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Abstract. In this paper, we find necessary and sufficient conditions for Banach Space operator to satisfy the
property (Bb). Then we obtain, if Banach Space operators A ∈ B(X) and B ∈ B(Y) satisfy property (Bb) implies
A⊗B satisfies property (Bb) if and only if the B-Weyl spectrum identity σBW(A⊗B) = σBW(A)σ(B)∪σBW(B)σ(A)
holds. Perturbations by Riesz operators are considered.

1. Introduction

Throughout this paper we denote by B(X) the algebra of all bounded linear operators acting on a
Banach space X. For T ∈ B(X), let T∗,ker(T) = T−1(0),ℜ(T) = T(X), σ(T) and σa(T) denote respectively
the adjoint, the null space, the range, the spectrum and the approximate point spectrum of T. Let α(T)
and β(T) be the nullity and the deficiency of T defined by α(T) = dim ker(T) and β(T) = codimℜ(T). If
the range ℜ(T) of T ∈ B(X) is closed and α(T) < ∞ (resp., β(T) < ∞) then T is upper semi-Fredholm
(resp., lower semi-Fredholm) operator. Let SF+(X) (resp.,SF−(X)) denote the semigroup of upper semi-
Fredholm (resp., lower semi-Fredholm) operator on X. An operator T ∈ B(X) is said to be semi-Fredholm
if T ∈ SF+(X) ∪ SF−(X) and Fredholm if T ∈ SF+(X) ∩ SF−(X). If T is semi-Fredholm then the index of
T is defined by ind(T) = α(T) − β(T). Recall that the ascent of an operator T ∈ B(X) is the smallest non
negative integer p:=p(T) such that T−p(0) = T−(p+1)(0). If there is no such integer, ie., T−p(0) , T−(p+1)(0) for
all p, then set p(T) = ∞ . The descent of T is defined as the smallest non negative integer q:=q(T) such that
Tq(X) = T(q+1)(X). If there is no such integer, ie., Tq(X) , T(q+1)(X) for all q, then set q(T) = ∞. It is well
known that if p(T) and q(T) are both finite then they are equal [13, Proposition 38.6]. A bounded linear
operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and Browder if T is Fredholm
of finite ascent and descent. For T ∈ B(X), let , E0(T), and π0(T) denote, the eigenvalues of finite multiplicity
and poles of T respectively . The Weyl spectrum σw(T) and Browder spectrum σb(T) of T are defined by

σw(T) =
{
λ ∈ C : T − λ is not Weyl

}
,

σb(T) = {λ ∈ C : T − λ is not Browder } .
We have π0(T) := σ(T) \ σb(T). Set ∆(T) = σ(T) \ σw(T). According to Coburn [7], Weyl’s theorem holds
for T (abbreviation, T ∈ Wt) if ∆(T) = E0(T) and that Browder’s theorem holds for T (in symbol, T ∈ Bt) if
σ(T) \ σw(T) = π0(T).
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An operator T ∈ B(X) is called B-Fredholm, T ∈ BF−+(X), if there exist a natural number n, for which the
induced operator Tn : Tn(X) → Tn(X) is Fredholm in usual sense, and B-Weyl, T ∈ BW−

+(X), if T ∈ BF−+(X)
and ind(Tn) = 0. Let E(T) be the set of all eigenvalues of T which are isolated in σ(T) and σBW(T) ={
λ ∈ C : T − λ is not B-Weyl

}
. Set △1(T) = σ(T) \ σBW(T). According to [12], T ∈ B(X) satisfies property (Bw)

(in symbol T ∈ (Bw)) if ∆1(T) = E0(T).We say that T satisfies property (Bb) (in symbol, T ∈ (Bb)), a variant
of generalized Browder’s theorem, if ∆1(T) = π0(T). Property(Bb) is introduced and studied in [20] by the
authors. Property (Bw) implies property (Bb) but converse is not true in general, see [20]. Let A be a unital
algebra. We say that x ∈ A is Drazin invertible of degree k if there exist an element a ∈ A such that xkax = xk,
axa = a and xa = ax. The Drazin spectrum of a ∈ A is defined as σD(a) = {λ ∈ C : a − λ is not Drazin
invertible}. It is well known that T ∈ B(X) is Drazin invertible if and only if T has finite ascent and descent.
Let Lo(X) denote the set of all finite rank operators acting on an infinite dimensional Banach space X. The
B-Browder spectrum σBB(T) is defined in [8] as follows:

σBB(T) =
∩
{σD(T + F) : F ∈ Lo(X) and TF = FT}

An operator T ∈ B(X) has the single valued extension property (SVEP) at λ0 ∈ C, if for every open disc
Dλ0 centered at λ0 the only analytic function f : Dλ0 → X which satisfies (T − λ) f (λ)=0 for all λ ∈ Dλ0 is the
function f ≡ 0. We say that T has SVEP if it has SVEP at every λ ∈ C. For more information, see [1].

The tensor product of two operators A ∈ B(X) and B ∈ B(Y) on X ⊗ Y is the operator A ⊗ B defined by

(A ⊗ B)Σixi ⊗ yi = ΣiAxi ⊗ Byi

for every Σixi ⊗ yi ∈ X ⊗ Y. Extensive study of preservation of Browder’s theorem, Weyl’s theorem ,a-
Browder’s theorem, a-Weyl’s are found in [10, 11, 15, 16]

We studied necessary and sufficient conditions for Banach Space operator to satisfy the property (Bb)
in first section of this paper . Then we obtain , if Banach space operators A ∈ B(X) and B ∈ B(Y) satisfy
property (Bb) implies A⊗ B satisfies property (Bb) if and only if the B-Weyl spectrum identity σBW(A⊗ B) =
σBW(A)σ(B) ∪ σBW(B)σ(A) holds.

2. property (Bb)

Theorem 2.1. If T satisfies property (Bb), then T satisfies Browder’s theorem.

Proof. Suppose that T satisfies property (Bb) ie, ∆1(T) = π0(T). Let λ ∈ ∆(T). Then T − λ is Fredholm of
index zero and hence T − λ is B-Fredholm of index zero. Thus λ ∈ σ(T) \ σBW(T) = ∆1(T). Hence λ ∈ π0(T)

Conversely let λ ∈ π0(T). Since T satisfies property (Bb), T − λ is B-Fredholm of index zero. Since
α(T − λ) < ∞, we conclude that T − λ is Weyl . Thus λ ∈ △(T). This completes the proof.

The following example shows that the converse of above theorem does not hold in general.

Example 2.2. Let T : l2(N) → l2(N) be an injective quasinilpotent operator which is not nilpotant. we define S on
Banach Space X = l2(N) ⊕ l2(N) by S = I ⊕ T, where I is the identity operator on l2(N). Then σ(S) = σw(S) = {0, 1}
and σBW(S) = {0}. Also E0(S) = π0(S) = ϕ. Clearly, S satisfies Browder’s theorem but not (Bb).

Theorem 2.3. Let T ∈ B(X). Then the following statements are equivalent.

(i) T ∈ (Bb);
(ii) σBW(T) = σb(T);

(iii) σBW(T) ∪ E0(T) = σ(T).

Proof. (i)=⇒ (ii). Let λ ∈ σ(T) \ σBW(T). Since T satisfies (Bb), λ ∈ π0(T). Thus λ ∈ σ(T) \ σb(T) and hence
σb(T) ⊆ σBW(T). Since the reverse inclusion is always true, we have σb(T) = σBW(T).
(ii)=⇒ (i). Assume that σb(T) = σBW(T) and we will establish that ∆1(T) = π0(T). Suppose λ ∈ ∆1(T). Then
λ ∈ σ(T) \ σb(T). Hence λ ∈ π0(T). Conversely suppose λ ∈ π0(T). Since σBW(T) = σb(T), λ ∈ ∆1(T).
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(ii)=⇒ (iii). Let λ ∈ ∆1(T). Since σBW(T) = σb(T), λ ∈ σ(T) \ σb(T), ie., λ ∈ π0(T) which implies that λ ∈ E0(T).
Thus σBW(T) ∪ Eo(T) ⊇ σ(T). Since σBW(T) ∪ Eo(T) ⊆ σ(T), always we must have σBW(T) ∪ Eo(T) = σ(T).
(iii)=⇒ (ii). Suppose λ ∈ σ(T) \ σBW(T). Since σBW(T) ∪ E0(T) = σ(T), λ ∈ E0(T). In particular λ is an
isolated point of σ(T). Then by [4, Theorem 4.2] that λ < σD(T) and this implies that λ ∈ π(T) and so
a(T−λ) = d(T−λ) < ∞. So, it follows from [1, Theorem 3.4] that β(T−λ) = α(T−λ) < ∞. Hence λ ∈ π0(T).
Therefore, λ < σb(T). Since the other inclusion is always verified, we have σBW(T) = σb(T). This completes
the proof.

