Rodrigues formula for the Dunkl-classical symmetric orthogonal polynomials

Mabrouk Sghaier ${ }^{\text {a }}$
${ }^{a}$ Université de Gabès, Institut Supérieur d'Informatique de Medenine, Route DJerba - km 3-4119 Medenine, Tunisia.

Abstract

We find Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.

1. Introduction

Different authors (see [2],[3], [5], [8], among others), in various contexts dealt with Rodrigues' formula. In this work, we are concerned with Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials which have been introduced in [1].
We begin by reviewing some preliminary results needed for the sequel. The vector space of polynomials with coefficients in \mathbb{C} (the field of complex numbers) is denoted by \mathcal{P} and by \mathcal{P}^{\prime} its dual space, whose elements are called forms. The set of all nonnegative integers will be denoted by \mathbb{N}. The action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$ is denoted by $\langle u, f\rangle$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \in \mathbb{N}$, the moments of u. For any form u, any $a \in \mathbb{C}-\{0\}$ and any polynomial h let $D u=u^{\prime}, h u, h_{a} u, \delta_{0}$ and $x^{-1} u$ be the forms defined by: $\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle,\langle h u, f\rangle:=\langle u, h f\rangle,\left\langle h_{a} u, f\right\rangle=:\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle\left\langle\delta_{0}, f\right\rangle:=f(0)$, and $\left\langle x^{-1} u, f\right\rangle:=\left\langle u, \theta_{0} f\right\rangle$ where $\left(\theta_{0} f\right)(x)=\frac{f(x)-f(0)}{x}, f \in \mathcal{P}$.
Then, it is straightforward to prove that for $f \in \mathcal{P}$ and $u \in \mathcal{P}^{\prime}$, we have

$$
\begin{align*}
& x^{-1}(x u)=u-(u)_{0} \delta_{0} \tag{1}\\
& (f u)^{\prime}=f^{\prime} u+f u^{\prime} \tag{2}
\end{align*}
$$

We will only consider sequences of polynomials $\left\{P_{n}\right\}_{n \geq 0}$ such that $\operatorname{deg} P_{n} \leq n, n \in \mathbb{N}$. If the set $\left\{P_{n}\right\}_{n \geq 0}$ spans \mathcal{P}, which occurs when $\operatorname{deg} P_{n}=n, n \in \mathbb{N}$, then it will be called a polynomial sequence (PS). Along the text, we will only deal with PS whose elements are monic, that is, monic polynomial sequences (MPS). It is always possible to associate to $\left\{P_{n}\right\}_{n \geq 0}$ a unique sequence $\left\{u_{n}\right\}_{n \geq 0}, u_{n} \in \mathcal{P}^{\prime}$, called its dual sequence, such that $\left\langle u_{n}, P_{m}\right\rangle=\delta_{n, m}, n, m \geq 0$, where $\delta_{n, m}$ is the Kronecker's symbol [6].

The MPS $\left\{P_{n}\right\}_{n \geq 0}$ is orthogonal with respect to $u \in \mathcal{P}^{\prime}$ when the following conditions hold: $\left\langle u, P_{n} P_{m}\right\rangle=$

[^0]$r_{n} \delta_{n, m}, n, m \geq 0, r_{n} \neq 0, \quad n \geq 0$ [2]. In this case, we say that $\left\{P_{n}\right\}_{n \geq 0}$ is a monic orthogonal polynomial sequence (MOPS) and the form u is said to be regular. Necessarily, $u=\lambda u_{0}, \lambda \neq 0$. Furthermore, we have
\[

$$
\begin{equation*}
u_{n}=\left(\left\langle u_{0}, P_{n}^{2}\right\rangle\right)^{-1} P_{n} u_{0}, n \geq 0 \tag{3}
\end{equation*}
$$

\]

and the MOPS $\left\{P_{n}\right\}_{n \geq 0}$ fulfils the second order recurrence relation

$$
\begin{align*}
& P_{0}(x)=1 \quad, \quad P_{1}(x)=x-\beta_{0} \\
& P_{n+2}=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x) \quad, \gamma_{n+1} \neq 0, \quad n \geq 0 . \tag{4}
\end{align*}
$$

