Fixed points of a new type of contractive mappings and multifunctions

H. Alikhani^a, Sh. Rezapour^a, N. Shahzad^b

^aDepartment of mathemetics, Azarbaijan Shahid Madani University, Azarshahr, Tabriz, Iran ^bDepartment of Mathematics, King AbdulAziz University, P.O. Box 80203, Jeddah 21859, Saudi Arabia

Abstract. In this paper, we introduce the concept of α - ψ - ξ -contractive mappings and β - ψ - ξ -contractive multifunctions and give some fixed point results for such mappings and multifunctions. We show that our fixed point result of α - ψ - ξ -contractive mappings is different from that of α - ψ -contractive mappings which has been proved recently by Samet, Vetro and Vetro.

1. Introduction

In recent years, there have appeared a number of fixed point results for multifunctions in metric spaces (see for example [2–4, 6, 7, 9]). In 2012, Samet, Vetro and Vetro introduced the concept of α - ψ -contractive type mappings ([8]). Their work generalized many ordered fixed point results (see [8]). Denote by Ψ the set of all nondecreasing functions $\psi : [0, \infty) \rightarrow [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0. Let (X, d) be a metric space, T a selfmap on X, $\alpha : X \times X \rightarrow [0, \infty)$ a function and $\psi \in \Psi$. Then, T is said to be α - ψ -contractive whenever $\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y))$ for all $x, y \in X$ ([8]). Also, we say that T is α -admissible whenever $\alpha(x, y) \geq 1$ implies that $\alpha(Tx, Ty) \geq 1$ ([8]). Now, we say that T is an α - ψ - ξ -contractive selfmap whenever

 $\alpha(x, y)d(Tx, Ty) \le \psi(h(x, y))$

for all $x, y \in X$, where $h(x, y) = d(x, Ty) + d(y, Tx) + d(x, y) - \xi(x, y)$ and

$$\xi(x, y) = \max\{d(x, Ty), d(y, Tx)\}$$

Now by using all obtained idea, we introduce the following notion. Let (X, d) be a metric space, $T : X \to 2^X$ a multifunction, $\beta : 2^X \times 2^X \to [0, \infty)$ a mapping and $\psi \in \Psi$. We say that T is β -admissible whenever $\beta(A, B) \ge 1$ implies $\beta(Tx, Ty) \ge 1$ for all $x \in A$ and $y \in B$, where A and B are subsets of X. Also, we say that a closed-valued multifunction T is β - ψ - ξ -contractive multifunction whenever

$$\beta(Tx, Ty)H(Tx, Ty) \le \psi(d(x, Ty) + d(y, Tx) + d(x, y) - \xi(x, y)) = \psi(h(x, y))$$

for all $x, y \in X$, where *H* is the Hausdorff generalized metric. Also, we say that the multifunction *T* is lower semi-continuous (briefly, LSC) at $x_0 \in X$ whenever for each sequence $\{x_n\}$ with $x_n \to x_0$ and every $y \in Tx_0$,

²⁰¹⁰ Mathematics Subject Classification. 47H04; Secondary 47H10

Keywords. α - ψ - ξ -contractive mapping, β -admissible, β - ψ - ξ -contractive multifunction

Received: 30 May 2012; Accepted: 20 July 2012

Communicated by Vladimir Rakočević

The research of both the first and the second author was supported by Azarbaijan Shahid Madani University.

Email addresses: h.alikhani09@gmail.com (H. Alikhani), rezapourshahram@yahoo.ca (Sh. Rezapour),

naseer_shahzad@hotmail.com (N. Shahzad)

there exists a sequence $\{y_n\}$ such that $y_n \to y$ and $y_n \in Tx_n$ for all n ([5]). Let (X, d) be a metric space, C a nonempty subset of X and $x \in X$. An element $y_0 \in C$ is said to be a best approximation of x whenever $d(x, y_0) = d(x, C) = \inf_{y \in C} d(x, y)$. The set C is said to be a proximinal whenever every $x \in X$ has at least one best approximation in C ([1]). It is known that proximinal subsets are closed ([1]). Denote by P(X) the set of all proximinal subsets of X.

2. Main Results

Now, we are ready to state and prove our main results.

