Filomat 27:7 (2013), 1297–1303 DOI 10.2298/FIL1307297R

Property (*Bb*) and Tensor product

M.H.M.Rashid^a, T. Prasad^b

^aDepartment of Mathematics, Faculty of Science P.O. Box(7), Mu'tah university- Al-Karak-Jordan. ^bDepartment of Mathematics, Government Arts College (Autonomous) Coimbatore, Tamilnadu, India - 641018.

Abstract. In this paper, we find necessary and sufficient conditions for Banach Space operator to satisfy the property (*Bb*). Then we obtain, if Banach Space operators $A \in B(X)$ and $B \in B(Y)$ satisfy property (*Bb*) implies $A \otimes B$ satisfies property (*Bb*) if and only if the B-Weyl spectrum identity $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$ holds. Perturbations by Riesz operators are considered.

1. Introduction

Throughout this paper we denote by B(X) the algebra of all bounded linear operators acting on a Banach space X. For $T \in B(X)$, let T^* , ker $(T) = T^{-1}(0)$, $\Re(T) = T(X)$, $\sigma(T)$ and $\sigma_a(T)$ denote respectively the adjoint, the null space, the range, the spectrum and the approximate point spectrum of T. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T) = \dim \ker(T)$ and $\beta(T) = \operatorname{codim} \mathfrak{R}(T)$. If the range $\Re(T)$ of $T \in B(X)$ is closed and $\alpha(T) < \infty$ (resp., $\beta(T) < \infty$) then T is upper semi-Fredholm (resp., lower semi-Fredholm) operator. Let $SF_+(X)$ (resp., $SF_-(X)$) denote the semigroup of upper semi-Fredholm (resp., lower semi-Fredholm) operator on X. An operator $T \in B(X)$ is said to be semi-Fredholm if $T \in SF_+(X) \cup SF_-(X)$ and Fredholm if $T \in SF_+(X) \cap SF_-(X)$. If T is semi-Fredholm then the index of *T* is defined by $ind(T) = \alpha(T) - \beta(T)$. Recall that the ascent of an operator $T \in B(X)$ is the smallest non negative integer p:=p(T) such that $T^{-p}(0) = T^{-(p+1)}(0)$. If there is no such integer, i.e., $T^{-p}(0) \neq T^{-(p+1)}(0)$ for all *p*, then set $p(T) = \infty$. The descent of *T* is defined as the smallest non negative integer *q*:=q(*T*) such that $T^{q}(X) = T^{(q+1)}(X)$. If there is no such integer, i.e., $T^{q}(X) \neq T^{(q+1)}(X)$ for all q, then set $q(T) = \infty$. It is well known that if p(T) and q(T) are both finite then they are equal [13, Proposition 38.6]. A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. For $T \in B(X)$, let , $E^0(T)$, and $\pi^0(T)$ denote, the eigenvalues of finite multiplicity and poles of T respectively. The Weyl spectrum $\sigma_w(T)$ and Browder spectrum $\sigma_b(T)$ of T are defined by

$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \},\$$

 $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder } \}.$

We have $\pi^0(T) := \sigma(T) \setminus \sigma_b(T)$. Set $\Delta(T) = \sigma(T) \setminus \sigma_w(T)$. According to Coburn [7], Weyl's theorem holds for *T* (abbreviation, $T \in Wt$) if $\Delta(T) = E^0(T)$ and that Browder's theorem holds for *T* (in symbol, $T \in Bt$) if $\sigma(T) \setminus \sigma_w(T) = \pi^0(T)$.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47A53, 47A55

Keywords. Property (Bw), Property (Bb), SVEP, tensor product

Received: 05 January 2013; Accepted: 08 May 2013

Communicated by Dragan S. Djordjević

Email addresses: malik_okasha@yahoo.com (M.H.M.Rashid), prasadvalapil@gmail.com (T. Prasad)