Theorem 2.4. Let T ∈ B(X). IF T satisfies property (Bb). Then the following statements are equivalent.

(i) T ∈ (Bw);
(ii) σBW(T) ∩ E0(T) = ∅;

(iii) Eo(T) = π0(T).

Proof. (i)=⇒ (ii). Suppose (i) holds, that is, ∆1(T) = E0(T). then it follows that σBW(T) ∩ E0(T) = ∅.
(ii)=⇒ (iii). Suppose σBW(T) ∩ E0(T) = ∅ and let λ ∈ E0(T). Then λ ∈ σ(T) \ σBW(T). Since T ∈ (Bb), we must
have λ ∈ π0(T) and hence E0(T) ⊆ π0(T). Since the reverse inclusion is trivial, we have E0(T) = π0(T).
(iii)=⇒ (i). Since T satisfies property (Bb) and Eo(T) = π0(T), we conclude that T ∈ (Bw).

3. property(Bb) and Tensor product

Let SF+(X) denote the set of upper semi B-Fredholm operators and let σSBF+ (T) = {λ ∈ C : λ < SF+(X)}.
We write σBW(T) = {λ ∈ C : λ ∈ σSBF+ (T) or ind(T − λ) > 0}.

The quasinilpotent part H0(T − λI) and the analytic core K(T − λI) of T − λI are defined by

H0(T − λI) := {x ∈ X : lim
n−→∞

∥(T − λI)nx∥ 1
n = 0}.

and

K(T − λI) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0
for which x = x0, (T − λI)xn+1 = xnand ∥xn∥ ≤ δn∥x∥for all n = 1, 2, · · · }.

We note that H0(T−λI) and K(T−λI) are generally non-closed hyper-invariant subspaces of T−λI such that
(T−λI)−p(0) ⊆ H0(T−λI) for all p = 0, 1, · · · and (T−λI)K(T−λI) = K(T−λI). Recall that if λ ∈ iso(σ(T)), then
H0(T − λI) = χT({λ}), where χT({λ}) is the glocal spectral subspace consisting of all x ∈ X for which there
exists an analytic function f : C \ {λ} −→ X that satisfies (T − µ) f (µ) = x for all µ ∈ C \ {λ}, see, Duggal [9].

Lemma 3.1. Let A ∈ B(X) and B ∈ B(Y). Then

σBW(A ⊗ B) ⊆ σBW(A)σ(B) ∪ σBW(B)σ(A) ⊆ σw(A)σ(B) ∪ σw(B)σ(A)
⊆ σb(A)σ(B) ∪ σb(B)σ(A) = σb(A ⊗ B).

Proof. Since σBW(T) ⊆ σw(T) ⊆ σb(T), the inclusion

σBW(A)σ(B) ∪ σBW(B)σ(A) ⊆ σw(A)σ(B) ∪ σw(B)σ(A) ⊆ σb(A)σ(B) ∪ σb(B)σ(A)

is evident. Also we have σb(A)σ(B) ∪ σb(B)σ(A) = σb(A ⊗ B) is true so it is enough to prove the inclusion
σBW(A⊗B) ⊆ σBW(A)σ(B)∪σBW(B)σ(A). Let λ < σBW(A)σ(B)∪σBW(B)σ(A). Since σSBF+(A⊗B) ⊆ σBW(A)σ(B)∪
σBW(B)σ(A), we have λ , 0. For every factorization λ = µν such that µ ∈ σ(A) and ν ∈ σ(B) we have that
µ ∈ σ(A) \ σBW(A) and µ ∈ σ(B) \ σBW(B). That is µ ∈ BF+(A) and ν ∈ BF+(B), such that ind(A − µ) ≤ 0 and
ind(B−ν) ≤ 0. In particularλ < σSBF+ (A⊗B). Now we have to prove that ind(A⊗B−λ) ≤ 0. If ind(A⊗B−λ) > 0,
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then α(A ⊗ B − λ) ≤ ∞ and so β(A ⊗ B − λ) ≤ ∞. Let E = {(µi, νi) ∈ σ(A)σ(B) : 1 ≤ i ≤ p, µiνi = λ}. Then we
have by [14, Theorem 3.5] that

