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Abstract. We find Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

1. Introduction

Different authors (see [2],[3], [5], [8], among others), in various contexts dealt with Rodrigues’ formula.
In this work, we are concerned with Rodrigues type formula for the Dunkl-classical symmetric orthogonal
polynomials which have been introduced in [1].

We begin by reviewing some preliminary results needed for the sequel. The vector space of polynomials
with coefficients in C (the field of complex numbers) is denoted by P and by P′ its dual space, whose
elements are called forms. The set of all nonnegative integers will be denoted byN. The action of u ∈ P′
on f ∈ P is denoted by

⟨
u, f
⟩
. In particular, we denote by (u)n := ⟨u, xn⟩ ,n ∈ N , the moments of u.

For any form u, any a ∈ C − {0} and any polynomial h let Du = u′, hu, hau, δ0 and x−1u be the forms
defined by:

⟨
u′, f
⟩

:= − ⟨u, f ′
⟩
,
⟨
hu, f

⟩
:=
⟨
u, h f

⟩
,
⟨
hau, f

⟩
=:
⟨
u, ha f

⟩
=
⟨
u, f (ax)

⟩ ⟨
δ0, f
⟩

:= f (0), and⟨
x−1u, f

⟩
:=
⟨
u, θ0 f

⟩
where

(
θ0 f
)
(x) =

f (x) − f (0)
x

, f ∈ P.

Then, it is straightforward to prove that for f ∈ P and u ∈ P′, we have

x−1(xu) = u − (u)0δ0 , (1)

( f u)′ = f ′u + f u′ . (2)

We will only consider sequences of polynomials {Pn}n≥0 such that deg Pn ≤ n,n ∈N. If the set {Pn}n≥0 spans
P, which occurs when deg Pn = n,n ∈ N, then it will be called a polynomial sequence (PS). Along the
text, we will only deal with PS whose elements are monic, that is, monic polynomial sequences (MPS). It
is always possible to associate to {Pn}n≥0 a unique sequence {un}n≥0,un ∈ P′, called its dual sequence, such
that ⟨un,Pm⟩ = δn,m ,n,m ≥ 0 , where δn,m is the Kronecker’s symbol [6].

The MPS {Pn}n≥0 is orthogonal with respect to u ∈ P′ when the following conditions hold: ⟨u,PnPm⟩ =
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rnδn,m , n,m ≥ 0 , rn , 0 , n ≥ 0 [2]. In this case, we say that {Pn}n≥0 is a monic orthogonal polynomial
sequence (MOPS) and the form u is said to be regular. Necessarily, u = λu0, λ , 0. Furthermore, we have

un =
(
⟨u0,P2

n⟩
)−1

Pnu0,n ≥ 0, (3)

and the MOPS {Pn}n≥0 fulfils the second order recurrence relation

P0(x) = 1 , P1(x) = x − β0
Pn+2 = (x − βn+1)Pn+1(x) − γn+1Pn(x) , γn+1 , 0, n ≥ 0. (4)

A form u is said symmetric if and only if (u)2n+1 = 0,n ≥ 0, or, equivalently, in (4) βn = 0,n ≥ 0.
Let us introduce the Dunkl operator

Tµ( f ) = f ′ + 2µH−1 f ,
(
H−1 f

)
(x) =

f (x) − f (−x)
2x

, f ∈ P, µ ∈ C.

This operator was introduced and studied for the first time by Dunkl [4]. Note that T0 is reduced to the
derivative operator D. The transposed tTµ of Tµ is tTµ = −D − H−1 = −Tµ, leaving out a light abuse of
notation without consequence. Thus we have

⟨Tµu, f ⟩ = −⟨u,Tµ f ⟩, u ∈ P′, f ∈ P, µ ∈ C.

In particular, this yields ⟨Tµu, xn⟩ = −µn(u)n−1, n ≥ 0,where (u)−1 = 0 and

µn = n + µ(1 − (−1)n), n ≥ 0. (5)

It is easy to see that

Tµ( f u) = f Tµu + f ′u + 2µ
(
H−1 f

)
(h−1u) , f ∈ P, u ∈ P′, (6)

ha ◦ Tµ = aTµ ◦ ha in P′, a ∈ C − {0}. (7)

Remark 1.1 When u is a symmetric form, (6) becomes

Tµ( f u) = f Tµu +
(
Tµ f
)

u, f ∈ P, u ∈ P′, (8)

Now, consider a MPS {Pn}n≥0 and let

P[1]
n (x, µ) =

1
µn+1

(
TµPn+1

)
(x), µ , −n − 1

2
, n ≥ 0. (9)

Definition 1.1. [1, 7] A MOPS {Pn}n≥0 is called Dunkl-classical or Tµ-classical if {P[1]
n (., µ)}n≥0 is also a MOPS. In

this case, the form u0 is called Dunkl-classical or Tµ-classical form.