Theorem 2.1. Let (X, d) be a complete metric space and T a continuous, α -admissible and α - ψ - ξ -contractive selfmap on X such that $\alpha(x_0, Tx_0) \ge 1$ for some $x_0 \in X$. Then T has a fixed point.

Proof. Let $x_0 \in X$ be such that $\alpha(x_0, Tx_0) \ge 1$. Put $x_{n+1} = Tx_n$ for all $n \ge 0$. If $x_n = x_{n+1}$ for some n, then we have nothing to prove. Assume that $x_n \ne x_{n+1}$ for all n. Since T is α -admissible, it is easy to check that $\alpha(x_n, x_{n+1}) \ge 1$ for all n. Thus,

$$\begin{aligned} d(x_n, x_{n+1}) &= d(Tx_{n-1}, Tx_n) \le \alpha(x_{n-1}, x_n) d(Tx_{n-1}, Tx_n) \le \psi(h(x_{n-1}, x_n)) \\ &= \psi(d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1}) + d(x_{n-1}, x_n) - \xi(x_{n-1}, x_n)) \\ &= \psi(d(x_{n-1}, x_{n+1}) + d(x_n, x_n) + d(x_{n-1}, x_n) - \max\{d(x_{n-1}, x_{n+1}), d(x_n, x_n)\}) \\ &= \psi(d(x_{n-1}, x_{n+1}) + d(x_{n-1}, x_n) - d(x_{n-1}, x_{n+1})) = \psi(d(x_{n-1}, x_n)) \end{aligned}$$

for all *n*. Hence, $d(x_{n+1}, x_n) \le \psi^n(d(x_0, x_1))$ for all *n*. Fix $\varepsilon > 0$. Then, there exists a natural number N_{ε} such that $\sum_{n \ge N_{\varepsilon}} \psi^n(d(x_0, x_1)) < \varepsilon$. Let $m > n \ge N_{\varepsilon}$. By using the triangular inequality, we obtain

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \le \sum_{k=n}^{m-1} \psi^k d(x_0, x_1) \le \sum_{n \ge N_{\varepsilon}} \psi^n d(x_0, x_1) < \varepsilon$$

Hence, $\{x_n\}$ is a Cauchy sequence. Since (X, d) is complete, there exists $x^* \in X$ such that $x_n \to x^*$. Since *T* is continuous, $Tx^* = x^*$. This completes the proof. \Box

Now, we give the following example to show the difference of Theorem 2.1 and the first result of [8].

Example 2.1. Let $X = \mathbb{R}$ and d(x, y) = |x - y|. Define $Tx = \frac{4}{3}x$ for all $x \in \mathbb{R}$, $\psi(t) = \frac{3}{4}t$ for all $t \ge 0$ and $\alpha : X \times X \to [0, +\infty)$ by $\alpha(x, y) = 1$ whenever $y \le \frac{7}{6}x$ and $\alpha(x, y) = 0$ otherwise. If $y > \frac{7}{6}x$, then $\alpha(x, y)d(Tx, Ty) = 0 \le \psi(h(x, y))$. If $y \le \frac{7}{6}x$, then $\max\left\{\left|x - \frac{4}{3}y\right|, \left|\frac{4}{3}x - y\right|\right\} = \left|x - \frac{4}{3}y\right|$. Thus, we have

$$\begin{aligned} \alpha(x,y)d(Tx,Ty) &= \frac{4}{3}|x-y| \le \frac{3}{2} \left| \frac{4}{3}x-y \right| = \frac{3}{4} \left(\left| \frac{4}{3}x-y \right| + \left| \frac{4}{3}x-y \right| \right) \le \frac{3}{4} \left(\left| \frac{4}{3}x-y \right| + |x-y| \right) \\ &= \psi \left(\left| \frac{4}{3}x-y \right| + |x-y| \right) = \psi(d(x,Ty) + d(y,Tx) + d(x,y) - \xi(x,y)). \end{aligned}$$

Hence, T is an α - ψ - ξ *-contractive selfmap. On the other hand, for* $y \leq \frac{7}{6}x$ *we have*

$$\alpha(x, y)d(Tx, Ty) = \frac{4}{3}|x - y| \ge \frac{3}{4}|x - y| = \psi(d(x, y)).$$

Therefore, T is not α *-* ψ *-contractive.*

Corollary 2.2. Let (X, d, \leq) be a complete ordered metric space and T a continuous and nondecreasing selfmap on X such that $d(Tx, Ty) \leq \lambda h(x, y)$ for all $x, y \in X$ with $x \leq y$ or $y \leq x$, where λ is an element in [0, 1). If there exists $x_0 \in X$ such that $x_0 \leq Tx_0$ or $Tx_0 \leq x_0$, then T has a fixed point.

