Filomat 27:7 (2013), 1285–1290 DOI 10.2298/FIL1307285S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Rodrigues formula for the Dunkl-classical symmetric orthogonal polynomials

Mabrouk Sghaier^a

^a Université de Gabès, Institut Supérieur d'Informatique de Medenine, Route DJerba - km 3-4119 Medenine, Tunisia.

Abstract. We find Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

1. Introduction

Different authors (see [2],[3], [5], [8], among others), in various contexts dealt with Rodrigues' formula. In this work, we are concerned with Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials which have been introduced in [1].

We begin by reviewing some preliminary results needed for the sequel. The vector space of polynomials with coefficients in \mathbb{C} (the field of complex numbers) is denoted by \mathcal{P} and by \mathcal{P}' its dual space, whose elements are called forms. The set of all nonnegative integers will be denoted by \mathbb{N} . The action of $u \in \mathcal{P}'$ on $f \in \mathcal{P}$ is denoted by $\langle u, f \rangle$. In particular, we denote by $\langle u \rangle_n := \langle u, x^n \rangle$, $n \in \mathbb{N}$, the moments of u. For any form u, any $a \in \mathbb{C} - \{0\}$ and any polynomial h let Du = u', hu, $h_a u$, δ_0 and $x^{-1}u$ be the forms defined by: $\langle u', f \rangle := -\langle u, f' \rangle$, $\langle hu, f \rangle := \langle u, hf \rangle$, $\langle h_a u, f \rangle =: \langle u, h_a f \rangle = \langle u, f(ax) \rangle \langle \delta_0, f \rangle := f(0)$, and $\langle x^{-1}u, f \rangle := \langle u, \theta_0 f \rangle$ where $(\theta_0 f)(x) = \frac{f(x) - f(0)}{x}$, $f \in \mathcal{P}$.

Then, it is straightforward to prove that for $f \in \mathcal{P}$ and $u \in \mathcal{P}'$, we have

$$x^{-1}(xu) = u - (u)_0 \delta_0 , \qquad (1)$$

$$(fu)' = f'u + fu'$$
 (2)

We will only consider sequences of polynomials $\{P_n\}_{n\geq 0}$ such that deg $P_n \leq n, n \in \mathbb{N}$. If the set $\{P_n\}_{n\geq 0}$ spans \mathcal{P} , which occurs when deg $P_n = n, n \in \mathbb{N}$, then it will be called a polynomial sequence (PS). Along the text, we will only deal with PS whose elements are monic, that is, monic polynomial sequences (MPS). It is always possible to associate to $\{P_n\}_{n\geq 0}$ a unique sequence $\{u_n\}_{n\geq 0}, u_n \in \mathcal{P}'$, called its dual sequence, such that $\langle u_n, P_m \rangle = \delta_{n,m}$, $n, m \geq 0$, where $\delta_{n,m}$ is the Kronecker's symbol [6].

The MPS $\{P_n\}_{n\geq 0}$ is orthogonal with respect to $u \in \mathcal{P}'$ when the following conditions hold: $\langle u, P_n P_m \rangle =$

²⁰¹⁰ Mathematics Subject Classification. Primary 42C05; Secondary 33C45

Keywords. Orthogonal polynomials, Dual sequence, Dunkl operator, Rodrigues formula.

Received: 24 June 2012; Accepted: 6 May 2013

Communicated by Dragan S. Djordjevic

Email address: mabrouk.sghaier@isim.rnu.tn (Mabrouk Sghaier)

 $r_n \delta_{n,m}$, $n, m \ge 0$, $r_n \ne 0$, $n \ge 0$ [2]. In this case, we say that $\{P_n\}_{n\ge 0}$ is a monic orthogonal polynomial sequence (MOPS) and the form u is said to be regular. Necessarily, $u = \lambda u_0, \lambda \ne 0$. Furthermore, we have

$$u_n = \left(\langle u_0, P_n^2 \rangle\right)^{-1} P_n u_0, n \ge 0, \tag{3}$$

and the MOPS $\{P_n\}_{n\geq 0}$ fulfils the second order recurrence relation

$$P_{0}(x) = 1 , P_{1}(x) = x - \beta_{0}$$

$$P_{n+2} = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_{n}(x) , \gamma_{n+1} \neq 0, \quad n \ge 0.$$
(4)