2. Rodrigues type formula

The following was proved in [7]

Theorem 2.1. For any symmetric MOPS {Pn}n≥0, the following statements are equivalent
(a) The sequence {Pn}n≥0 is Dunkl-classical.
(b) There exist two polynomials Φ (monic) and Ψ with degΦ ≤ 2 and degΨ = 1 such that the associated regular
form u0 satisfies

Tµ (Φu0) +Ψu0 = 0 (10)

Ψ′(0) − 1
2
Φ′′(0)µn , 0, n ≥ 0. (11)
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Proposition 2.2. If {Pn}n≥0 is Dunkl-classical symmetric MOPS, then
{

P[m]
n (., µ) =

Tm
µ Pn+m∏m
k=1 µn+k

}
n≥0
, m ≥ 1 is also

a Dunkl-classical symmetric MOPS and we have

Tµ
(
Φu[m]

0 (µ)
)
+
(
Ψ −mTµΦ

)
u[m]

0 (µ) = 0, (12)

u[m]
0 (µ) = kmΦ

mu0,m ≥ 1 (13)

where Φ and Ψ are the same polynomials as in (10),
{
u[m]

n (µ)
}

n≥0
is the dual sequence of

{
P[m]

n (., µ)
}

n≥0
and km is

defined by the condition
(
u[m]

0 (µ)
)

0
= 1.

For the proof, the following lemma is needed.

Lemma 2.3. [7] If {Pn}n≥0 is Dunkl-classical symmetric MOPS, then

u[1]
0 (µ) = kΦu0 (14)

where k is a normalization factor and Φ is the same polynomials as in (10).

Proof of Proposition 2.2. Suppose m = 1. The form u0 satisfies (10). Multiplying both sides by Φ and on
account of (8) and (14), we get

Tµ
(
Φu[1]

0 (µ)
)
+
(
Ψ − TµΦ

)
u[1]

0 (µ) = 0.

Therefore, (12) and (13) are valid for m = 1. By induction, we easily obtain the general case.

The main result of this paper follows:

Theorem 2.4. The symmetric MOPS {Pn}n≥0 is Dunkl-classical if and only if there exist a monic polynomial Φ,
degΦ ≤ 2 and a sequence {Λn}n≥0, Λn , 0, n ≥ 0 such that

Pnu0 = ΛnTn
µ (Φnu0) , n ≥ 0. (15)

We may call (15) a (functional) Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

Proof. Necessity. Consider
⟨
Tn
µu

[n]
0 ,Pm

⟩
= (−1)n

⟨
u[n]

0 ,T
n
µPm

⟩
, n,m ≥ 0. For 0 ≤ m ≤ n − 1,n ≥ 1, we have

Tn
µPm = 0. For m ≥ n, put m = n + k, k ≥ 0. Then

⟨
u[n]

0 ,T
n
µPn+k

⟩
=

 n∏
ν=1

µk+ν

 ⟨u[n]
0 ,P

[n]
k

⟩
=

 n∏
ν=1

µν

 δ0,k

following the definitions. Consequently

Tn
µu

[n]
0 = (−1)n

 n∏
ν=1

µν

 un, n ≥ 0.

But from (3) so that, in accordance with (13), we obtain (15) where

Λn = (−1)n ⟨u0,P2
n⟩∏n

ν=1 µν
kn,n ≥ 0. (16)

Sufficiency. Making n = 1 in (15), we have P1u0 = Λ1Tµ (Φu0) and (11) is satisfied since u0 is regular.
Therefore, the sequence {Pn}n≥0 is Dunkl-classical according to Theorem 2.1.

The next proposition summarizes some properties of the the generalized Hermite polynomials {Hµn (x)}n≥0

and the generalized Gegenbauer ones {S(α,β)
n (x)}n≥0 (see [2]). It will be used in the sequel.
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Proposition 2.5. 1) The sequence {Hµn (x)}n≥0 is orthogonal with respect toH(µ), this last form satisfies

D
(
xH(µ)

)
+
(
2x2 − (2µ + 1)

)
H(µ) = 0. (17)

In addition, {Hµn (x)}n≥0 verifies (4) with

βn = 0, γn+1 =
1
2
(
n + 1 + µ (1 + (−1)n)

)
, 2µ , −2n − 1, n ≥ 0. (18)

2) The sequence {S(α,β)
n (x)}n≥0 is orthogonal with respect to GG(α, β), this last form satisfies

D
(
x(x2 − 1)GG(α, β)

)
+
(
−2(α + β + 2)x2 + 2(β + 1)

)
GG(α, β) = 0. (19)

In addition, {S(α,β)
n (x)}n≥0 verifies (4) with

βn = 0, γn+1 =
(n + 1 + δn)(n + 1 + 2α + δn)

4(n + α + β + 1)(n + α + β + 2)
, δn = (2β + 1)

1 + (−1)n

2
, n ≥ 0

α , −n, β , −n, α + β , −n,n ≥ 1.
(20)

Lemma 2.6. If u0 is a symmetric Dunkl-classical form , then ũ0 = ha−1 u0 is also for every a , 0.

Proof. It is easy to see that ũ0 is symmetric. Applying the operator ha to the functional equation (10) and
using (7), we obtain

Tµ
(
Φ̃ũ0

)
+ Ψ̃ũ0 = 0, (21)

where Φ̃(x) = a−tΦ(ax), Ψ̃(x) = a1−tΨ(ax), t = degΦ.