Corollary 2.3. Let (X, d) be a complete metric space, $\lambda \in [0, 1)$ and T a continuous selfmap on X such that $T(A) \subset A$ for some subset A of X and $d(Tx, Ty) \leq \lambda h(x, y)$ for all $x, y \in A$. Then T has a fixed point.

Proof. Define the mapping $\alpha : X \times X \rightarrow [0, +\infty)$ by $\alpha(x, y) = 1$ whenever $x \in A$ or $y \in A$ and $\alpha(x, y) = 0$ otherwise. Then, we have $\alpha(x, y)d(Tx, Ty) \le kh(x, y)$ for all $x, y \in X$. Define $\psi(t) = kt$ for all $t \ge 0$. Thus, *T* is an α - ψ - ξ -contractive mapping. Let $x, y \in X$ be such that $\alpha(x, y) \ge 1$. Since $T(A) \subset A$, $Tx \in A$ or $Ty \in A$ and so $\alpha(Tx, Ty) \ge 1$. Hence, *T* is α -admissible. Since *A* is nonempty, $\alpha(x_0, Tx_0) = 1$ for all $x_0 \in A$. Now by using Theorem 2.1, *T* has a fixed point. \Box

Now, we give the following result for proximinal valued multifunctions.

Theorem 2.4. Let (X, d) be a complete metric space and $T : X \to P(X)$ a LSC, β -admissible and β - ψ - ξ -contractive multifunction such that $\beta(A, Tx_0) \ge 1$ for some $A \subset X$ and $x_0 \in A$. Then T has a fixed point.

Proof. Choose $A \subset X$ and $x_0 \in A$ such that $\beta(A, Tx_0) \ge 1$. Define the sequence $\{x_n\}$ by $x_{n+1} \in Tx_n$ and $d(x_n, x_{n+1}) = d(x_n, Tx_n)$ for all $n \ge 0$. If $x_n = x_{n+1}$ for some n, then we have nothing to prove. Assume that $x_n \ne x_{n+1}$ for all n. Since T is β -admissible, $x_0 \in A$, $x_1 \in Tx_0$ and $\beta(A, Tx_0) \ge 1$, we have $\beta(Tx_0, Tx_1) \ge 1$. By continuing this process it is easy to show that $\beta(Tx_{n-1}, Tx_n) \ge 1$ for all n. Thus,

$$d(x_n, x_{n+1}) = d(x_n, Tx_n) \le H(Tx_{n-1}, Tx_n) \le \beta(Tx_{n-1}, Tx_n)H(Tx_{n-1}, Tx_n) \le \psi(h(x_{n-1}, x_n))$$

= $\psi(d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1}) + d(x_{n-1}, x_n) - \xi(x_{n-1}, x_n)) = \psi(d(x_{n-1}, x_n))$

and so $d(x_n, x_{n+1}) \leq \psi^n(d(x_0, x_1))$ for all *n*. Fix $\varepsilon > 0$. Then there exists a natural number N_{ε} such that $\sum_{n \geq N_{\varepsilon}} \psi^n(t) < \varepsilon$. Let $m > n \geq N_{\varepsilon}$. Then,

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leq \sum_{k=n}^{m-1} \psi^k d(x_0, x_1) \leq \sum_{n \geq N_{\varepsilon}} \psi^n d(x_0, x_1) < \varepsilon.$$

Thus, $\{x_n\}$ is a Cauchy sequence. Choose $x^* \in X$ such that $x_n \to x^*$. Let $y \in Tx^*$. Since *T* is LSC, there exists a sequence $\{y_n\}$ such that $y_n \in Tx_n$ for all *n* and $y_n \to y$. Hence, $d(x^*, Tx^*) \leq d(x^*, y) \leq d(x^*, x_{n+1}) + d(x_{n+1}, z) + d(z, y_n) + d(y_n, y)$ for all $z \in Tx_n$. This implies that

$$d(x^*, Tx^*) \leq d(x^*, x_{n+1}) + \inf_{z \in Tx_n} d(x_{n+1}, z) + \inf_{z \in Tx_n} d(z, y_n) + d(y_n, y)$$