A form *u* is said symmetric if and only if $(u)_{2n+1} = 0$, $n \ge 0$, or, equivalently, in (4) $\beta_n = 0$, $n \ge 0$. Let us introduce the Dunkl operator

$$T_{\mu}(f) = f' + 2\mu H_{-1}f, \quad (H_{-1}f)(x) = \frac{f(x) - f(-x)}{2x}, \quad f \in \mathcal{P}, \mu \in \mathbb{C}.$$

This operator was introduced and studied for the first time by Dunkl [4]. Note that T_0 is reduced to the derivative operator D. The transposed ${}^tT_{\mu}$ of $T\mu$ is ${}^tT_{\mu} = -D - H_{-1} = -T_{\mu}$, leaving out a light abuse of notation without consequence. Thus we have

$$\langle T_\mu u,f\rangle = -\langle u,T_\mu f\rangle, \quad u\in \mathcal{P}', \quad f\in \mathcal{P}, \quad \mu\in \mathbb{C}.$$

In particular, this yields $\langle T_{\mu}u, x^n \rangle = -\mu_n(u)_{n-1}, n \ge 0$, where $(u)_{-1} = 0$ and

$$\mu_n = n + \mu (1 - (-1)^n), \quad n \ge 0.$$
(5)

It is easy to see that

$$T_{\mu}(fu) = fT_{\mu}u + f'u + 2\mu (H_{-1}f)(h_{-1}u), \quad f \in \mathcal{P}, \quad u \in \mathcal{P}',$$
(6)

$$h_a \circ T_\mu = a T_\mu \circ h_a \quad in \mathcal{P}', \quad a \in \mathbb{C} - \{0\}.$$
⁽⁷⁾

Remark 1.1 When *u* is a symmetric form, (6) becomes

$$T_{\mu}(fu) = fT_{\mu}u + (T_{\mu}f)u, \quad f \in \mathcal{P}, \quad u \in \mathcal{P}',$$
(8)

Now, consider a MPS $\{P_n\}_{n\geq 0}$ and let

$$P_n^{[1]}(x,\mu) = \frac{1}{\mu_{n+1}} \left(T_\mu P_{n+1} \right)(x), \quad \mu \neq -n - \frac{1}{2}, \quad n \ge 0.$$
(9)

Definition 1.1. [1, 7] A MOPS $\{P_n\}_{n\geq 0}$ is called Dunkl-classical or T_{μ} -classical if $\{P_n^{[1]}(., \mu)\}_{n\geq 0}$ is also a MOPS. In this case, the form u_0 is called Dunkl-classical or T_{μ} -classical form.

2. Rodrigues type formula

The following was proved in [7]

Theorem 2.1. For any symmetric MOPS $\{P_n\}_{n\geq 0}$, the following statements are equivalent

(a) The sequence $\{P_n\}_{n\geq 0}$ is Dunkl-classical.

(b) There exist two polynomials Φ (monic) and Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ such that the associated regular form u_0 satisfies

$$T_{\mu}(\Phi u_0) + \Psi u_0 = 0 \tag{10}$$

$$\Psi'(0) - \frac{1}{2}\Phi''(0)\mu_n \neq 0, \quad n \ge 0.$$
(11)

Proposition 2.2. If $\{P_n\}_{n\geq 0}$ is Dunkl-classical symmetric MOPS, then $\left\{P_n^{[m]}(.,\mu) = \frac{T_{\mu}^m P_{n+m}}{\prod_{k=1}^m \mu_{n+k}}\right\}_{n\geq 0}$, $m \geq 1$ is also a Dunkl-classical symmetric MOPS and we have

$$T_{\mu}\left(\Phi u_{0}^{[m]}(\mu)\right) + \left(\Psi - mT_{\mu}\Phi\right)u_{0}^{[m]}(\mu) = 0,$$
(12)

$$u_0^{[m]}(\mu) = k_m \Phi^m u_0, m \ge 1$$
(13)

where Φ and Ψ are the same polynomials as in (10), $\left\{u_n^{[m]}(\mu)\right\}_{n\geq 0}$ is the dual sequence of $\left\{P_n^{[m]}(.,\mu)\right\}_{n\geq 0}$ and k_m is defined by the condition $\left(u_0^{[m]}(\mu)\right)_0 = 1$.

For the proof, the following lemma is needed.