An operator $T \in B(X)$ is called B-Fredholm, $T \in BF_+(X)$, if there exist a natural number n, for which the induced operator $T_n : T^n(X) \to T^n(X)$ is Fredholm in usual sense, and B-Weyl, $T \in BW_+(X)$, if $T \in BF_+(X)$ and $ind(T_n) = 0$. Let E(T) be the set of all eigenvalues of T which are isolated in $\sigma(T)$ and $\sigma_{BW}(T) = \{\lambda \in C : T - \lambda \text{ is not B-Weyl}\}$. Set $\Delta^g(T) = \sigma(T) \setminus \sigma_{BW}(T)$. According to [12], $T \in B(X)$ satisfies *property* (*Bw*) (in symbol $T \in (Bw)$) if $\Delta^g(T) = E^0(T)$. We say that T satisfies *property* (*Bb*) (in symbol, $T \in (Bb)$), a variant of generalized Browder's theorem, if $\Delta^g(T) = \pi^0(T)$. Property(*Bb*) is introduced and studied in [20] by the authors. Property (*Bw*) implies property (*Bb*) but converse is not true in general, see [20]. Let A be a unital algebra. We say that $x \in A$ is Drazin invertible of degree k if there exist an element $a \in A$ such that $x^k ax = x^k$, axa = a and xa = ax. The Drazin spectrum of $a \in A$ is defined as $\sigma_D(a) = \{\lambda \in \mathbb{C} : a - \lambda \text{ is not Drazin invertible}\}$. It is well known that $T \in B(X)$ is Drazin invertible if and only if T has finite ascent and descent. Let $L_o(X)$ denote the set of all finite rank operators acting on an infinite dimensional Banach space X. The B-Browder spectrum $\sigma_{BB}(T)$ is defined in [8] as follows:

$$\sigma_{BB}(T) = \bigcap \{ \sigma_D(T+F) : F \in L_o(X) \text{ and } TF = FT \}$$

An operator $T \in B(X)$ has the single valued extension property (SVEP) at $\lambda_0 \in \mathbb{C}$, if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f : D_{\lambda_0} \to X$ which satisfies $(T - \lambda)f(\lambda)=0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$. We say that *T* has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. For more information, see [1].

The tensor product of two operators $A \in B(X)$ and $B \in B(Y)$ on $X \otimes Y$ is the operator $A \otimes B$ defined by

$$(A \otimes B)\Sigma_i x_i \otimes y_i = \Sigma_i A x_i \otimes B y_i$$

for every $\Sigma_i x_i \otimes y_i \in X \otimes Y$. Extensive study of preservation of Browder's theorem, Weyl's theorem ,a-Browder's theorem, a-Weyl's are found in [10, 11, 15, 16]

We studied necessary and sufficient conditions for Banach Space operator to satisfy the property (*Bb*) in first section of this paper . Then we obtain , if Banach space operators $A \in B(X)$ and $B \in B(Y)$ satisfy property (*Bb*) implies $A \otimes B$ satisfies property (*Bb*) if and only if the B-Weyl spectrum identity $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$ holds.

2. property (Bb)

Theorem 2.1. If T satisfies property (Bb), then T satisfies Browder's theorem.

Proof. Suppose that *T* satisfies property (*Bb*) ie, $\Delta^g(T) = \pi^0(T)$. Let $\lambda \in \Delta(T)$. Then $T - \lambda$ is Fredholm of index zero and hence $T - \lambda$ is *B*-Fredholm of index zero. Thus $\lambda \in \sigma(T) \setminus \sigma_{BW}(T) = \Delta^g(T)$. Hence $\lambda \in \pi^0(T)$ Conversely let $\lambda \in \pi^0(T)$. Since *T* satisfies property (*Bb*), $T - \lambda$ is *B*-Fredholm of index zero. Since

 $\alpha(T - \lambda) < \infty$, we conclude that $T - \lambda$ is Weyl. Thus $\lambda \in \Delta(T)$. This completes the proof.

The following example shows that the converse of above theorem does not hold in general.

Example 2.2. Let $T : l^2(N) \to l^2(N)$ be an injective quasinilpotent operator which is not nilpotant. we define S on Banach Space $X = l^2(N) \oplus l^2(N)$ by $S = I \oplus T$, where I is the identity operator on $l^2(N)$. Then $\sigma(S) = \sigma_w(S) = \{0, 1\}$ and $\sigma_{BW}(S) = \{0\}$. Also $E^0(S) = \pi^0(S) = \phi$. Clearly, S satisfies Browder's theorem but not (Bb).