ind (A ⊗ B − λ) =
p∑

j=n+1

ind(A − µ j) dim H0(B − ν j) +
n∑

j=1

ind (B − ν j) dim H0(A − µ j).

Since ind (A − µi) < 0 and ind(B − νi) < 0, we have a contradiction. Hence we have λ < σBW(A ⊗ B). This
completes the proof.

Lemma 3.2. Let A ∈ B(X) and B ∈ B(Y). If A ⊗ B satisfies property (Bb), then σBW(A ⊗ B) = σBW(A)σ(B) ∪
σBW(B)σ(A).

Proof. It follows from Theorem 2.3 that A ⊗ B satisfies property (Bb) if and only if σBW(A ⊗ B) = σb(A ⊗ B).
Thus the required result is an immediate consequence of Lemma 3.1.

The following theorem gives a sufficient condition for the equality σBW(A ⊗ B) = σBW(A)σ(B) ∪ σBW(B)σ(A)
to hold. The equality σSBF+ (A ⊗ B) = σSBF+ (A)σ(B) ∪ σSBF+ (B)σ(A) follows as in lemma 2 of [11] is useful for
our proof of Theorem 3.3

Theorem 3.3. If A and B satisfy property (Bb), then the following conditions are equivalent:

(i) A ⊗ B satisfies property (Bb);
(ii) σBW(A ⊗ B) = σBW(A)σ(B) ∪ σBW(B)σ(A);

(iii) A has SVEP at points µ ∈ BF+(A) and ν ∈ BF+(B) such that λ = µν < σBW(A ⊗ B).

Proof. (i) =⇒ (ii). is clear from Lemma 3.2.
(ii) =⇒ (i). Let (ii) satisfied. since A and B satisfy Bb, it follows that

σBW(A ⊗ B) = σBW(A)σ(B) ∪ σBW(B)σ(A) = σb(A)σ(B) ∪ σb(B)σ(A) = σb(A ⊗ B).

(ii) =⇒ (iii). Let λ ∈ σ(A ⊗ B) \ σBW(A ⊗ B). Since A and B satisfy Bb, we have λ ∈ σ(A ⊗ B) \ σb(A ⊗ B). Then
for every factorization λ = µν of λ , we have µ ∈ SBF+(A) and ν ∈ SBF+(B) we have that p(A−µ) and q(B−ν)
are finite. Hence , A and B have SVEP at µ and ν, respectively.
(iii) =⇒ (ii). Suppose (iii) holds. We have to prove that σb(A⊗B) ⊆ σBW(A⊗B). Let λ ∈ σ(A⊗B)\σBW(A⊗B).
Then λ ∈ BF+(A ⊗ B) and ind(A ⊗ B) ≤ 0. Then by the hypothesis and by equality σSBF+ (A ⊗ B) =
σSBF+ (A)σ(B) ∪ σSBF+ (B)σ(A) , we conclude that µ < σb(A ⊗ B) and ν < σb(A ⊗ B). Thus λ < σb(A ⊗ B).

Theorem 3.4. Let A ∈ B(X) and B ∈ B(Y). If A∗ and B∗ have SVEP, then A ⊗ B satisfies property (Bb).

Proof. The hypothesis A∗ and B∗ have SVEP implies

σw(A) = σBW(A), σw(B) = σBW(B)

and
A,B and A ⊗ B satisfy Browder’s theorem.