A form u is said symmetric if and only if $(u)_{2 n+1}=0, n \geq 0$, or, equivalently, in (4) $\beta_{n}=0, n \geq 0$.
Let us introduce the Dunkl operator

$$
T_{\mu}(f)=f^{\prime}+2 \mu H_{-1} f, \quad\left(H_{-1} f\right)(x)=\frac{f(x)-f(-x)}{2 x}, \quad f \in \mathcal{P}, \mu \in \mathbb{C}
$$

This operator was introduced and studied for the first time by Dunkl [4]. Note that T_{0} is reduced to the derivative operator D. The transposed ${ }^{t} T_{\mu}$ of $T \mu$ is ${ }^{t} T_{\mu}=-D-H_{-1}=-T_{\mu}$, leaving out a light abuse of notation without consequence. Thus we have

$$
\left\langle T_{\mu} u, f\right\rangle=-\left\langle u, T_{\mu} f\right\rangle, \quad u \in \mathcal{P}^{\prime}, \quad f \in \mathcal{P}, \quad \mu \in \mathbb{C} .
$$

In particular, this yields $\left\langle T_{\mu} u, x^{n}\right\rangle=-\mu_{n}(u)_{n-1}, n \geq 0$, where $(u)_{-1}=0$ and

$$
\begin{equation*}
\mu_{n}=n+\mu\left(1-(-1)^{n}\right), \quad n \geq 0 \tag{5}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
& T_{\mu}(f u)=f T_{\mu} u+f^{\prime} u+2 \mu\left(H_{-1} f\right)\left(h_{-1} u\right), \quad f \in \mathcal{P}, \quad u \in \mathcal{P}^{\prime}, \tag{6}\\
& h_{a} \circ T_{\mu}=a T_{\mu} \circ h_{a} \quad \text { in } \mathcal{P}^{\prime}, \quad a \in \mathbb{C}-\{0\} . \tag{7}
\end{align*}
$$

Remark 1.1 When u is a symmetric form, (6) becomes

$$
\begin{equation*}
T_{\mu}(f u)=f T_{\mu} u+\left(T_{\mu} f\right) u, \quad f \in \mathcal{P}, \quad u \in \mathcal{P}^{\prime} \tag{8}
\end{equation*}
$$

Now, consider a MPS $\left\{P_{n}\right\}_{n \geq 0}$ and let

$$
\begin{equation*}
P_{n}^{[1]}(x, \mu)=\frac{1}{\mu_{n+1}}\left(T_{\mu} P_{n+1}\right)(x), \quad \mu \neq-n-\frac{1}{2}, \quad n \geq 0 \tag{9}
\end{equation*}
$$

Definition 1.1. [1, 7] A MOPS $\left\{P_{n}\right\}_{n \geq 0}$ is called Dunkl-classical or T_{μ}-classical if $\left\{P_{n}^{[1]}(., \mu)\right\}_{n \geq 0}$ is also a MOPS. In this case, the form u_{0} is called Dunkl-classical or T_{μ}-classical form.

2. Rodrigues type formula

The following was proved in [7]
Theorem 2.1. For any symmetric MOPS $\left\{P_{n}\right\}_{n \geq 0}$, the following statements are equivalent
(a) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is Dunkl-classical.
(b) There exist two polynomials Φ (monic) and Ψ with $\operatorname{deg} \Phi \leq 2$ and $\operatorname{deg} \Psi=1$ such that the associated regular form u_{0} satisfies

$$
\begin{align*}
& T_{\mu}\left(\Phi u_{0}\right)+\Psi u_{0}=0 \tag{10}\\
& \Psi^{\prime}(0)-\frac{1}{2} \Phi^{\prime \prime}(0) \mu_{n} \neq 0, \quad n \geq 0 \tag{11}
\end{align*}
$$