Theorem 2.3. Let $T \in B(X)$. Then the following statements are equivalent.

(i) $T \in (Bb);$ (ii) $\sigma_{BW}(T) = \sigma_b(T);$ (iii) $\sigma_{BW}(T) \cup E^0(T) = \sigma(T).$

Proof. (i) \Longrightarrow (*ii*). Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Since *T* satisfies (*Bb*), $\lambda \in \pi^0(T)$. Thus $\lambda \in \sigma(T) \setminus \sigma_b(T)$ and hence $\sigma_b(T) \subseteq \sigma_{BW}(T)$. Since the reverse inclusion is always true, we have $\sigma_b(T) = \sigma_{BW}(T)$. (ii) \Longrightarrow (*i*). Assume that $\sigma_b(T) = \sigma_{BW}(T)$ and we will establish that $\Delta^g(T) = \pi^0(T)$. Suppose $\lambda \in \Delta^g(T)$. Then

 $\lambda \in \sigma(T) \setminus \sigma_b(T)$. Hence $\lambda \in \pi^0(T)$. Conversely suppose $\lambda \in \pi^0(T)$. Since $\sigma_{BW}(T) = \sigma_b(T)$, $\lambda \in \Delta^g(T)$.

(ii) \Longrightarrow (*iii*). Let $\lambda \in \Delta^{g}(T)$. Since $\sigma_{BW}(T) = \sigma_{b}(T)$, $\lambda \in \sigma(T) \setminus \sigma_{b}(T)$, ie., $\lambda \in \pi^{0}(T)$ which implies that $\lambda \in E^{0}(T)$. Thus $\sigma_{BW}(T) \cup E^{o}(T) \supseteq \sigma(T)$. Since $\sigma_{BW}(T) \cup E^{o}(T) \subseteq \sigma(T)$, always we must have $\sigma_{BW}(T) \cup E^{o}(T) = \sigma(T)$. (iii) \Longrightarrow (*ii*). Suppose $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Since $\sigma_{BW}(T) \cup E^{0}(T) = \sigma(T)$, $\lambda \in E^{0}(T)$. In particular λ is an isolated point of $\sigma(T)$. Then by [4, Theorem 4.2] that $\lambda \notin \sigma_{D}(T)$ and this implies that $\lambda \in \pi(T)$ and so $a(T - \lambda) = d(T - \lambda) < \infty$. So, it follows from [1, Theorem 3.4] that $\beta(T - \lambda) = \alpha(T - \lambda) < \infty$. Hence $\lambda \in \pi^{0}(T)$. Therefore, $\lambda \notin \sigma_{b}(T)$. Since the other inclusion is always verified, we have $\sigma_{BW}(T) = \sigma_{b}(T)$. This completes the proof. \Box

Theorem 2.4. Let $T \in B(X)$. IF T satisfies property (Bb). Then the following statements are equivalent.

- (*i*) $T \in (Bw)$;
- (*ii*) $\sigma_{BW}(T) \cap E^0(T) = \emptyset;$
- (*iii*) $E^{o}(T) = \pi^{0}(T)$.

Proof. (i) \Longrightarrow (*ii*). Suppose (i) holds, that is, $\Delta^g(T) = E^0(T)$. then it follows that $\sigma_{BW}(T) \cap E^0(T) = \emptyset$. (ii) \Longrightarrow (*iii*). Suppose $\sigma_{BW}(T) \cap E^0(T) = \emptyset$ and let $\lambda \in E^0(T)$. Then $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Since $T \in (Bb)$, we must have $\lambda \in \pi^0(T)$ and hence $E^0(T) \subseteq \pi^0(T)$. Since the reverse inclusion is trivial, we have $E^0(T) = \pi^0(T)$. (iii) \Longrightarrow (*i*). Since *T* satisfies property (*Bb*) and $E^o(T) = \pi^0(T)$, we conclude that $T \in (Bw)$.

