Property (Bb) and Tensor product

M.H.M.Rashid ${ }^{\text {a }}$, T. Prasad ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science P.O. Box(7), Mu'tah university-Al-Karak-Jordan.
${ }^{b}$ Department of Mathematics, Government Arts College (Autonomous) Coimbatore, Tamilnadu, India - 641018.

Abstract

In this paper, we find necessary and sufficient conditions for Banach Space operator to satisfy the property ($B b$). Then we obtain, if Banach Space operators $A \in B(X)$ and $B \in B(Y)$ satisfy property $(B b)$ implies $A \otimes B$ satisfies property $(B b)$ if and only if the B-Weyl spectrum identity $\sigma_{B W}(A \otimes B)=\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$ holds. Perturbations by Riesz operators are considered.

1. Introduction

Throughout this paper we denote by $B(X)$ the algebra of all bounded linear operators acting on a Banach space X. For $T \in B(X)$, let $T^{*}, \operatorname{ker}(T)=T^{-1}(0), \mathfrak{R}(T)=T(X), \sigma(T)$ and $\sigma_{a}(T)$ denote respectively the adjoint, the null space, the range, the spectrum and the approximate point spectrum of T. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dim} \operatorname{ker}(T)$ and $\beta(T)=\operatorname{codim} \mathfrak{R}(T)$. If the range $\mathfrak{R}(T)$ of $T \in B(X)$ is closed and $\alpha(T)<\infty$ (resp., $\beta(T)<\infty$) then T is upper semi-Fredholm (resp., lower semi-Fredholm) operator. Let $S F_{+}(X)$ (resp., $S F_{-}(X)$) denote the semigroup of upper semiFredholm (resp., lower semi-Fredholm) operator on X. An operator $T \in B(X)$ is said to be semi-Fredholm if $T \in S F_{+}(X) \cup S F_{-}(X)$ and Fredholm if $T \in S F_{+}(X) \cap S F_{-}(X)$. If T is semi-Fredholm then the index of T is defined by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. Recall that the ascent of an operator $T \in B(X)$ is the smallest non negative integer $p:=p(T)$ such that $T^{-p}(0)=T^{-(p+1)}(0)$. If there is no such integer, ie., $T^{-p}(0) \neq T^{-(p+1)}(0)$ for all p, then set $p(T)=\infty$. The descent of T is defined as the smallest non negative integer $q:=q(T)$ such that $T^{q}(X)=T^{(q+1)}(X)$. If there is no such integer, ie., $T^{q}(X) \neq T^{(q+1)}(X)$ for all q, then set $q(T)=\infty$. It is well known that if $p(T)$ and $q(T)$ are both finite then they are equal [13, Proposition 38.6]. A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. For $T \in B(X)$, let, $E^{0}(T)$, and $\pi^{0}(T)$ denote, the eigenvalues of finite multiplicity and poles of T respectively. The Weyl spectrum $\sigma_{w}(T)$ and Browder spectrum $\sigma_{b}(T)$ of T are defined by

$$
\begin{gathered}
\sigma_{w}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\} \\
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\} .
\end{gathered}
$$

We have $\pi^{0}(T):=\sigma(T) \backslash \sigma_{b}(T)$. Set $\Delta(T)=\sigma(T) \backslash \sigma_{w}(T)$. According to Coburn [7], Weyl's theorem holds for T (abbreviation, $T \in W t$) if $\Delta(T)=E^{0}(T)$ and that Browder's theorem holds for T (in symbol, $T \in B t$) if $\sigma(T) \backslash \sigma_{w}(T)=\pi^{0}(T)$.

[^0]An operator $T \in B(X)$ is called B-Fredholm, $T \in B F_{+}^{-}(X)$, if there exist a natural number n, for which the induced operator $T_{n}: T^{n}(X) \rightarrow T^{n}(X)$ is Fredholm in usual sense, and B-Weyl, $T \in B W_{+}^{-}(X)$, if $T \in B F_{+}^{-}(X)$ and ind $\left(T_{n}\right)=0$. Let $E(T)$ be the set of all eigenvalues of T which are isolated in $\sigma(T)$ and $\sigma_{B W}(T)=$ $\{\lambda \in C: T-\lambda$ is not B-Weyl $\}$. Set $\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$. According to [12], $T \in B(X)$ satisfies property (Bw) (in symbol $T \in(B w)$) if $\Delta^{g}(T)=E^{0}(T)$. We say that T satisfies property (Bb) (in symbol, $T \in(B b)$), a variant of generalized Browder's theorem, if $\Delta^{g}(T)=\pi^{0}(T)$. Property $(B b)$ is introduced and studied in [20] by the authors. Property $(B w)$ implies property $(B b)$ but converse is not true in general, see [20]. Let A be a unital algebra. We say that $x \in A$ is Drazin invertible of degree k if there exist an element $a \in A$ such that $x^{k} a x=x^{k}$, $a x a=a$ and $x a=a x$. The Drazin spectrum of $a \in A$ is defined as $\sigma_{D}(a)=\{\lambda \in \mathbb{C}: a-\lambda$ is not Drazin invertible\}. It is well known that $T \in B(X)$ is Drazin invertible if and only if T has finite ascent and descent. Let $L_{0}(X)$ denote the set of all finite rank operators acting on an infinite dimensional Banach space X. The B-Browder spectrum $\sigma_{B B}(T)$ is defined in [8] as follows:

$$
\sigma_{B B}(T)=\bigcap\left\{\sigma_{D}(T+F): F \in L_{o}(X) \text { and } T F=F T\right\}
$$