Hence, Browder’s theorem transfer from A and B to A ⊗ B. Thus,

σb(A ⊗ B) = σw(A ⊗ B) = σ(A)σw(B) ∪ σw(A)σ(B)
= σ(A)σBW(B) ∪ σBW(A)σ(B) = σBW(A ⊗ B)

Therefore,
π0(A ⊗ B) = σ(A ⊗ B) \ σw(A ⊗ B) = σ(A ⊗ B) \ σBW(A ⊗ B),

i.e., A ⊗ B satisfies property (Bb).
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An operator T ∈ B(X) is polaroid if every λ ∈ isoσ(T) is a pole of the resolvent operator (T − λI)−1. T ∈ B(X)
polaroid implies T∗ polaroid. It is well known that if T or T∗ has SVEP and T is polaroid, then T and T∗

satisfy Weyl’s theorem.

Theorem 3.5. Suppose that the operators A ∈ B(X) and B ∈ B(Y) are polaroid.

(i) If A∗ and B∗ have SVEP, then A ⊗ B satisfies property (Bw).
(ii) If A and B have SVEP, then A∗ ⊗ B∗ satisfies property (Bw).

Proof. (i) The hypothesis A∗ and B∗ have SVEP implies

σw(A) = σBW(A), σw(B) = σBW(B)

and
A,B and A ⊗ B satisfy Browder’s theorem.

Hence, Browder’s theorem transfer from A and B to A ⊗ B. Thus,

σb(A ⊗ B) = σw(A ⊗ B) = σ(A)σw(B) ∪ σw(A)σ(B)
= σ(A)σBW(B) ∪ σBW(A)σ(B) = σBW(A ⊗ B)

Evidently, A ⊗ B is polaroid by Lemma 2 of [10]; combining this with A ⊗ B satisfies Browder’s theorem, it
follows that A ⊗ B satisfies Wt, i.e., σ(A ⊗ B) \ σw(A ⊗ B) = E0(A ⊗ B). But then

E0(A ⊗ B) = σ(A ⊗ B) \ σw(A ⊗ B) = σ(A ⊗ B) \ σBW(A ⊗ B),

i.e., A ⊗ B satisfies property (Bw).
(ii) In this case σ(A) = σ(A∗), σ(B) = σ(B∗), σw(A∗) = σBW(A∗), σw(B∗) = σBW(B∗),
σ(A⊗ B) = σ(A∗ ⊗ B∗), polaroid property transfer from A,B to A∗ ⊗ B∗, and Browder’s theorem transfer from
A,B to A ⊗ B. Hence

σb(A∗ ⊗ B∗) = σb(A ⊗ B) = σw(A ⊗ b) = σ(A)σw(B) ∪ σw(A)σ(B)
= σ(A∗)σw(B∗) ∪ σw(A∗)σ(B∗)
= σ(A∗)σBW(B∗) ∪ σBW(A∗)σ(B∗)
= σBW(A∗ ⊗ B∗).

Thus, since A∗ ⊗ B∗ polaroid and A ⊗ B satisfies Browder’s theorem imply A∗ ⊗ B∗ satisfy Wt,

E0(A∗ ⊗ B∗) = σ(A∗ ⊗ B∗) \ σw(A∗ ⊗ B∗) = σ(A∗ ⊗ B∗) \ σBW(A∗ ⊗ B∗),

i.e., A∗ ⊗ B∗ satisfies property (Bw).

4. Perturbations

Let [A,Q] = AQ −QA denote the commutator of the operators A and Q. If Q1 ∈ B(X) and Q2 ∈ B(Y) are
quasinilpotent operators such that [Q1,A] = [Q2,B] = 0 for some operators A ∈ B(X) and B ∈ B(Y), then

(A +Q1) ⊗ (B +Q2) = (A ⊗ B) +Q,

where Q = Q1 ⊗ B+A⊗Q2 +Q1 ⊗Q2 ∈ B(X⊗Y) is a quasinilpotent operator. If in the above, Q1 and Q2 are
nilpotents then (A +Q1) ⊗ (B +Q2) is the perturbation of A ⊗ B by a commuting nilpotent operator.
A bounded operator T on X is called finite isoloid if every isolated point of σ(T) is an eigenvalue of T
of finite multiplicity, i.e isoσ(T) ⊆ E0(T). Recall that an operator T ∈ B(X) satisfies generalized Browder’s
theorem (in symbol, T ∈ 1Bt) if σ(T) \ σBW(T) = π(T). Note that from Theorem 2.1 of [3] that an operator T,
T ∈ Bt if and only if T ∈ 1Bt. The following lemma from [12] is useful in the proof of the following results.
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Lemma 4.1. Let T ∈ B(X). Then the following statements are equivalent:

(i) T satisfies property (Bw);
(ii) generalized Browder’s theorem holds for T and π(T) = E0(T).