Proposition 2.2. If $\left\{P_{n}\right\}_{n \geq 0}$ is Dunkl-classical symmetric MOPS, then $\left\{P_{n}^{[m]}(., \mu)=\frac{T_{\mu}^{m} P_{n+m}}{\prod_{k=1}^{m} \mu_{n+k}}\right\}_{n \geq 0}, m \geq 1$ is also a Dunkl-classical symmetric MOPS and we have

$$
\begin{align*}
& T_{\mu}\left(\Phi u_{0}^{[m]}(\mu)\right)+\left(\Psi-m T_{\mu} \Phi\right) u_{0}^{[m]}(\mu)=0, \tag{12}\\
& u_{0}^{[m]}(\mu)=k_{m} \Phi^{m} u_{0}, m \geq 1 \tag{13}
\end{align*}
$$

where Φ and Ψ are the same polynomials as in (10), $\left\{u_{n}^{[m]}(\mu)\right\}_{n \geq 0}$ is the dual sequence of $\left\{P_{n}^{[m]}(., \mu)\right\}_{n \geq 0}$ and k_{m} is defined by the condition $\left(u_{0}^{[m]}(\mu)\right)_{0}=1$.
For the proof, the following lemma is needed.
Lemma 2.3. [7] If $\left\{P_{n}\right\}_{n \geq 0}$ is Dunkl-classical symmetric MOPS, then

$$
\begin{equation*}
u_{0}^{[1]}(\mu)=k \Phi u_{0} \tag{14}
\end{equation*}
$$

where k is a normalization factor and Φ is the same polynomials as in (10).
Proof of Proposition 2.2. Suppose $m=1$. The form u_{0} satisfies (10). Multiplying both sides by Φ and on account of (8) and (14), we get

$$
T_{\mu}\left(\Phi u_{0}^{[1]}(\mu)\right)+\left(\Psi-T_{\mu} \Phi\right) u_{0}^{[1]}(\mu)=0
$$

Therefore, (12) and (13) are valid for $m=1$. By induction, we easily obtain the general case.
The main result of this paper follows:
Theorem 2.4. The symmetric MOPS $\left\{P_{n}\right\}_{n \geq 0}$ is Dunkl-classical if and only if there exist a monic polynomial Φ, $\operatorname{deg} \Phi \leq 2$ and a sequence $\left\{\Lambda_{n}\right\}_{n \geq 0}, \Lambda_{n} \neq 0, n \geq 0$ such that

$$
\begin{equation*}
P_{n} u_{0}=\Lambda_{n} T_{\mu}^{n}\left(\Phi^{n} u_{0}\right), \quad n \geq 0 \tag{15}
\end{equation*}
$$

We may call (15) a (functional) Rodrigues type formula for the Dunkl-classical symmetric orthogonal polynomials.
Proof. Necessity. Consider $\left\langle T_{\mu}^{n} u_{0}^{[n]}, P_{m}\right\rangle=(-1)^{n}\left\langle u_{0}^{[n]}, T_{\mu}^{n} P_{m}\right\rangle, \quad n, m \geq 0$. For $0 \leq m \leq n-1, n \geq 1$, we have $T_{\mu}^{n} P_{m}=0$. For $m \geq n$, put $m=n+k, k \geq 0$. Then

$$
\left\langle u_{0}^{[n]}, T_{\mu}^{n} P_{n+k}\right\rangle=\left(\prod_{v=1}^{n} \mu_{k+v}\right)\left\langle u_{0}^{[n]}, P_{k}^{[n]}\right\rangle=\left(\prod_{v=1}^{n} \mu_{v}\right) \delta_{0, k}
$$

following the definitions. Consequently

$$
T_{\mu}^{n} u_{0}^{[n]}=(-1)^{n}\left(\prod_{v=1}^{n} \mu_{v}\right) u_{n}, \quad n \geq 0
$$

But from (3) so that, in accordance with (13), we obtain (15) where

$$
\begin{equation*}
\Lambda_{n}=(-1)^{n} \frac{\left\langle u_{0}, P_{n}^{2}\right\rangle}{\prod_{v=1}^{n} \mu_{v}} k_{n}, n \geq 0 \tag{16}
\end{equation*}
$$

Sufficiency. Making $n=1$ in (15), we have $P_{1} u_{0}=\Lambda_{1} T_{\mu}\left(\Phi u_{0}\right)$ and (11) is satisfied since u_{0} is regular. Therefore, the sequence $\left\{P_{n}\right\}_{n \geq 0}$ is Dunkl-classical according to Theorem 2.1.