An operator $T \in B(X)$ has the single valued extension property (SVEP) at $\lambda_{0} \in \mathbb{C}$, if for every open disc $D_{\lambda_{0}}$ centered at λ_{0} the only analytic function $f: D_{\lambda_{0}} \rightarrow X$ which satisfies $(T-\lambda) f(\lambda)=0$ for all $\lambda \in D_{\lambda_{0}}$ is the function $f \equiv 0$. We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. For more information, see [1].

The tensor product of two operators $A \in B(X)$ and $B \in B(Y)$ on $X \otimes Y$ is the operator $A \otimes B$ defined by

$$
(A \otimes B) \Sigma_{i} x_{i} \otimes y_{i}=\Sigma_{i} A x_{i} \otimes B y_{i}
$$

for every $\Sigma_{i} x_{i} \otimes y_{i} \in X \otimes Y$. Extensive study of preservation of Browder's theorem, Weyl's theorem ,aBrowder's theorem, a-Weyl's are found in [10, 11, 15, 16]

We studied necessary and sufficient conditions for Banach Space operator to satisfy the property $(B b)$ in first section of this paper. Then we obtain, if Banach space operators $A \in B(X)$ and $B \in B(Y)$ satisfy property (Bb) implies $A \otimes B$ satisfies property (Bb) if and only if the B-Weyl spectrum identity $\sigma_{B W}(A \otimes B)=$ $\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$ holds.

2. property ($B b$)

Theorem 2.1. If T satisfies property (Bb), then T satisfies Browder's theorem.
Proof. Suppose that T satisfies property $(B b)$ ie, $\Delta^{g}(T)=\pi^{0}(T)$. Let $\lambda \in \Delta(T)$. Then $T-\lambda$ is Fredholm of index zero and hence $T-\lambda$ is B-Fredholm of index zero. Thus $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)=\Delta^{g}(T)$. Hence $\lambda \in \pi^{0}(T)$

Conversely let $\lambda \in \pi^{0}(T)$. Since T satisfies property $(B b), T-\lambda$ is B-Fredholm of index zero. Since $\alpha(T-\lambda)<\infty$, we conclude that $T-\lambda$ is Weyl. Thus $\lambda \in \Delta(T)$. This completes the proof.
The following example shows that the converse of above theorem does not hold in general.
Example 2.2. Let $T: l^{2}(N) \rightarrow l^{2}(N)$ be an injective quasinilpotent operator which is not nilpotant. we define S on Banach Space $X=l^{2}(N) \oplus l^{2}(N)$ by $S=I \oplus T$, where I is the identity operator on $l^{2}(N)$. Then $\sigma(S)=\sigma_{w}(S)=\{0,1\}$ and $\sigma_{B W}(S)=\{0\}$. Also $E^{0}(S)=\pi^{0}(S)=\phi$. Clearly, S satisfies Browder's theorem but not $(B b)$.

Theorem 2.3. Let $T \in B(X)$. Then the following statements are equivalent.
(i) $T \in(B b)$;
(ii) $\sigma_{B W}(T)=\sigma_{b}(T)$;
(iii) $\sigma_{B W}(T) \cup E^{0}(T)=\sigma(T)$.