Proposition 4.2. Let Q1 ∈ B(X) and Q2 ∈ B(Y) be quasinilpotent operators such that [Q1,A] = [Q2,B] = 0 for
some operators A ∈ B(X) and B ∈ B(Y). If A ⊗ B is finitely isoloid, then A ⊗ B satisfies property (Bw) implies
(A +Q1) ⊗ (B +Q2) satisfies property (Bw).

Proof. Recall that σ((A+Q1)⊗(B+Q2)) = σ(A⊗B), σw((A+Q1)⊗(B+Q2)) = σw(A⊗B), σBW((A+Q1)⊗(B+Q2)) =
σBW(A ⊗ B) and that the perturbation of an operator by a commuting quasinilpotent has SVEP if and only
if the operator has SVEP. If A ⊗ B satisfies property (Bw), then

E0(A ⊗ B) = σ(A ⊗ B) \ σBW(A ⊗ B)
= σ((A +Q1) ⊗ (B +Q2)) \ σBW((A +Q1) ⊗ (B +Q2)).

We prove that E0(A⊗B) = E0((A+Q1)⊗ (B+Q2)). Observe that if λ ∈ isoσ(A⊗B), then A∗⊗B∗ has SVEP at λ;
equivalently, (A∗ +Q∗1)⊗ (B∗+Q∗2) has SVEP at λ. Let λ ∈ E0(A⊗B); then λ ∈ σ((A+Q1)⊗ (B+Q2)) \σBW((A+
Q1) ⊗ (B +Q2)). Since (A∗ +Q∗1) ⊗ (B∗ +Q∗2) has SVEP at λ, it follows that λ < σBW((A +Q1) ⊗ (B +Q2)) and
λ ∈ isoσ((A +Q1) ⊗ (B +Q2)). Thus, λ ∈ E0((A +Q1) ⊗ (B +Q2)). Hence E0(A ⊗ B) ⊆ E0((A +Q1) ⊗ (B +Q2)).
Conversely, if λ ∈ E0((A+Q1)⊗ (B+Q2)), then λ ∈ isoσ(A⊗B)), and this, since A⊗B is finitely isoloid implies
that λ ∈ E0(A ⊗ B), Hence E0((A +Q1) ⊗ (B +Q2)) ⊆ E0(A ⊗ B).

From [6], we recall that an operator R ∈ B(X) is said to be Riesz if R − λI is Fredholm for every non-zero
complex number λ, that is, Π(R) is quasi-nilpotent in C(X) where C(X) := B(X)/K(X) is the Calkin algebra
and Π is the canonical mapping of B(X) into C(X). Note that for such operator,π0(R) = σ(R) \ {0}, and its
restriction to one of its closed subspace is also a Riesz operator, see [6]. The situation for perturbations by
commuting Riesz operators is a bit more delicate. The equality σ(T) = σ(T + R) always hold for operators
T,R ∈ B(X) such that R is Riesz and [T,R] = 0; the tensor product T⊗R is not a Riesz operator (the Fredholm
spectrum σe(T⊗R) = σ(T)σe(R)∪ σe(T)σ(R) = σe(T)σ(R) = {0} for a particular choice of T only). However, σw
(also, σBW) is stable under perturbation by commuting Riesz operators [17, 18], and so T satisfies Browder’s
theorem if and only if T + R satisfies Browder’s theorem. Thus, if T,R ∈ B(X) (such that R is Riesz and
[T,R] = 0), then π0(T) = σ(T) \ σw(T) = σ(T +R) \ σw(T +R) = π0(T +R),where π0(T) is the set of λ ∈ isoσ(T)
which are finite rank poles of the resolvent of T . If we now suppose additionally that T satisfies property
(Bw), then

E0(T) = σ(T) \ σBW(T) = σ(T + R) \ σBW(T + R) (1)

and a necessary and sufficient condition for T+R to satisfy property (Bw) is that E0(T) = E0(T +R). One
such condition, namely T is finitely isoloid.