Lemma 2.3. [7] If $\{P_n\}_{n\geq 0}$ is Dunkl-classical symmetric MOPS, then

$$u_0^{[1]}(\mu) = k \Phi u_0 \tag{14}$$

where k is a normalization factor and Φ is the same polynomials as in (10).

Proof of Proposition 2.2. Suppose m = 1. The form u_0 satisfies (10). Multiplying both sides by Φ and on account of (8) and (14), we get

$$T_{\mu}\left(\Phi u_{0}^{[1]}(\mu)\right) + \left(\Psi - T_{\mu}\Phi\right)u_{0}^{[1]}(\mu) = 0$$

Therefore, (12) and (13) are valid for m = 1. By induction, we easily obtain the general case.

The main result of this paper follows:

Theorem 2.4. The symmetric MOPS $\{P_n\}_{n\geq 0}$ is Dunkl-classical if and only if there exist a monic polynomial Φ , deg $\Phi \leq 2$ and a sequence $\{\Lambda_n\}_{n\geq 0}$, $\Lambda_n \neq 0$, $n \geq 0$ such that

$$P_n u_0 = \Lambda_n T^n_\mu \left(\Phi^n u_0 \right), \quad n \ge 0.$$
⁽¹⁵⁾

We may call (15) a (functional) Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

Proof. Necessity. Consider $\langle T^n_{\mu} u_0^{[n]}, P_m \rangle = (-1)^n \langle u_0^{[n]}, T^n_{\mu} P_m \rangle$, $n, m \ge 0$. For $0 \le m \le n - 1, n \ge 1$, we have $T^n_{\mu} P_m = 0$. For $m \ge n$, put $m = n + k, k \ge 0$. Then

$$\left\langle u_0^{[n]}, T_{\mu}^n P_{n+k} \right\rangle = \left(\prod_{\nu=1}^n \mu_{k+\nu}\right) \left\langle u_0^{[n]}, P_k^{[n]} \right\rangle = \left(\prod_{\nu=1}^n \mu_{\nu}\right) \delta_{0,k}$$

following the definitions. Consequently

$$T^{n}_{\mu}u^{[n]}_{0} = (-1)^{n} \left(\prod_{\nu=1}^{n} \mu_{\nu}\right) u_{n}, \quad n \ge 0.$$

But from (3) so that, in accordance with (13), we obtain (15) where

$$\Lambda_n = (-1)^n \frac{\langle u_0, P_n^2 \rangle}{\prod_{\nu=1}^n \mu_\nu} k_n, n \ge 0.$$
(16)

Sufficiency. Making n = 1 in (15), we have $P_1u_0 = \Lambda_1 T_{\mu} (\Phi u_0)$ and (11) is satisfied since u_0 is regular. Therefore, the sequence $\{P_n\}_{n\geq 0}$ is Dunkl-classical according to Theorem 2.1.

The next proposition summarizes some properties of the the generalized Hermite polynomials $\{H_n^{\mu}(x)\}_{n\geq 0}$ and the generalized Gegenbauer ones $\{S_n^{(\alpha,\beta)}(x)\}_{n\geq 0}$ (see [2]). It will be used in the sequel. **Proposition 2.5.** 1) The sequence $\{H_n^{\mu}(x)\}_{n\geq 0}$ is orthogonal with respect to $\mathcal{H}(\mu)$, this last form satisfies

$$D(x\mathcal{H}(\mu)) + (2x^2 - (2\mu + 1))\mathcal{H}(\mu) = 0.$$
(17)

In addition, $\{H_n^{\mu}(x)\}_{n\geq 0}$ verifies (4) with

$$\beta_n = 0, \ \gamma_{n+1} = \frac{1}{2} \left(n + 1 + \mu \left(1 + (-1)^n \right) \right), \quad 2\mu \neq -2n - 1, \quad n \ge 0.$$
(18)

2) The sequence $\{S_n^{(\alpha,\beta)}(x)\}_{n\geq 0}$ is orthogonal with respect to $\mathcal{GG}(\alpha,\beta)$, this last form satisfies

$$D\left(x(x^2-1)\mathcal{G}\mathcal{G}(\alpha,\beta)\right) + \left(-2(\alpha+\beta+2)x^2 + 2(\beta+1)\right)\mathcal{G}\mathcal{G}(\alpha,\beta) = 0.$$
(19)