Proof. (i) $\Longrightarrow(i i)$. Let $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Since T satisfies $(B b), \lambda \in \pi^{0}(T)$. Thus $\lambda \in \sigma(T) \backslash \sigma_{b}(T)$ and hence $\sigma_{b}(T) \subseteq \sigma_{B W}(T)$. Since the reverse inclusion is always true, we have $\sigma_{b}(T)=\sigma_{B W}(T)$.
(ii) $\Longrightarrow(i)$. Assume that $\sigma_{b}(T)=\sigma_{B W}(T)$ and we will establish that $\Delta^{g}(T)=\pi^{0}(T)$. Suppose $\lambda \in \Delta^{g}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{b}(T)$. Hence $\lambda \in \pi^{0}(T)$. Conversely suppose $\lambda \in \pi^{0}(T)$. Since $\sigma_{B W}(T)=\sigma_{b}(T), \lambda \in \Delta^{g}(T)$.
(ii) $\Longrightarrow(i i i)$. Let $\lambda \in \Delta^{g}(T)$. Since $\sigma_{B W}(T)=\sigma_{b}(T), \lambda \in \sigma(T) \backslash \sigma_{b}(T)$, ie., $\lambda \in \pi^{0}(T)$ which implies that $\lambda \in E^{0}(T)$. Thus $\sigma_{B W}(T) \cup E^{o}(T) \supseteq \sigma(T)$. Since $\sigma_{B W}(T) \cup E^{o}(T) \subseteq \sigma(T)$, always we must have $\sigma_{B W}(T) \cup E^{o}(T)=\sigma(T)$.
(iii) \Longrightarrow (ii). Suppose $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Since $\sigma_{B W}(T) \cup E^{0}(T)=\sigma(T), \lambda \in E^{0}(T)$. In particular λ is an isolated point of $\sigma(T)$. Then by [4, Theorem 4.2] that $\lambda \notin \sigma_{D}(T)$ and this implies that $\lambda \in \pi(T)$ and so $a(T-\lambda)=d(T-\lambda)<\infty$. So, it follows from [1, Theorem 3.4] that $\beta(T-\lambda)=\alpha(T-\lambda)<\infty$. Hence $\lambda \in \pi^{0}(T)$. Therefore, $\lambda \notin \sigma_{b}(T)$. Since the other inclusion is always verified, we have $\sigma_{B W}(T)=\sigma_{b}(T)$. This completes the proof.

Theorem 2.4. Let $T \in B(X)$. IF T satisfies property $(B b)$. Then the following statements are equivalent.
(i) $T \in(B w)$;
(ii) $\sigma_{B W}(T) \cap E^{0}(T)=\emptyset$;
(iii) $E^{o}(T)=\pi^{0}(T)$.

Proof. (i) \Longrightarrow (ii). Suppose (i) holds, that is, $\Delta^{g}(T)=E^{0}(T)$. then it follows that $\sigma_{B W}(T) \cap E^{0}(T)=\emptyset$.
(ii) $\Longrightarrow(i i i)$. Suppose $\sigma_{B W}(T) \cap E^{0}(T)=\emptyset$ and let $\lambda \in E^{0}(T)$. Then $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$. Since $T \in(B b)$, we must have $\lambda \in \pi^{0}(T)$ and hence $E^{0}(T) \subseteq \pi^{0}(T)$. Since the reverse inclusion is trivial, we have $E^{0}(T)=\pi^{0}(T)$.
$($ iii $) \Longrightarrow(i)$. Since T satisfies property $(B b)$ and $E^{o}(T)=\pi^{0}(T)$, we conclude that $T \in(B w)$.

3. property (Bb) and Tensor product

Let $S F_{+}(X)$ denote the set of upper semi B-Fredholm operators and let $\sigma_{S B F_{+}}(T)=\left\{\lambda \in \mathbb{C}: \lambda \notin S F_{+}(X)\right\}$. We write $\sigma_{B W}(T)=\left\{\lambda \in \mathbb{C}: \lambda \in \sigma_{S B F_{+}}(T)\right.$ or ind $\left.(T-\lambda)>0\right\}$.

The quasinilpotent part $H_{0}(T-\lambda I)$ and the analytic core $K(T-\lambda I)$ of $T-\lambda I$ are defined by

$$
H_{0}(T-\lambda I):=\left\{x \in X: \lim _{n \rightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

and

$$
\begin{aligned}
& K(T-\lambda I)=\left\{x \in X: \text { there exists a sequence }\left\{x_{n}\right\} \subset X \text { and } \quad \delta>0\right. \\
& \text { for which } \left.\quad x=x_{0},(T-\lambda I) x_{n+1}=x_{n} \text { and } \quad\left\|x_{n}\right\| \leq \delta^{n}\|x\| \text { for all } \quad n=1,2, \cdots\right\} .
\end{aligned}
$$

We note that $H_{0}(T-\lambda I)$ and $K(T-\lambda I)$ are generally non-closed hyper-invariant subspaces of $T-\lambda I$ such that $(T-\lambda I)^{-p}(0) \subseteq H_{0}(T-\lambda I)$ for all $p=0,1, \cdots$ and $(T-\lambda I) K(T-\lambda I)=K(T-\lambda I)$. Recall that if $\lambda \in$ iso $(\sigma(T))$, then $H_{0}(T-\lambda I)=\chi_{T}(\{\lambda\})$, where $\chi_{T}(\{\lambda\})$ is the glocal spectral subspace consisting of all $x \in X$ for which there exists an analytic function $f: \mathbb{C} \backslash\{\lambda\} \longrightarrow X$ that satisfies $(T-\mu) f(\mu)=x$ for all $\mu \in \mathbb{C} \backslash\{\lambda\}$, see, Duggal [9].

