{1,1,1}, H^{1, \infty, 1+\beta}\right) \\
& =H_{1}^{1, \infty, 1+\beta}=H^{1, \infty, \beta}
\end{aligned}
$$

Here, we used the fact that $\mathcal{A}^{a}=M_{+}$, (see [9]).

Note that Theorem 9 represents an extension of Theorem 4.3 in [3].
As final remark we note the multipliers $\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)$, for $0<p \leq 1, p \leq u \leq \infty$, are characterized in [7]. See also [3].

Theorem 10. ([7]) Let $0<p \leq 1, p \leq u \leq \infty, 0<q, v \leq \infty, 0<\alpha, \beta<\infty$. Then

$$
\left(H^{p, q, \alpha}, H^{u, v, \beta}\right)=\left\{g \in H(\mathbb{D}): D^{\alpha+1 / p-1} g \in H^{u, q \ominus v, \beta}\right\}=H_{\alpha+1 / p-1}^{u, q \vartheta v, \beta}
$$

In particular, $\left(H^{p, q, \alpha}, H^{\infty, v, \beta}\right)=H_{\alpha+1 / p-1}^{\infty, q \ominus v, \beta}$.

Corollary 5. ([5]) Let $0<p \leq 1, p \leq u \leq \infty, 0<v \leq \infty, 0<\alpha, \beta<\infty$. Then
(i) $\left(H_{0}^{p, \infty, \alpha}, H^{u, v, \beta}\right)=H_{\alpha+1 / p-1}^{u, v, \beta}$;
(ii) $\left(H_{0}^{p, \infty, \alpha}, H_{0}^{u, \infty, \beta}\right)=H_{\alpha+1 / p-1}^{u, \infty, \beta}$;
(iii) $\left(H^{p, \infty, \alpha}, H_{0}^{u, \infty, \beta}\right)=D^{-\alpha-(1 / p)+1} H_{0}^{u, \infty, \beta}$;
(iv) $\left(H^{p, q, \alpha}, H_{0}^{u, \infty, \beta}\right)=H_{\alpha+1 / p-1}^{u, \infty, \beta}$, if $\quad 0<q<\infty$.

We note that the statements (i), (ii) and (iv) also follow from Theorem 10 and Theorem 5. A different proof of these statements is given in [5].

References

[1] P.Ahern, M. Jevtić, Duality and multipliers for mixed norm spaces, Michigan Math. J., 30 (1983), 53-64.
[2] J. Caveny, Bounded Hadamard products of H^{p} functions, Duke Math. J. 33 (1966), 389-394.
[3] M.Jevtić, M.Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged), 64(1998), 531-545.
[4] M. Jevtić, M. Pavlović, On multipliers fom H^{p} to $l^{q}, 0<q<p<1$, Arch. Math. 56 (1991), 174-180.
[5] M. Lengfield, A nested embedding theorem for Hardy-Lorentz spaces with applications to coefficient multiplier problems, Rocky Mountain J. Math. 38 (2008), 1215-1251.
[6] M. Pavlović, Introduction to function spaces on the disk, Matematički Institut Sanu, Beograd, 2004.
[7] M. Pavlović, Mixed norm spaces of analytic and harmonic functions I, Publications de l'Institute mathematique 40(54) (1986), 117-141.
[8] M. Pavlović, Mixed norm spaces of analytic and harmonic functions II, Publications de l'Institute mathematique 41(55) (1987), 97-110.
[9] J.H. Wells, Some results concerning multipliers of H^{p}, J.London Math. Soc. 2 (1970), 549-556.

[^0]: 2010 Mathematics Subject Classification. 30D55.
 Keywords. Hardy spaces, mixed-norm spaces, coefficient multipliers.
 Received: 30 January 2013; Accepted: 30 April 2013
 Communicated by Ivan Jovanović
 The author is supported by MN Serbia, Project No. 174017
 Email address: jevtic@matf.bg.ac.rs (Miroljub Jevtić)