= $d(x^*, x_{n+1}) + d(x_{n+1}, Tx_n) + d(Tx_n, y_n) + d(y_n, y)$
= $d(x^*, x_{n+1}) + d(y_n, y),$

and so $d(x^*, Tx^*) \le d(x^*, x_{n+1}) + d(y_n, y)$ for all *n*. Thus, we get $x^* \in Tx^*$. \Box

Now, we give the following example to show that there are multifunctions which satisfy the assumptions of Theorem 2.4.

Example 2.2. Let $X = [0, \infty)$, a > 0, d(x, y) = |x - y| for all $x, y \in X$, H the Hausdorff metric, T a proximinal-valued multifunction on X defined by Tx = [x, a] whenever $x \le a$ and Tx = [a, x] whenever x > a and $\beta : 2^X \times 2^X \rightarrow [0, +\infty)$ a mapping defined by $\beta(C, D) = 1$ whenever $C \cap D = \{a\}$ and $\beta(C, D) = 0$ otherwise. Suppose that A and B are subsets of X such that $A \cap B = \{a\}$. Then, $\beta(Tx, Ty) = 1$ whenever $x \le a < y$ or $y \le a < x$. If $x \le a < y$, then $\rho(Tx, Ty) = a - x$ and $\rho(Ty, Tx) = y - a$, where $\rho(A, B) = \sup_{a \in A} d(a, B)$. Hence, $H(Tx, Ty) = \max\{a - x, y - a\}$. If

$$a - x > y - a$$
, then max $\{a - x, y - a\} = a - x$. Also, we have

$$\beta(Tx, Ty)H(Tx, Ty) = (a - x) < (y - a) + (y - a) + (a - x)$$

= $(a - x) + (y - a) + (y - x) - \max\{a - x, y - a\}.$

Now, by using the Archimedean property, there exists $k \in [0, 1)$ *such that*

$$(a - x) \le k((a - x) + (y - a) + (y - x) - \max\{a - x, y - a\}).$$

If we define $\psi(t) = kt$, then

$$\beta(Tx, Ty)H(Tx, Ty) = (a - x) \leq \psi((a - x) + (y - a) + (y - x) - \max\{a - x, y - a\}) \\ = \psi(d(x, Ty) + d(y, Tx) + d(x, y) - \xi(x, y)).$$

Therefore, by providing a similar proof for another cases, one can show that T is a β - ψ - ξ -contractive multifunction. It is easy to see that T is β -admissible and LSC. Let $a \leq c$ and A = [a, c]. Then, $Ta = \{a\}$ and $\beta(A, Ta) = 1$. Thus, the multifunction T satisfies the assumptions of Theorem 2.4. Note that, each element of the interval $[0, \infty)$ is a fixed point of T.

Corollary 2.5. Let (X, d) be a complete metric space, $\lambda \in [0, 1)$, $T : X \to P(X)$ a LSC multifunction and C a nonempty subset of X such that $Tx \subset C$ for all $x \in C$. Suppose that $H(Tx, Ty) \leq \lambda h(x, y)$ for all $x, y \in C$. Then T has a fixed point.

Proof. Define $\beta : 2^X \times 2^X \to [0, +\infty)$ by $\beta(A, B) = 1$ whenever $A \subset C$ or $B \subset C$ and $\beta(A, B) = 0$ otherwise. Define $\psi(t) = kt$ for all $t \ge 0$. Then, we have

$$\beta(Tx, Ty)H(Tx, Ty) \le \psi(h(x, y))$$

for all $x, y \in X$. Hence, T is a β - ψ - ξ -contractive multifunction. If $A, B \subset X$ and $\beta(A, B) \ge 1$, then $A \subset C$ or $B \subset C$. Without loss of generality, suppose that $A \subset C$. Then, $Tx \subset C$ for all $x \in A$ and so $\beta(Tx, Ty) \ge 1$ for all $y \in B$. Therefore, T is β -admissible. If $x \in C$, then $Tx \subset C$ and so $\beta(C, Tx) = 1$. Now by using Theorem 2.4, T has a fixed point. \Box