Lemma 3.1. Let $A \in B(X)$ and $B \in B(Y)$. Then

$$
\begin{aligned}
\sigma_{B W}(A \otimes B) & \subseteq \sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A) \subseteq \sigma_{w v}(A) \sigma(B) \cup \sigma_{w}(B) \sigma(A) \\
& \subseteq \sigma_{b}(A) \sigma(B) \cup \sigma_{b}(B) \sigma(A)=\sigma_{b}(A \otimes B)
\end{aligned}
$$

Proof. Since $\sigma_{B W}(T) \subseteq \sigma_{w}(T) \subseteq \sigma_{b}(T)$, the inclusion

$$
\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A) \subseteq \sigma_{w}(A) \sigma(B) \cup \sigma_{w}(B) \sigma(A) \subseteq \sigma_{b}(A) \sigma(B) \cup \sigma_{b}(B) \sigma(A)
$$

is evident. Also we have $\sigma_{b}(A) \sigma(B) \cup \sigma_{b}(B) \sigma(A)=\sigma_{b}(A \otimes B)$ is true so it is enough to prove the inclusion $\sigma_{B W}(A \otimes B) \subseteq \sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$. Let $\lambda \notin \sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$. Since $\sigma_{S B F_{+}}(A \otimes B) \subseteq \sigma_{B W}(A) \sigma(B) \cup$ $\sigma_{B W}(B) \sigma(A)$, we have $\lambda \neq 0$. For every factorization $\lambda=\mu \nu$ such that $\mu \in \sigma(A)$ and $v \in \sigma(B)$ we have that $\mu \in \sigma(A) \backslash \sigma_{B W}(A)$ and $\mu \in \sigma(B) \backslash \sigma_{B W}(B)$. That is $\mu \in B F_{+}(A)$ and $v \in B F_{+}(B)$, such that ind $(A-\mu) \leq 0$ and ind $(B-v) \leq 0$. In particular $\lambda \notin \sigma_{S B F_{+}}(A \otimes B)$. Now we have to prove that ind $(A \otimes B-\lambda) \leq 0$. If ind $(A \otimes B-\lambda)>0$,
then $\alpha(A \otimes B-\lambda) \leq \infty$ and so $\beta(A \otimes B-\lambda) \leq \infty$. Let $E=\left\{\left(\mu_{i}, v_{i}\right) \in \sigma(A) \sigma(B): 1 \leq i \leq p, \mu_{i} v_{i}=\lambda\right\}$. Then we have by [14, Theorem 3.5] that

$$
\text { ind }(A \otimes B-\lambda)=\sum_{j=n+1}^{p} \operatorname{ind}\left(A-\mu_{j}\right) \operatorname{dim} H_{0}\left(B-v_{j}\right)+\sum_{j=1}^{n} \operatorname{ind}\left(B-v_{j}\right) \operatorname{dim} H_{0}\left(A-\mu_{j}\right)
$$

Since ind $\left(A-\mu_{i}\right)<0$ and $\operatorname{ind}\left(B-v_{i}\right)<0$, we have a contradiction. Hence we have $\lambda \notin \sigma_{B W}(A \otimes B)$. This completes the proof.

Lemma 3.2. Let $A \in B(X)$ and $B \in B(Y)$. If $A \otimes B$ satisfies property $(B b)$, then $\sigma_{B W}(A \otimes B)=\sigma_{B W}(A) \sigma(B) \cup$ $\sigma_{B W}(B) \sigma(A)$.

Proof. It follows from Theorem 2.3 that $A \otimes B$ satisfies property $(B b)$ if and only if $\sigma_{B W}(A \otimes B)=\sigma_{b}(A \otimes B)$. Thus the required result is an immediate consequence of Lemma 3.1.
The following theorem gives a sufficient condition for the equality $\sigma_{B W}(A \otimes B)=\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$ to hold. The equality $\sigma_{S B F_{+}}(A \otimes B)=\sigma_{S B F_{+}}(A) \sigma(B) \cup \sigma_{S B F_{+}}(B) \sigma(A)$ follows as in lemma 2 of [11] is useful for our proof of Theorem 3.3

Theorem 3.3. If A and B satisfy property $(B b)$, then the following conditions are equivalent:
(i) $A \otimes B$ satisfies property $(B b)$;
(ii) $\sigma_{B W}(A \otimes B)=\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)$;
(iii) A has SVEP at points $\mu \in B F_{+}(A)$ and $v \in B F_{+}(B)$ such that $\lambda=\mu v \notin \sigma_{B W}(A \otimes B)$.