In addition, $\{S_n^{(\alpha,\beta)}(x)\}_{n\geq 0}$ verifies (4) with

$$\beta_n = 0, \ \gamma_{n+1} = \frac{(n+1+\delta_n)(n+1+2\alpha+\delta_n)}{4(n+\alpha+\beta+1)(n+\alpha+\beta+2)}, \ \delta_n = (2\beta+1)\frac{1+(-1)^n}{2}, \ n \ge 0$$

$$\alpha \ne -n, \beta \ne -n, \alpha+\beta \ne -n, n \ge 1.$$
(20)

Lemma 2.6. If u_0 is a symmetric Dunkl-classical form, then $\tilde{u}_0 = h_{a^{-1}}u_0$ is also for every $a \neq 0$.

Proof. It is easy to see that \tilde{u}_0 is symmetric. Applying the operator h_a to the functional equation (10) and using (7), we obtain

$$T_{\mu}\left(\tilde{\Phi}\tilde{u}_{0}\right) + \tilde{\Psi}\tilde{u}_{0} = 0, \tag{21}$$

where $\tilde{\Phi}(x) = a^{-t}\Phi(ax)$, $\tilde{\Psi}(x) = a^{1-t}\Psi(ax)$, $t = \deg \Phi$. We have $\tilde{\Psi}'(0) - \frac{1}{2}\tilde{\Phi}''(0)\mu_n = a^{2-t}\left(\Psi'(0) - \frac{1}{2}\Phi''(0)\mu_n\right) \neq 0$, by (11). Hence the desired result.

Lemma 2.7. If u_0 is a symmetric Dunkl-classical form then it satisfies (10) with

 $\Phi(x) = ax^2 + c, \quad \Psi(x) = dx, \quad dc \neq 0.$

Proof. From the statement b) of Theorem 2.1., we have Φ monic, deg $\Phi \le 2$ and deg $\Psi = 1$. So, there exist $(a, b, c, d, e) \in \mathbb{C}^5$ such that $\Phi(x) = ax^2 + bx + c$, $\Psi(x) = dx + e$, $|a| + |b| + |c| \neq 0$ and $d \neq 0$. From (10), we have

$$\left\langle T_{\mu}\left(\Phi u_{0}\right)+\Psi u_{0},x^{n}\right\rangle =0,n\geq0$$

For n = 0, we obtain $d(u_0)_1 + e = 0$. Then e = 0 since u_0 is symmetric.

For n = 2, we get $-2b(u_0)_2 = 0$, then b = 0 because $(u_0)_2 = \gamma_1 \neq 0$.

Now, suppose that c = 0. We will necessarily have $a \neq 0$. Otherwise, we would have, from (10) and the last results

$$\left\langle T_{\mu}\left(ax^{2}u_{0}\right)+dxu_{0},x^{2n+1}\right\rangle =0,\quad n\geq0$$

this gives $(d - a(2n + 1 + 2\mu))(u_0)_{2n+2} = 0$. Then we deduce that $(u_0)_2 = \frac{d}{a(1 + 2\mu)}$ and $(u_0)_{2n+2} = 0, n \ge 1$ which is a contradiction with the regularity of u_0 . Hence $c \ne 0$

Using Lemmas 2.6 and 2.7, we distinguish two canonical cases for Φ : $\Phi(x) = 1$, $\Phi(x) = x^2 - 1$. Any so-called canonical situation will be denoted by \hat{u} .

First case: $\Phi(x) = 1$ **.**

Let $\Psi(x) = dx$, it is possible to choose d = 2 by the dilatation $h_{\sqrt{2}}$, then

$$T_{\mu}(\hat{u}) + 2x\hat{u} = 0 \tag{22}$$

which is equivalent to

$$D(x\hat{u}) + (2x^2 - (2\mu + 1))\hat{u} = 0.$$
(23)