The next proposition summarizes some properties of the the generalized Hermite polynomials $\left\{H_{n}^{\mu}(x)\right\}_{n \geq 0}$ and the generalized Gegenbauer ones $\left\{S_{n}^{(\alpha, \beta)}(x)\right\}_{n \geq 0}$ (see [2]). It will be used in the sequel.

Proposition 2.5. 1) The sequence $\left\{H_{n}^{\mu}(x)\right\}_{n \geq 0}$ is orthogonal with respect to $\mathcal{H}(\mu)$, this last form satisfies

$$
\begin{equation*}
D(x \mathcal{H}(\mu))+\left(2 x^{2}-(2 \mu+1)\right) \mathcal{H}(\mu)=0 \tag{17}
\end{equation*}
$$

In addition, $\left\{H_{n}^{\mu}(x)\right\}_{n \geq 0}$ verifies (4) with

$$
\begin{equation*}
\beta_{n}=0, \gamma_{n+1}=\frac{1}{2}\left(n+1+\mu\left(1+(-1)^{n}\right)\right), \quad 2 \mu \neq-2 n-1, \quad n \geq 0 \tag{18}
\end{equation*}
$$

2) The sequence $\left\{S_{n}^{(\alpha, \beta)}(x)\right\}_{n \geq 0}$ is orthogonal with respect to $\mathcal{G} \mathcal{G}(\alpha, \beta)$, this last form satisfies

$$
\begin{equation*}
D\left(x\left(x^{2}-1\right) \mathcal{G} \mathcal{G}(\alpha, \beta)\right)+\left(-2(\alpha+\beta+2) x^{2}+2(\beta+1)\right) \mathcal{G} \mathcal{G}(\alpha, \beta)=0 \tag{19}
\end{equation*}
$$

In addition, $\left\{S_{n}^{(\alpha, \beta)}(x)\right\}_{n \geq 0}$ verifies (4) with

$$
\begin{gather*}
\beta_{n}=0, \gamma_{n+1}=\frac{\left(n+1+\delta_{n}\right)\left(n+1+2 \alpha+\delta_{n}\right)}{4(n+\alpha+\beta+1)(n+\alpha+\beta+2)}, \delta_{n}=(2 \beta+1) \frac{1+(-1)^{n}}{2}, n \geq 0 \tag{20}\\
\alpha \neq-n, \beta \neq-n, \alpha+\beta \neq-n, n \geq 1
\end{gather*}
$$

Lemma 2.6. If u_{0} is a symmetric Dunkl-classical form, then $\tilde{u}_{0}=h_{a^{-1}} u_{0}$ is also for every $a \neq 0$.
Proof. It is easy to see that \tilde{u}_{0} is symmetric. Applying the operator h_{a} to the functional equation (10) and using (7), we obtain

$$
\begin{equation*}
T_{\mu}\left(\tilde{\Phi} \tilde{u}_{0}\right)+\tilde{\Psi} \tilde{u}_{0}=0 \tag{21}
\end{equation*}
$$

where $\tilde{\Phi}(x)=a^{-t} \Phi(a x), \quad \tilde{\Psi}(x)=a^{1-t} \Psi(a x), \quad t=\operatorname{deg} \Phi$.
We have $\tilde{\Psi}^{\prime}(0)-\frac{1}{2} \tilde{\Phi}^{\prime \prime}(0) \mu_{n}=a^{2-t}\left(\Psi^{\prime}(0)-\frac{1}{2} \Phi^{\prime \prime}(0) \mu_{n}\right) \neq 0$, by (11). Hence the desired result.
Lemma 2.7. If u_{0} is a symmetric Dunkl-classical form then it satisfies (10) with