Proof. $(i) \Longrightarrow$ (ii). is clear from Lemma 3.2.
$(i i) \Longrightarrow(i)$. Let (ii) satisfied. since A and B satisfy $B b$, it follows that

$$
\sigma_{B W}(A \otimes B)=\sigma_{B W}(A) \sigma(B) \cup \sigma_{B W}(B) \sigma(A)=\sigma_{b}(A) \sigma(B) \cup \sigma_{b}(B) \sigma(A)=\sigma_{b}(A \otimes B)
$$

(ii) \Longrightarrow (iii). Let $\lambda \in \sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)$. Since A and B satisfy $B b$, we have $\lambda \in \sigma(A \otimes B) \backslash \sigma_{b}(A \otimes B)$. Then for every factorization $\lambda=\mu \nu$ of λ, we have $\mu \in S B F_{+}(A)$ and $v \in S B F_{+}(B)$ we have that $p(A-\mu)$ and $q(B-v)$ are finite. Hence, A and B have SVEP at μ and v, respectively.
(iii) $\Longrightarrow(i i)$. Suppose (iii) holds. We have to prove that $\sigma_{b}(A \otimes B) \subseteq \sigma_{B W}(A \otimes B)$. Let $\lambda \in \sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)$. Then $\lambda \in B F_{+}(A \otimes B)$ and $\operatorname{ind}(A \otimes B) \leq 0$. Then by the hypothesis and by equality $\sigma_{S B F_{+}}(A \otimes B)=$ $\sigma_{S B F_{+}}(A) \sigma(B) \cup \sigma_{S B F_{+}}(B) \sigma(A)$, we conclude that $\mu \notin \sigma_{b}(A \otimes B)$ and $v \notin \sigma_{b}(A \otimes B)$. Thus $\lambda \notin \sigma_{b}(A \otimes B)$.

Theorem 3.4. Let $A \in B(X)$ and $B \in B(Y)$. If A^{*} and B^{*} have $S V E P$, then $A \otimes B$ satisfies property $(B b)$.
Proof. The hypothesis A^{*} and B^{*} have SVEP implies

$$
\sigma_{w}(A)=\sigma_{B W}(A), \quad \sigma_{w}(B)=\sigma_{B W}(B)
$$

and

$$
A, B \quad \text { and } \quad A \otimes B \quad \text { satisfy Browder's theorem. }
$$

Hence, Browder's theorem transfer from A and B to $A \otimes B$. Thus,

$$
\begin{aligned}
\sigma_{b}(A \otimes B) & =\sigma_{w}(A \otimes B)=\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B) \\
& =\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B)=\sigma_{B W}(A \otimes B)
\end{aligned}
$$

Therefore,

$$
\pi^{0}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)
$$

i.e., $A \otimes B$ satisfies property $(B b)$.

An operator $T \in B(X)$ is polaroid if every $\lambda \in i s o \sigma(T)$ is a pole of the resolvent operator $(T-\lambda I)^{-1} . T \in B(X)$ polaroid implies T^{*} polaroid. It is well known that if T or T^{*} has SVEP and T is polaroid, then T and T^{*} satisfy Weyl's theorem.

Theorem 3.5. Suppose that the operators $A \in B(X)$ and $B \in B(Y)$ are polaroid.
(i) If A^{*} and B^{*} have $S V E P$, then $A \otimes B$ satisfies property $(B w)$.
(ii) If A and B have SVEP, then $A^{*} \otimes B^{*}$ satisfies property ($\left.B w\right)$.

Proof. (i) The hypothesis A^{*} and B^{*} have SVEP implies

$$
\sigma_{w}(A)=\sigma_{B W}(A), \quad \sigma_{w}(B)=\sigma_{B W}(B)
$$

and
A, B and $A \otimes B$ satisfy Browder's theorem.
Hence, Browder's theorem transfer from A and B to $A \otimes B$. Thus,

$$
\begin{aligned}
\sigma_{b}(A \otimes B) & =\sigma_{w}(A \otimes B)=\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B) \\
& =\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B)=\sigma_{B W}(A \otimes B)
\end{aligned}
$$

Evidently, $A \otimes B$ is polaroid by Lemma 2 of [10]; combining this with $A \otimes B$ satisfies Browder's theorem, it follows that $A \otimes B$ satisfies $W t$, i.e., $\sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)=E^{0}(A \otimes B)$. But then

$$
E^{0}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)
$$

i.e., $A \otimes B$ satisfies property $(B w)$.
(ii) In this case $\sigma(A)=\sigma\left(A^{*}\right), \sigma(B)=\sigma\left(B^{*}\right), \sigma_{w}\left(A^{*}\right)=\sigma_{B W}\left(A^{*}\right), \sigma_{w}\left(B^{*}\right)=\sigma_{B W}\left(B^{*}\right)$,
$\sigma(A \otimes B)=\sigma\left(A^{*} \otimes B^{*}\right)$, polaroid property transfer from A, B to $A^{*} \otimes B^{*}$, and Browder's theorem transfer from A, B to $A \otimes B$. Hence

$$
\begin{aligned}
\sigma_{b}\left(A^{*} \otimes B^{*}\right) & =\sigma_{b}(A \otimes B)=\sigma_{w}(A \otimes b)=\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B) \\
& =\sigma\left(A^{*}\right) \sigma_{w}\left(B^{*}\right) \cup \sigma_{w}\left(A^{*}\right) \sigma\left(B^{*}\right) \\
& =\sigma\left(A^{*}\right) \sigma_{B W}\left(B^{*}\right) \cup \sigma_{B W}\left(A^{*}\right) \sigma\left(B^{*}\right) \\
& =\sigma_{B W}\left(A^{*} \otimes B^{*}\right) .
\end{aligned}
$$

Thus, since $A^{*} \otimes B^{*}$ polaroid and $A \otimes B$ satisfies Browder's theorem imply $A^{*} \otimes B^{*}$ satisfy $W t$,

$$
E^{0}\left(A^{*} \otimes B^{*}\right)=\sigma\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{w}\left(A^{*} \otimes B^{*}\right)=\sigma\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{B W}\left(A^{*} \otimes B^{*}\right),
$$

i.e., $A^{*} \otimes B^{*}$ satisfies property $(B w)$.