3. property(*Bb*) and Tensor product

Let $SF_+(X)$ denote the set of upper semi B-Fredholm operators and let $\sigma_{SBF_+}(T) = \{\lambda \in \mathbb{C} : \lambda \notin SF_+(X)\}$. We write $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : \lambda \in \sigma_{SBF_+}(T) \text{ or ind}(T - \lambda) > 0\}$.

The quasinilpotent part $H_0(T - \lambda I)$ and the analytic core $K(T - \lambda I)$ of $T - \lambda I$ are defined by

 $H_0(T - \lambda I) := \{ x \in X : \lim_{n \to \infty} \| (T - \lambda I)^n x \|_n^{\frac{1}{n}} = 0 \}.$

and

$$K(T - \lambda I) = \{x \in X : \text{there exists a sequence } \{x_n\} \subset X \text{ and } \delta > 0$$

for which $x = x_0, (T - \lambda I)x_{n+1} = x_n \text{ and } ||x_n|| \le \delta^n ||x|| \text{ for all } n = 1, 2, \dots \}.$

We note that $H_0(T - \lambda I)$ and $K(T - \lambda I)$ are generally non-closed hyper-invariant subspaces of $T - \lambda I$ such that $(T - \lambda I)^{-p}(0) \subseteq H_0(T - \lambda I)$ for all $p = 0, 1, \cdots$ and $(T - \lambda I)K(T - \lambda I) = K(T - \lambda I)$. Recall that if $\lambda \in iso(\sigma(T))$, then $H_0(T - \lambda I) = \chi_T(\{\lambda\})$, where $\chi_T(\{\lambda\})$ is the glocal spectral subspace consisting of all $x \in X$ for which there exists an analytic function $f : \mathbb{C} \setminus \{\lambda\} \longrightarrow X$ that satisfies $(T - \mu)f(\mu) = x$ for all $\mu \in \mathbb{C} \setminus \{\lambda\}$, see, Duggal [9].

Lemma 3.1. Let $A \in B(X)$ and $B \in B(Y)$. Then

 $\sigma_{BW}(A \otimes B) \subseteq \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A) \subseteq \sigma_w(A)\sigma(B) \cup \sigma_w(B)\sigma(A)$ $\subseteq \sigma_b(A)\sigma(B) \cup \sigma_b(B)\sigma(A) = \sigma_b(A \otimes B).$

Proof. Since $\sigma_{BW}(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T)$, the inclusion

$$\sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A) \subseteq \sigma_{w}(A)\sigma(B) \cup \sigma_{w}(B)\sigma(A) \subseteq \sigma_{b}(A)\sigma(B) \cup \sigma_{b}(B)\sigma(A)$$

is evident. Also we have $\sigma_b(A)\sigma(B) \cup \sigma_b(B)\sigma(A) = \sigma_b(A \otimes B)$ is true so it is enough to prove the inclusion $\sigma_{BW}(A \otimes B) \subseteq \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$. Let $\lambda \notin \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$. Since $\sigma_{SBF_+}(A \otimes B) \subseteq \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$, we have $\lambda \neq 0$. For every factorization $\lambda = \mu \nu$ such that $\mu \in \sigma(A)$ and $\nu \in \sigma(B)$ we have that $\mu \in \sigma(A) \setminus \sigma_{BW}(A)$ and $\mu \in \sigma(B) \setminus \sigma_{BW}(B)$. That is $\mu \in BF_+(A)$ and $\nu \in BF_+(B)$, such that $ind(A - \mu) \leq 0$ and $ind(B - \nu) \leq 0$. In particular $\lambda \notin \sigma_{SBF_+}(A \otimes B)$. Now we have to prove that $ind(A \otimes B - \lambda) \leq 0$. If $ind(A \otimes B - \lambda) > 0$,

then $\alpha(A \otimes B - \lambda) \leq \infty$ and so $\beta(A \otimes B - \lambda) \leq \infty$. Let $E = \{(\mu_i, \nu_i) \in \sigma(A)\sigma(B) : 1 \leq i \leq p, \mu_i\nu_i = \lambda\}$. Then we have by [14, Theorem 3.5] that

ind
$$(A \otimes B - \lambda) = \sum_{j=n+1}^{p} ind(A - \mu_j) \dim H_0(B - \nu_j) + \sum_{j=1}^{n} ind(B - \nu_j) \dim H_0(A - \mu_j)$$