Theorem 2.6. Let (X, d) be a complete metric space and $T : X \to P(X)$ a β -admissible and β - ψ - ξ -contractive multifunction such that $\beta(A, Tx_0) \ge 1$ for some $A \subset X$ and $x_0 \in A$. Also, suppose that $\beta(Tx_{n-1}, Tx) \ge 1$ for all n whenever $\{x_n\}$ is a sequence in X such that $\beta(Tx_{n-1}, Tx_n) \ge 1$ for all n and $x_n \to x$. Then T has a fixed point.

Proof. Choose $A \subset X$ and $x_0 \in A$ such that $\beta(A, Tx_0) \ge 1$. Define the sequence $\{x_n\}$ by $x_{n+1} \in Tx_n$ and $d(x_n, x_{n+1}) = d(x_n, Tx_n)$ for all $n \ge 0$. If $x_n = x_{n+1}$ for some n, then we have nothing to prove. Assume that $x_n \neq x_{n+1}$ for all n. By using a similar technique in proof of Theorem 2.4, one can deduce that $\{x_n\}$ is a Cauchy sequence. Choose $x^* \in X$ such that $x_n \to x^*$. Since $\beta(Tx_{n-1}, Tx_n) \ge 1$ for all n, by using the assumption we obtain $\beta(Tx_{n-1}, Tx^*) \ge 1$ for all n. Hence,

$$d(x^*, Tx^*) \le d(x^*, z) + d(z, Tx^*)$$

for all $z \in Tx_{n-1}$. But, we have

$$\begin{aligned} d(x^*, Tx^*) &\leq d(x^*, Tx_{n-1}) + H(Tx_{n-1}, Tx^*) \\ &\leq d(x^*, x_n) + \beta(Tx_{n-1}, Tx^*) H(Tx_{n-1}, Tx^*) \leq d(x^*, x_n) + \psi(h(x_{n-1}, x^*)) \\ &\leq d(x^*, x_n) + \psi(d(x_{n-1}, Tx^*) + d(x^*, Tx_{n-1}) + d(x_{n-1}, x^*) - \xi(x_{n-1}, x^*)) \end{aligned}$$

for all *n*. If $\xi(x_{n-1}, x^*) = d(x_{n-1}, Tx^*)$, then we have

 $d(x^*, Tx^*) \le d(x^*, x_n) + \psi(d(x_n, x^*) + d(x_{n-1}, x^*))$

and if $\xi(x_{n-1}, x^*) = d(x^*, Tx_{n-1})$, then we have

$$d(x^*, Tx^*) \le d(x^*, x_n) + \psi(d(x_{n-1}, Tx^*) + d(x_{n-1}, x^*)).$$

These implies that $d(x^*, Tx^*) = 0$ and so $x^* \in Tx^*$. \Box

1318

References

- [1] R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Springer-Verlag, 2009.
- [2] S. M. A. Aleomraninejad, Sh. Rezapour, N. Shahzad, Convergence of an iterative scheme for multifunctions, J. Fixed Point Theory Appl. 12 (2012) No. 1-2, 239–246.
- [3] S. M. A. Aleomraninejad, Sh. Rezapour, N. Shahzad, On fixed point generalizations of Suzuki's method, Appl. Math. Lett. 24 (2011) 1037–1040.
- [4] S. M. A. Aleomraninejad, Sh. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, Topologoy Appl. 159 (2012) 659–663.
- [5] J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization, theory and examples, Springer-Verlag (2000).
- [6] R. H. Haghi, Sh. Rezapour, N. Shahzad, On fixed points of quasi-contraction type multifunctions, Appl. Math. Lett. 25 (2012) 843-846.
 [7] J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for weakly C-contractive mappings in ordered metric spaces, Computer Math.
- Appl. 61 (2011) 790–796.
- [8] B. Samet, C. Vetro, P. Vetro, *Fixed point theorems for* α ψ *contractive type mappings*, Nonlinear Anal. 75 (2012) 2154–2165.
- [9] X. Zhang, Fixed point theorems of multivalued monotone mappings in ordered metric spaces, Appl. Math. Lett. 23 (2010) 235–240.