4. Perturbations

Let $[A, Q]=A Q-Q A$ denote the commutator of the operators A and Q. If $Q_{1} \in B(X)$ and $Q_{2} \in B(Y)$ are quasinilpotent operators such that $\left[Q_{1}, A\right]=\left[Q_{2}, B\right]=0$ for some operators $A \in B(X)$ and $B \in B(Y)$, then

$$
\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)=(A \otimes B)+Q
$$

where $Q=Q_{1} \otimes B+A \otimes Q_{2}+Q_{1} \otimes Q_{2} \in B(X \otimes Y)$ is a quasinilpotent operator. If in the above, Q_{1} and Q_{2} are nilpotents then $\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)$ is the perturbation of $A \otimes B$ by a commuting nilpotent operator.
A bounded operator T on X is called finite isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T of finite multiplicity, i.e $i s o \sigma(T) \subseteq E^{0}(T)$. Recall that an operator $T \in B(X)$ satisfies generalized Browder's theorem (in symbol, $T \in g B t$) if $\sigma(T) \backslash \sigma_{B W}(T)=\pi(T)$. Note that from Theorem 2.1 of [3] that an operator T, $T \in B t$ if and only if $T \in g B t$. The following lemma from [12] is useful in the proof of the following results.

Lemma 4.1. Let $T \in B(X)$. Then the following statements are equivalent:
(i) T satisfies property (Bw);
(ii) generalized Browder's theorem holds for T and $\pi(T)=E^{0}(T)$.

Proposition 4.2. Let $Q_{1} \in B(X)$ and $Q_{2} \in B(Y)$ be quasinilpotent operators such that $\left[Q_{1}, A\right]=\left[Q_{2}, B\right]=0$ for some operators $A \in B(X)$ and $B \in B(Y)$. If $A \otimes B$ is finitely isoloid, then $A \otimes B$ satisfies property (Bw) implies $\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)$ satisfies property $(B w)$.

Proof. Recall that $\sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=\sigma(A \otimes B), \sigma_{w}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=\sigma_{w}(A \otimes B), \sigma_{B W}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=$ $\sigma_{B W}(A \otimes B)$ and that the perturbation of an operator by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If $A \otimes B$ satisfies property $(B w)$, then

$$
\begin{aligned}
E^{0}(A \otimes B) & =\sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B) \\
& =\sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \backslash \sigma_{B W}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) .
\end{aligned}
$$

We prove that $E^{0}(A \otimes B)=E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Observe that if $\lambda \in$ iso $\sigma(A \otimes B)$, then $A^{*} \otimes B^{*}$ has SVEP at λ; equivalently, $\left(A^{*}+Q_{1}^{*}\right) \otimes\left(B^{*}+Q_{2}^{*}\right)$ has SVEP at λ. Let $\lambda \in E^{0}(A \otimes B)$; then $\lambda \in \sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \backslash \sigma_{B W}((A+$ $\left.\left.Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Since $\left(A^{*}+Q_{1}^{*}\right) \otimes\left(B^{*}+Q_{2}^{*}\right)$ has SVEP at λ, it follows that $\lambda \notin \sigma_{B W}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$ and $\lambda \in \operatorname{iso\sigma }\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Thus, $\lambda \in E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Hence $E^{0}(A \otimes B) \subseteq E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Conversely, if $\lambda \in E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$, then $\left.\lambda \in \operatorname{iso\sigma }(A \otimes B)\right)$, and this, since $A \otimes B$ is finitely isoloid implies that $\lambda \in E^{0}(A \otimes B)$, Hence $E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \subseteq E^{0}(A \otimes B)$.