Since ind $(A - \mu_i) < 0$ and $ind(B - \nu_i) < 0$, we have a contradiction. Hence we have $\lambda \notin \sigma_{BW}(A \otimes B)$. This completes the proof. \Box

Lemma 3.2. Let $A \in B(X)$ and $B \in B(Y)$. If $A \otimes B$ satisfies property (Bb), then $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$.

Proof. It follows from Theorem 2.3 that $A \otimes B$ satisfies property (*Bb*) if and only if $\sigma_{BW}(A \otimes B) = \sigma_b(A \otimes B)$. Thus the required result is an immediate consequence of Lemma 3.1. \Box

The following theorem gives a sufficient condition for the equality $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A)$ to hold. The equality $\sigma_{SBF_+}(A \otimes B) = \sigma_{SBF_+}(A)\sigma(B) \cup \sigma_{SBF_+}(B)\sigma(A)$ follows as in lemma 2 of [11] is useful for our proof of Theorem 3.3

Theorem 3.3. If A and B satisfy property (Bb), then the following conditions are equivalent:

- (*i*) $A \otimes B$ satisfies property (Bb);
- (*ii*) $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A);$

(iii) A has SVEP at points $\mu \in BF_+(A)$ and $\nu \in BF_+(B)$ such that $\lambda = \mu \nu \notin \sigma_{BW}(A \otimes B)$.

Proof. (*i*) \implies (*ii*). is clear from Lemma 3.2.

 $(ii) \implies (i)$. Let (ii) satisfied. since *A* and *B* satisfy *Bb*, it follows that

 $\sigma_{BW}(A \otimes B) = \sigma_{BW}(A)\sigma(B) \cup \sigma_{BW}(B)\sigma(A) = \sigma_b(A)\sigma(B) \cup \sigma_b(B)\sigma(A) = \sigma_b(A \otimes B).$

(*ii*) \implies (*iii*). Let $\lambda \in \sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B)$. Since *A* and *B* satisfy *Bb*, we have $\lambda \in \sigma(A \otimes B) \setminus \sigma_b(A \otimes B)$. Then for every factorization $\lambda = \mu v$ of λ , we have $\mu \in SBF_+(A)$ and $v \in SBF_+(B)$ we have that $p(A - \mu)$ and q(B - v) are finite. Hence, *A* and *B* have SVEP at μ and v, respectively.

(*iii*) \implies (*ii*). Suppose (*iii*) holds. We have to prove that $\sigma_b(A \otimes B) \subseteq \sigma_{BW}(A \otimes B)$. Let $\lambda \in \sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B)$. Then $\lambda \in BF_+(A \otimes B)$ and $ind(A \otimes B) \leq 0$. Then by the hypothesis and by equality $\sigma_{SBF_+}(A \otimes B) = \sigma_{SBF_+}(A)\sigma(B) \cup \sigma_{SBF_+}(B)\sigma(A)$, we conclude that $\mu \notin \sigma_b(A \otimes B)$ and $\nu \notin \sigma_b(A \otimes B)$. Thus $\lambda \notin \sigma_b(A \otimes B)$. \Box

Theorem 3.4. Let $A \in B(X)$ and $B \in B(Y)$. If A^* and B^* have SVEP, then $A \otimes B$ satisfies property (Bb).

Proof. The hypothesis *A*^{*} and *B*^{*} have SVEP implies

$$\sigma_w(A) = \sigma_{BW}(A), \qquad \sigma_w(B) = \sigma_{BW}(B)$$

and

A, B and $A \otimes B$ satisfy Browder's theorem.

Hence, Browder's theorem transfer from *A* and *B* to $A \otimes B$. Thus,

$$\sigma_b(A \otimes B) = \sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$$
$$= \sigma(A)\sigma_{BW}(B) \cup \sigma_{BW}(A)\sigma(B) = \sigma_{BW}(A \otimes B)$$

Therefore,

 $\pi^{0}(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_{w}(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B),$

i.e., $A \otimes B$ satisfies property (*Bb*).