Proposition 4.3. Let T,R ∈ B(X), where R is Riesz, and T is finitely isoloid. Then T satisfies property (Bw) implies
T + R satisfies property (Bw).

Proof. Observe that if T satisfies property (Bw), then identity (1) holds. Letλ ∈ E0(T).Then,λ ∈ E0(T)∩σ(T) =
E0(T +R−R)∩ σ(T +R) ⊆ isoσ(T +R), and so T∗ +R∗ has SVEP at λ. Since λ ∈ σ(T +R) \ σBW(T +R), T∗ +R∗

has SVEP at λ implies that T+R−λI is Fredholm of index 0 and so λ ∈ E0(T+R).Hence, E0(T) ⊆ E0(T+R).
Now let λ ∈ E0(T+R). Then λ ∈ E0(T+R)∩σ(T+R) = E0(T+R)∩σ(T) ⊆ isoσ(T),which by the finite isoloid
property of T implies λ ∈ E0(T). Thus, E0(T + R) ⊆ E0(T).

Theorem 4.4. Let A ∈ B(X) and B ∈ B(Y) be finitely isoloid operators which satisfy property (Bw). If R1 ∈ B(X)
and R2 ∈ B(Y) are Riesz operators such that [A,R1] = [B,R2] = 0, σ(A + R1) = σ(A) and σ(B + R2) = σ(B), then
A⊗ B satisfies property (Bw) implies (A+R1)⊗ (B+R2) satisfies property (Bw) if and only if generalized Browder’s
theorem transforms from A + R1 and B + R2 to their tensor product.
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Proof. The hypotheses imply (by Proposition 4.3) that both A+R1 and B+R2 satisfy property (Bw). Suppose
that A⊗B satisfies property (Bw). Then σ(A⊗B)\σBW(A⊗B) = E0(A⊗B). Evidently A⊗B satisfies generalized
Browder’s theorem, and so the hypothesis A and B satisfy property (Bw) implies that generalized Browder’s
theorem transfers from A and B to A ⊗ B. Furthermore, since , σ(A + R1) = σ(A), σ(B + R2) = σ(B), and σBW
is stable under perturbations by commuting Riesz operators,

σBW(A ⊗ B) = σ(A)σBW(B) ∪ σBW(A)σ(B)
= σ(A + R1)σBW(B + R2) ∪ σBW(A + R1)σ(B + R2).

Suppose now that generalized Browder’s theorem transfers from A + R1 and B + R2 to (A + R1) ⊗ (B + R2).
Then

σBW(A ⊗ B) = σBW((A + R1) ⊗ (B + R2))

and
E0(A ⊗ B) = σ((A + R1) ⊗ (B + R2)) \ σBW((A + R1) ⊗ (B + R2)).

Let λ ∈ E0(A⊗B). Then λ , 0, and hence there exist µ ∈ σ(A+R1)\σBW(A+R1) and ν ∈ σ(B+R2)\σBW(B+R2)
such that λ = µν.As observed above, both A+R1 and B+R2 satisfy property (Bw); hence µ ∈ E0(A+R1) and
ν ∈ E0(B+R2). This, sinceλ ∈ σ(A⊗B) = σ((A+R1)⊗(B+R2)), impliesλ ∈ E0((A+R1)⊗(B+R2)).Conversely, if
λ ∈ E0((A+R1)⊗(B+R2)), thenλ , 0 and there existµ ∈ E0(A+R1) ⊆ isoσ(A) and ν ∈ E0(B+R2) ⊆ isoσ(B) such
that λ = µν.Recall that E0((A+R1)⊗(B+R2)) ⊆ E0(A+R1)E0(B+R2). Since A and B are finite isoloid, µ ∈ E0(A)
and ν ∈ E0(B).Hence, since σ((A + R1) ⊗ (B + R2)) = σ(A ⊗ B), λ = µν ∈ E0

a(A ⊗ B). To complete the proof, we
observe that if the implication of the statement of the theorem holds, then (necessarily) (A + R1) ⊗ (B + R2)
satisfies generalized Browder’s theorem. This, since A + R1 and B + R2 satisfy generalized Browder’s
theorem, implies generalized Browder’s theorem transfers from A+R1 and B+R2 to (A+R1)⊗ (B+R2).
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