From [6], we recall that an operator $R \in B(X)$ is said to be Riesz if $R-\lambda I$ is Fredholm for every non-zero complex number λ, that is, $\Pi(R)$ is quasi-nilpotent in $C(X)$ where $C(X):=B(X) / K(X)$ is the Calkin algebra and Π is the canonical mapping of $B(X)$ into $C(X)$. Note that for such operator, $\pi^{0}(R)=\sigma(R) \backslash\{0\}$, and its restriction to one of its closed subspace is also a Riesz operator, see [6]. The situation for perturbations by commuting Riesz operators is a bit more delicate. The equality $\sigma(T)=\sigma(T+R)$ always hold for operators $T, R \in B(X)$ such that R is Riesz and $[T, R]=0$; the tensor product $T \otimes R$ is not a Riesz operator (the Fredholm spectrum $\sigma_{e}(T \otimes R)=\sigma(T) \sigma_{e}(R) \cup \sigma_{e}(T) \sigma(R)=\sigma_{e}(T) \sigma(R)=\{0\}$ for a particular choice of T only). However, σ_{w} (also, $\sigma_{B W}$) is stable under perturbation by commuting Riesz operators [17,18], and so T satisfies Browder's theorem if and only if $T+R$ satisfies Browder's theorem. Thus, if $T, R \in B(X)$ (such that R is Riesz and $[T, R]=0)$, then $\pi^{0}(T)=\sigma(T) \backslash \sigma_{w}(T)=\sigma(T+R) \backslash \sigma_{w}(T+R)=\pi^{0}(T+R)$, where $\pi^{0}(T)$ is the set of $\lambda \in$ iso $\sigma(T)$ which are finite rank poles of the resolvent of T. If we now suppose additionally that T satisfies property $(B w)$, then

$$
\begin{equation*}
E^{0}(T)=\sigma(T) \backslash \sigma_{B W}(T)=\sigma(T+R) \backslash \sigma_{B W}(T+R) \tag{1}
\end{equation*}
$$

and a necessary and sufficient condition for $T+R$ to satisfy property $(B w)$ is that $E^{0}(T)=E^{0}(T+R)$. One such condition, namely T is finitely isoloid.

Proposition 4.3. Let $T, R \in B(X)$, where R is Riesz, and T is finitely isoloid. Then T satisfies property (Bw) implies $T+R$ satisfies property (Bw).

Proof. Observe that if T satisfies property (Bw), then identity (1) holds. Let $\lambda \in E^{0}(T)$. Then, $\lambda \in E^{0}(T) \cap \sigma(T)=$ $E^{0}(T+R-R) \cap \sigma(T+R) \subseteq i s o \sigma(T+R)$, and so $T^{*}+R^{*}$ has SVEP at λ. Since $\lambda \in \sigma(T+R) \backslash \sigma_{B W}(T+R), T^{*}+R^{*}$ has SVEP at λ implies that $T+R-\lambda I$ is Fredholm of index 0 and so $\lambda \in E^{0}(T+R)$. Hence, $E^{0}(T) \subseteq E^{0}(T+R)$. Now let $\lambda \in E^{0}(T+R)$. Then $\lambda \in E^{0}(T+R) \cap \sigma(T+R)=E^{0}(T+R) \cap \sigma(T) \subseteq i s o \sigma(T)$, which by the finite isoloid property of T implies $\lambda \in E^{0}(T)$. Thus, $E^{0}(T+R) \subseteq E^{0}(T)$.

Theorem 4.4. Let $A \in B(X)$ and $B \in B(Y)$ be finitely isoloid operators which satisfy property (Bw). If $R_{1} \in B(X)$ and $R_{2} \in B(Y)$ are Riesz operators such that $\left[A, R_{1}\right]=\left[B, R_{2}\right]=0, \sigma\left(A+R_{1}\right)=\sigma(A)$ and $\sigma\left(B+R_{2}\right)=\sigma(B)$, then $A \otimes B$ satisfies property $(B w)$ implies $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$ satisfies property (Bw) if and only if generalized Browder's theorem transforms from $A+R_{1}$ and $B+R_{2}$ to their tensor product.

Proof. The hypotheses imply (by Proposition 4.3) that both $A+R_{1}$ and $B+R_{2}$ satisfy property (Bw). Suppose that $A \otimes B$ satisfies property $(B w)$. Then $\sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)=E^{0}(A \otimes B)$. Evidently $A \otimes B$ satisfies generalized Browder's theorem, and so the hypothesis A and B satisfy property $(B w)$ implies that generalized Browder's theorem transfers from A and B to $A \otimes B$. Furthermore, since , $\sigma\left(A+R_{1}\right)=\sigma(A), \sigma\left(B+R_{2}\right)=\sigma(B)$, and $\sigma_{B W}$ is stable under perturbations by commuting Riesz operators,

$$
\begin{aligned}
\sigma_{B W}(A \otimes B) & =\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B) \\
& =\sigma\left(A+R_{1}\right) \sigma_{B W}\left(B+R_{2}\right) \cup \sigma_{B W}\left(A+R_{1}\right) \sigma\left(B+R_{2}\right) .
\end{aligned}
$$

Suppose now that generalized Browder's theorem transfers from $A+R_{1}$ and $B+R_{2}$ to $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$. Then

$$
\sigma_{B W}(A \otimes B)=\sigma_{B W}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)
$$

and

$$
E^{0}(A \otimes B)=\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right) \backslash \sigma_{B W}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)
$$