An operator $T \in B(X)$ is polaroid if every $\lambda \in iso\sigma(T)$ is a pole of the resolvent operator $(T - \lambda I)^{-1}$. $T \in B(X)$ polaroid implies T^* polaroid. It is well known that if T or T^* has SVEP and T is polaroid, then T and T^* satisfy Weyl's theorem.

Theorem 3.5. Suppose that the operators $A \in B(X)$ and $B \in B(Y)$ are polaroid.

- (*i*) If A^* and B^* have SVEP, then $A \otimes B$ satisfies property (Bw).
- (ii) If A and B have SVEP, then $A^* \otimes B^*$ satisfies property (Bw).

Proof. (i) The hypothesis A^* and B^* have SVEP implies

 $\sigma_w(A) = \sigma_{BW}(A), \qquad \sigma_w(B) = \sigma_{BW}(B)$

and

A, *B* and $A \otimes B$ satisfy Browder's theorem.

Hence, Browder's theorem transfer from *A* and *B* to $A \otimes B$. Thus,

$$\sigma_b(A \otimes B) = \sigma_w(A \otimes B) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$$
$$= \sigma(A)\sigma_{BW}(B) \cup \sigma_{BW}(A)\sigma(B) = \sigma_{BW}(A \otimes B)$$

Evidently, $A \otimes B$ is polaroid by Lemma 2 of [10]; combining this with $A \otimes B$ satisfies Browder's theorem, it follows that $A \otimes B$ satisfies Wt, i.e., $\sigma(A \otimes B) \setminus \sigma_w(A \otimes B) = E^0(A \otimes B)$. But then

$$E^{0}(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_{w}(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B),$$

i.e., $A \otimes B$ satisfies property (*Bw*).

(ii) In this case $\sigma(A) = \sigma(A^*)$, $\sigma(B) = \sigma(B^*)$, $\sigma_w(A^*) = \sigma_{BW}(A^*)$, $\sigma_w(B^*) = \sigma_{BW}(B^*)$, $\sigma(A \otimes B) = \sigma(A^* \otimes B^*)$, polaroid property transfer from *A*, *B* to $A^* \otimes B^*$, and Browder's theorem transfer from *A*, *B* to $A \otimes B$. Hence

$$\sigma_b(A^* \otimes B^*) = \sigma_b(A \otimes B) = \sigma_w(A \otimes b) = \sigma(A)\sigma_w(B) \cup \sigma_w(A)\sigma(B)$$
$$= \sigma(A^*)\sigma_w(B^*) \cup \sigma_w(A^*)\sigma(B^*)$$
$$= \sigma(A^*)\sigma_{BW}(B^*) \cup \sigma_{BW}(A^*)\sigma(B^*)$$
$$= \sigma_{BW}(A^* \otimes B^*).$$

Thus, since $A^* \otimes B^*$ polaroid and $A \otimes B$ satisfies Browder's theorem imply $A^* \otimes B^*$ satisfy Wt,

 $E^{0}(A^{*} \otimes B^{*}) = \sigma(A^{*} \otimes B^{*}) \setminus \sigma_{w}(A^{*} \otimes B^{*}) = \sigma(A^{*} \otimes B^{*}) \setminus \sigma_{BW}(A^{*} \otimes B^{*}),$

i.e., $A^* \otimes B^*$ satisfies property (*Bw*). \Box

4. Perturbations

Let [A, Q] = AQ - QA denote the commutator of the operators A and Q. If $Q_1 \in B(X)$ and $Q_2 \in B(Y)$ are quasinilpotent operators such that $[Q_1, A] = [Q_2, B] = 0$ for some operators $A \in B(X)$ and $B \in B(Y)$, then