$$
\Phi(x)=a x^{2}+c, \quad \Psi(x)=d x, \quad d c \neq 0
$$

Proof. From the statement b) of Theorem 2.1., we have Φ monic, $\operatorname{deg} \Phi \leq 2$ and $\operatorname{deg} \Psi=1$. So, there exist $(a, b, c, d, e) \in \mathbb{C}^{5}$ such that $\Phi(x)=a x^{2}+b x+c, \Psi(x)=d x+e,|a|+|b|+|c| \neq 0$ and $d \neq 0$. From (10), we have

$$
\left\langle T_{\mu}\left(\Phi u_{0}\right)+\Psi u_{0}, x^{n}\right\rangle=0, n \geq 0
$$

For $n=0$, we obtain $d\left(u_{0}\right)_{1}+e=0$. Then $e=0$ since u_{0} is symmetric.
For $n=2$, we get $-2 b\left(u_{0}\right)_{2}=0$, then $b=0$ because $\left(u_{0}\right)_{2}=\gamma_{1} \neq 0$.
Now, suppose that $c=0$. We will necessarily have $a \neq 0$. Otherwise, we would have, from (10) and the last results

$$
\left\langle T_{\mu}\left(a x^{2} u_{0}\right)+d x u_{0}, x^{2 n+1}\right\rangle=0, \quad n \geq 0
$$

this gives $(d-a(2 n+1+2 \mu))\left(u_{0}\right)_{2 n+2}=0$. Then we deduce that $\left(u_{0}\right)_{2}=\frac{d}{a(1+2 \mu)}$ and $\left(u_{0}\right)_{2 n+2}=0, n \geq 1$ which is a contradiction with the regularity of u_{0}. Hence $c \neq 0$
Using Lemmas 2.6 and 2.7, we distinguish two canonical cases for $\Phi: \Phi(x)=1, ~ \Phi(x)=x^{2}-1$. Any so-called canonical situation will be denoted by \hat{u}.
First case: $\Phi(x)=1$.
Let $\Psi(x)=d x$, it is possible to choose $d=2$ by the dilatation $h_{\sqrt{\frac{2}{d}}}$, then

$$
\begin{equation*}
T_{\mu}(\hat{u})+2 x \hat{u}=0 \tag{22}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
D(x \hat{u})+\left(2 x^{2}-(2 \mu+1)\right) \hat{u}=0 \tag{23}
\end{equation*}
$$

In fact, multiplying (22) by x, we obtain (23) by taking into account (8) and the fact $H_{-1}(x \hat{u})=0$. Conversely, multiplying (23) by x^{-1} and using (1), we obtain (22) since $\left\langle T_{\mu}(\hat{u})+2 x \hat{u}, 1\right\rangle=0$ and $H_{-1}(x \hat{u})=0$.
In other word, from (23), we have the moments $(\hat{u})_{n}, n \geq 0$ satisfy

$$
2(\hat{u})_{n+2}=(n+2 \mu+1)(\hat{u})_{n}, \quad n \geq 0
$$

and the set of solutions is a 1-dimensional linear space since \hat{u} is symmetric.
Hence, in this case $\hat{u}=\mathcal{H}(\mu)$ by virtue of (17).
Second case: $\Phi(x)=x^{2}-1$.
Let $\Psi(x)=d x$. Putting $d=-2(\alpha+1), \alpha \neq-1$, we get

$$
\begin{equation*}
T_{\mu}\left(\left(x^{2}-1\right) \hat{u}\right)-2(\alpha+1) x \hat{u}=0 \tag{24}
\end{equation*}
$$

Since $H_{-1}\left(x\left(x^{2}-1\right) \hat{u}\right)=0$, by applying the same process as we did in the first case, we prove that (24) is equivalent to

$$
D\left(x\left(x^{2}-1\right) \hat{u}\right)+\left((-2 \alpha-2 \mu-3) x^{2}+(2 \mu+1)\right) \hat{u}=0
$$