Let $\lambda \in E^{0}(A \otimes B)$. Then $\lambda \neq 0$, and hence there exist $\mu \in \sigma\left(A+R_{1}\right) \backslash \sigma_{B W}\left(A+R_{1}\right)$ and $v \in \sigma\left(B+R_{2}\right) \backslash \sigma_{B W}\left(B+R_{2}\right)$ such that $\lambda=\mu v$. As observed above, both $A+R_{1}$ and $B+R_{2}$ satisfy property ($\left.B w\right)$; hence $\mu \in E^{0}\left(A+R_{1}\right)$ and $v \in E^{0}\left(B+R_{2}\right)$. This, since $\lambda \in \sigma(A \otimes B)=\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)$, implies $\lambda \in E^{0}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)$. Conversely, if $\lambda \in E^{0}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)$, then $\lambda \neq 0$ and there exist $\mu \in E^{0}\left(A+R_{1}\right) \subseteq$ iso $\sigma(A)$ and $v \in E^{0}\left(B+R_{2}\right) \subseteq$ iso $\sigma(B)$ such that $\lambda=\mu \nu$. Recall that $E^{0}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right) \subseteq E^{0}\left(A+R_{1}\right) E^{0}\left(B+R_{2}\right)$. Since A and B are finite isoloid, $\mu \in E^{0}(A)$ and $v \in E^{0}(B)$. Hence, since $\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)=\sigma(A \otimes B), \lambda=\mu v \in E_{a}^{0}(A \otimes B)$. To complete the proof, we observe that if the implication of the statement of the theorem holds, then (necessarily) $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$ satisfies generalized Browder's theorem. This, since $A+R_{1}$ and $B+R_{2}$ satisfy generalized Browder's theorem, implies generalized Browder's theorem transfers from $A+R_{1}$ and $B+R_{2}$ to $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$.

References

[1] P. Aiena, Fredhlom and Local Specral Theory with Application to Multipliers, Kluwer Acad. Publishers, Dordrecht, 2004.
[2] P. Aiena, J.R Guillen, P. Peña, Property (w) for perturbations of polaroid operators, Linear Algebra and its Applications 428 (2008) 1791-1802.
[3] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Mathematical Journal 48 (2006) 179-185.
[4] M. Berkani, Index of B-Fredholm operators and generalisation of Weyls theorem, Proceedings of the American Mathematical Society 130(2002) 1717-1723.
[5] M. Berkani, B-Weyl spectrum and poles of the resolvant, Journal of Mathematical Analysis and Applications 272 (2002) 596-603.
[6] S.R. Caradus, W.E. Pfaffenberger, Y. Bertram , Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
[7] L.A. Cuburn, Weyl's theorem for non-normal operators, Michigan Mathematical Journal 13 (1966) 285-288.
[8] R.E. Curto and Y.M Han, Generalized Browder's and Weyl's theorem's for Banach Space operators, Journal of Mathematical Analysis and Applications 336 (2007) 1424-1442.
[9] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, Journal of Mathematical Analysis and Applications 340 (2008) 366-373.
[10] B.P Duggal, Tensor product and property (w), Rendiconti del Circolo Matematico di Palermo 60 (2011) 23-30.
[11] B.P Dugal, S.V Djordjevic and C.S. Kubrusly, On a-Browder and a-Weyl spectra of tensor products, Rendiconti del Circolo Matematico di Palermo 59 (2010) 473-481.
[12] A. Gupta and N. Kashyap, Property (Bw) and Weyl Type theorem's, Bulletin of Mathematical Analysis and Applications 3 (2011) 1-7.
[13] H.G. Heuser, Functional Analysis, John Willy and Sons, Ltd., Chichester,1982.
[14] T. Ichinose, Spectral properties of linear operators I, Transactions of the American Mathematical Society 235 (1978) 75-113.
[15] D. Kitson, R. Harte, and C. Hernandez, Weyl theorem and tensor product: a counter example, Journal of Mathematical Analysis and Applications 378 (2011) 128-132.
[16] C.S. Kubrusly and B.P Dugal, On Weyl and Browder spectra of tensor product, Glasgow Mathematical Journal 50 (2008) $289-302$.
[17] M. Oudghiri, Weyls Theorem and perturbations, Integral Equations and Operator Theory 53 (2005) 535-545.
[18] M. Oudghiri, a-Weyl's theorem and perturbations, Studia Mathematica 173 (2006) 193-201.
[19] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Transactions of the American Mathematical Society 349 (1997) 2115-2124.
[20] M.H.M Rashid and T.Prasad, Varients of Weyl type theorems, Annals of Functional Analysis 4 (2013) 40-52.

[^0]: 2010 Mathematics Subject Classification. Primary 47A10; Secondary 47A53, 47A55
 Keywords. Property (Bw), Property (Bb), SVEP, tensor product
 Received: 05 January 2013; Accepted: 08 May 2013
 Communicated by Dragan S. Djordjević
 Email addresses: malik_okasha@yahoo.com (M.H.M.Rashid), prasadvalapil@gmail.com (T. Prasad)