We have Ψ̃′(0) − 1
2 Φ̃
′′(0)µn = a2−t

(
Ψ′(0) − 1

2Φ
′′(0)µn

)
, 0, by (11). Hence the desired result.

Lemma 2.7. If u0 is a symmetric Dunkl-classical form then it satisfies (10) with

Φ(x) = ax2 + c, Ψ(x) = dx, dc , 0.

Proof. From the statement b) of Theorem 2.1., we have Φ monic, degΦ ≤ 2 and degΨ = 1. So, there exist
(a, b, c, d, e) ∈ C5 such that Φ(x) = ax2 + bx + c ,Ψ(x) = dx + e, |a| + |b| + |c| , 0 and d , 0. From (10), we have⟨

Tµ (Φu0) +Ψu0, xn
⟩
= 0,n ≥ 0.

For n = 0, we obtain d(u0)1 + e = 0. Then e = 0 since u0 is symmetric.
For n = 2, we get −2b(u0)2 = 0, then b = 0 because (u0)2 = γ1 , 0.
Now, suppose that c = 0. We will necessarily have a , 0. Otherwise, we would have, from (10) and the last
results ⟨

Tµ
(
ax2u0

)
+ dxu0, x2n+1

⟩
= 0, n ≥ 0

this gives
(
d − a(2n + 1 + 2µ)

)
(u0)2n+2 = 0. Then we deduce that (u0)2 =

d
a(1 + 2µ)

and (u0)2n+2 = 0,n ≥ 1

which is a contradiction with the regularity of u0. Hence c , 0

Using Lemmas 2.6 and 2.7, we distinguish two canonical cases for Φ: Φ(x) = 1, Φ(x) = x2 − 1. Any
so-called canonical situation will be denoted by û.
First case: Φ(x) = 1.
LetΨ(x) = dx, it is possible to choose d = 2 by the dilatation h√ 2

d
, then

Tµ (û) + 2xû = 0 (22)
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which is equivalent to

D (xû) +
(
2x2 − (2µ + 1)

)
û = 0. (23)

In fact, multiplying (22) by x, we obtain (23) by taking into account (8) and the fact H−1(xû) = 0. Conversely,
multiplying (23) by x−1 and using (1), we obtain (22) since ⟨Tµ (û) + 2xû, 1⟩ = 0 and H−1(xû) = 0.
In other word, from (23), we have the moments (û)n,n ≥ 0 satisfy

2(û)n+2 = (n + 2µ + 1)(û)n, n ≥ 0,

and the set of solutions is a 1-dimensional linear space since û is symmetric.
Hence, in this case û = H(µ) by virtue of (17).
Second case: Φ(x) = x2 − 1.
LetΨ(x) = dx. Putting d = −2(α + 1), α , −1, we get

Tµ
(
(x2 − 1)û

)
− 2(α + 1)xû = 0. (24)

Since H−1(x(x2 − 1)û) = 0, by applying the same process as we did in the first case, we prove that (24) is
equivalent to

D
(
x(x2 − 1)û

)
+
(
(−2α − 2µ − 3)x2 + (2µ + 1)

)
û = 0

And, we deduce that in this case û = GG
(
α, µ − 1

2

)
by comparing the last equation with (19).

As a conclusion, we can state:

Theorem 2.8. (Compare with [1]) Up to a dilatation, the only Dunkl-classical symmetric MOPS are:
(a) The generalized Hermite polynomials {Hµn (x)}n≥0 for µ , −n − 1

2 ,n ≥ 0. Moreover,

Tµ
(H(µ)

)
+ 2xH(µ) = 0. (25)

(b) The generalized Gegenbauer polynomials {S(α,µ− 1
2 )

n (x)}n≥0 for α , −n, α + µ , −n + 1
2 , µ , −n + 1

2 ,n ≥ 1.
Moreover,

Tµ
(
(x2 − 1)GG

(
α, µ − 1

2

))
− 2(α + 1)xGG

(
α, µ − 1

2

)
= 0. (26)

Finally, we characterize the generalized Hermite polynomials and the generalized Gegenbauer ones in
terms of the Rodrigues type formula as follows:

Theorem 2.9. We may write

Hµn (x)H(µ) =
(−1

2

)n n∏
ν=1

ν + 1 + µ (1 + (−1)ν)
ν + µ(1 − (−1)ν)

Tn
µ

(H(µ)
)
, n ≥ 0. (27)

S(α,µ− 1
2 )

n (x)GG
(
α, µ − 1

2

)
= ΛnTn

µ

(
(x2 − 1)nGG

(
α, µ − 1

2

))
, n ≥ 0 (28)

with Λn =
Γ
(
α + µ + n + 3

2

)
Γ(α + 1)

Γ(α + n + 1)Γ
(
α + µ + 3

2

) n∏
ν=1

(ν + δν)(ν + 2α + δν)
(ν + µ(1 − (−1)ν))(2ν + 2α + 2µ − 1)(2ν + 2α + 2µ)

, n ≥ 0.

Proof. Use Theorems 2.4 and 2.8, Proposition 2.5 and equation (16).
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