And, we deduce that in this case $\hat{u}=\mathcal{G} \mathcal{G}\left(\alpha, \mu-\frac{1}{2}\right)$ by comparing the last equation with (19).
As a conclusion, we can state:
Theorem 2.8. (Compare with [1]) Up to a dilatation, the only Dunkl-classical symmetric MOPS are:
(a) The generalized Hermite polynomials $\left\{H_{n}^{\mu}(x)\right\}_{n \geq 0}$ for $\mu \neq-n-\frac{1}{2}, n \geq 0$. Moreover,

$$
\begin{equation*}
T_{\mu}(\mathcal{H}(\mu))+2 x \mathcal{H}(\mu)=0 \tag{25}
\end{equation*}
$$

(b) The generalized Gegenbauer polynomials $\left\{S_{n}^{\left(\alpha, \mu-\frac{1}{2}\right)}(x)\right\}_{n \geq 0}$ for $\alpha \neq-n, \alpha+\mu \neq-n+\frac{1}{2}, \mu \neq-n+\frac{1}{2}, n \geq 1$. Moreover,

$$
\begin{equation*}
T_{\mu}\left(\left(x^{2}-1\right) \mathcal{G} \mathcal{G}\left(\alpha, \mu-\frac{1}{2}\right)\right)-2(\alpha+1) x \mathcal{G} \mathcal{G}\left(\alpha, \mu-\frac{1}{2}\right)=0 \tag{26}
\end{equation*}
$$

Finally, we characterize the generalized Hermite polynomials and the generalized Gegenbauer ones in terms of the Rodrigues type formula as follows:

Theorem 2.9. We may write

$$
\begin{gather*}
H_{n}^{\mu}(x) \mathcal{H}(\mu)=\left(\frac{-1}{2}\right)^{n} \prod_{v=1}^{n} \frac{v+1+\mu\left(1+(-1)^{v}\right)}{v+\mu\left(1-(-1)^{v}\right)} T_{\mu}^{n}(\mathcal{H}(\mu)), \quad n \geq 0 . \tag{27}\\
\left.S_{n}^{\left(\alpha, \mu-\frac{1}{2}\right)}(x) \mathcal{G G}\left(\alpha, \mu-\frac{1}{2}\right)=\Lambda_{n} T_{\mu}^{n}\left(x^{2}-1\right)^{n} \mathcal{G} \mathcal{G}\left(\alpha, \mu-\frac{1}{2}\right)\right), \quad n \geq 0 \tag{28}\\
\text { with } \Lambda_{n}=\frac{\Gamma\left(\alpha+\mu+n+\frac{3}{2}\right) \Gamma(\alpha+1)}{\Gamma(\alpha+n+1) \Gamma\left(\alpha+\mu+\frac{3}{2}\right)} \prod_{v=1}^{n} \frac{\left(v+\delta_{v}\right)\left(v+2 \alpha+\delta_{v}\right)}{\left.v+\mu\left(1-(-1)^{v}\right)\right)(2 v+2 \alpha+2 \mu-1)(2 v+2 \alpha+2 \mu)^{\prime}}, \quad n \geq 0 .
\end{gather*}
$$

Proof. Use Theorems 2.4 and 2.8, Proposition 2.5 and equation (16).

References

[1] Y. BenCheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007) 105-114.
[2] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York (1978).
[3] C. W. Cryer. Rodrigues' formula and the classical orthogonal polynomials. Boll. Un. Mat. Ital. (4) 3 (1970) 1-11.
[4] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991) 1213-1227.
[5] F. Marcellán, A. Branquinho, and J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (1994) 283-303.
[6] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, (Baltzer, Basel), (1991) 95-130.
[7] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760.
[8] R. Rasala. The Rodrigues formula and polynomial differential operators. J. Math. Anal. Appl. 84 (1981) 443-482.

[^0]: 2010 Mathematics Subject Classification. Primary 42C05; Secondary 33C45
 Keywords. Orthogonal polynomials, Dual sequence, Dunkl operator, Rodrigues formula.
 Received: 24 June 2012; Accepted: 6 May 2013
 Communicated by Dragan S. Djordjevic
 Email address: mabrouk.sghaier@isim.rnu.tn (Mabrouk Sghaier)