In fact, multiplying (22) by x, we obtain (23) by taking into account (8) and the fact $H_{-1}(x\hat{u}) = 0$. Conversely, multiplying (23) by x^{-1} and using (1), we obtain (22) since $\langle T_{\mu}(\hat{u}) + 2x\hat{u}, 1 \rangle = 0$ and $H_{-1}(x\hat{u}) = 0$. In other word, from (23), we have the moments $(\hat{u})_n$, $n \ge 0$ satisfy

$$2(\hat{u})_{n+2} = (n+2\mu+1)(\hat{u})_n, \quad n \ge 0$$

and the set of solutions is a 1-dimensional linear space since \hat{u} is symmetric. Hence, in this case $\hat{u} = \mathcal{H}(\mu)$ by virtue of (17). **Second case:** $\Phi(x) = x^2 - 1$. Let $\Psi(x) = dx$. Putting $d = -2(\alpha + 1), \alpha \neq -1$, we get

$$T_{\mu}\left((x^2 - 1)\hat{u}\right) - 2(\alpha + 1)x\hat{u} = 0.$$
⁽²⁴⁾

Since $H_{-1}(x(x^2 - 1)\hat{u}) = 0$, by applying the same process as we did in the first case, we prove that (24) is equivalent to

$$D(x(x^2-1)\hat{u}) + ((-2\alpha - 2\mu - 3)x^2 + (2\mu + 1))\hat{u} = 0$$

And, we deduce that in this case $\hat{u} = \mathcal{GG}(\alpha, \mu - \frac{1}{2})$ by comparing the last equation with (19).

As a conclusion, we can state:

Theorem 2.8. (*Compare with* [1]) Up to a dilatation, the only Dunkl-classical symmetric MOPS are: (a) The generalized Hermite polynomials $\{H_n^{\mu}(x)\}_{n\geq 0}$ for $\mu \neq -n - \frac{1}{2}, n \geq 0$. Moreover,

$$T_{\mu}(\mathcal{H}(\mu)) + 2x\mathcal{H}(\mu) = 0.$$
⁽²⁵⁾

(b) The generalized Gegenbauer polynomials $\{S_n^{(\alpha,\mu-\frac{1}{2})}(x)\}_{n\geq 0}$ for $\alpha \neq -n, \alpha + \mu \neq -n + \frac{1}{2}, \mu \neq -n + \frac{1}{2}, n \geq 1$. Moreover,

$$T_{\mu}\left((x^{2}-1)\mathcal{G}\mathcal{G}\left(\alpha,\mu-\frac{1}{2}\right)\right)-2(\alpha+1)x\mathcal{G}\mathcal{G}\left(\alpha,\mu-\frac{1}{2}\right)=0.$$
(26)

Finally, we characterize the generalized Hermite polynomials and the generalized Gegenbauer ones in terms of the Rodrigues type formula as follows:

Theorem 2.9. We may write

$$H_n^{\mu}(x)\mathcal{H}(\mu) = \left(\frac{-1}{2}\right)^n \prod_{\nu=1}^n \frac{\nu+1+\mu\left(1+(-1)^{\nu}\right)}{\nu+\mu(1-(-1)^{\nu})} T_{\mu}^n\left(\mathcal{H}(\mu)\right), \quad n \ge 0.$$
(27)

$$S_n^{(\alpha,\mu-\frac{1}{2})}(x)\mathcal{G}\mathcal{G}\left(\alpha,\mu-\frac{1}{2}\right) = \Lambda_n T_\mu^n\left((x^2-1)^n \mathcal{G}\mathcal{G}\left(\alpha,\mu-\frac{1}{2}\right)\right), \quad n \ge 0$$
(28)

with
$$\Lambda_n = \frac{\Gamma\left(\alpha + \mu + n + \frac{3}{2}\right)\Gamma(\alpha + 1)}{\Gamma(\alpha + n + 1)\Gamma\left(\alpha + \mu + \frac{3}{2}\right)} \prod_{\nu=1}^n \frac{(\nu + \delta_\nu)(\nu + 2\alpha + \delta_\nu)}{(\nu + \mu(1 - (-1)^\nu))(2\nu + 2\alpha + 2\mu - 1)(2\nu + 2\alpha + 2\mu)}, \quad n \ge 0.$$

Proof. Use Theorems 2.4 and 2.8, Proposition 2.5 and equation (16).

References

- [1] Y. BenCheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007) 105-114.
- T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York (1978).
- [3] C. W. Cryer. Rodrigues' formula and the classical orthogonal polynomials. Boll. Un. Mat. Ital. (4) 3 (1970) 1-11.
- [4] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991) 1213-1227.
 [5] F. Marcellán, A. Branquinho, and J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (1994) 283-303.
- [6] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, (Baltzer, Basel), (1991) 95-130.
- M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760. [7]
- [8] R. Rasala. The Rodrigues formula and polynomial differential operators. J. Math. Anal. Appl. 84 (1981) 443-482.