$$(A+Q_1)\otimes(B+Q_2)=(A\otimes B)+Q,$$

where $Q = Q_1 \otimes B + A \otimes Q_2 + Q_1 \otimes Q_2 \in B(X \otimes Y)$ is a quasinilpotent operator. If in the above, Q_1 and Q_2 are nilpotents then $(A + Q_1) \otimes (B + Q_2)$ is the perturbation of $A \otimes B$ by a commuting nilpotent operator. A bounded operator T on X is called finite isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T of finite multiplicity, i.e $iso\sigma(T) \subseteq E^0(T)$. Recall that an operator $T \in B(X)$ satisfies generalized Browder's theorem (in symbol, $T \in gBt$) if $\sigma(T) \setminus \sigma_{BW}(T) = \pi(T)$. Note that from Theorem 2.1 of [3] that an operator T, $T \in Bt$ if and only if $T \in gBt$. The following lemma from [12] is useful in the proof of the following results. **Lemma 4.1.** Let $T \in B(X)$. Then the following statements are equivalent:

- (*i*) *T* satisfies property (Bw);
- (ii) generalized Browder's theorem holds for T and $\pi(T) = E^0(T)$.

Proposition 4.2. Let $Q_1 \in B(X)$ and $Q_2 \in B(Y)$ be quasinilpotent operators such that $[Q_1, A] = [Q_2, B] = 0$ for some operators $A \in B(X)$ and $B \in B(Y)$. If $A \otimes B$ is finitely isoloid, then $A \otimes B$ satisfies property (Bw) implies $(A + Q_1) \otimes (B + Q_2)$ satisfies property (Bw).

Proof. Recall that $\sigma((A+Q_1)\otimes(B+Q_2)) = \sigma(A\otimes B)$, $\sigma_w((A+Q_1)\otimes(B+Q_2)) = \sigma_w(A\otimes B)$, $\sigma_{BW}((A+Q_1)\otimes(B+Q_2)) = \sigma_{BW}(A\otimes B)$ and that the perturbation of an operator by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If $A \otimes B$ satisfies property (*Bw*), then

$$E^{0}(A \otimes B) = \sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B)$$

= $\sigma((A + Q_{1}) \otimes (B + Q_{2})) \setminus \sigma_{BW}((A + Q_{1}) \otimes (B + Q_{2})).$

We prove that $E^0(A \otimes B) = E^0((A + Q_1) \otimes (B + Q_2))$. Observe that if $\lambda \in iso\sigma(A \otimes B)$, then $A^* \otimes B^*$ has SVEP at λ ; equivalently, $(A^* + Q_1^*) \otimes (B^* + Q_2^*)$ has SVEP at λ . Let $\lambda \in E^0(A \otimes B)$; then $\lambda \in \sigma((A + Q_1) \otimes (B + Q_2)) \setminus \sigma_{BW}((A + Q_1) \otimes (B + Q_2))$. Since $(A^* + Q_1^*) \otimes (B^* + Q_2^*)$ has SVEP at λ , it follows that $\lambda \notin \sigma_{BW}((A + Q_1) \otimes (B + Q_2))$ and $\lambda \in iso\sigma((A + Q_1) \otimes (B + Q_2))$. Thus, $\lambda \in E^0((A + Q_1) \otimes (B + Q_2))$. Hence $E^0(A \otimes B) \subseteq E^0((A + Q_1) \otimes (B + Q_2))$. Conversely, if $\lambda \in E^0((A + Q_1) \otimes (B + Q_2))$, then $\lambda \in iso\sigma(A \otimes B)$), and this, since $A \otimes B$ is finitely isoloid implies that $\lambda \in E^0(A \otimes B)$, Hence $E^0((A + Q_1) \otimes (B + Q_2)) \subseteq E^0(A \otimes B)$. \Box

From [6], we recall that an operator $R \in B(X)$ is said to be Riesz if $R - \lambda I$ is Fredholm for every non-zero complex number λ , that is, $\Pi(R)$ is quasi-nilpotent in C(X) where C(X) := B(X)/K(X) is the Calkin algebra and Π is the canonical mapping of B(X) into C(X). Note that for such operator, $\pi^0(R) = \sigma(R) \setminus \{0\}$, and its restriction to one of its closed subspace is also a Riesz operator, see [6]. The situation for perturbations by commuting Riesz operators is a bit more delicate. The equality $\sigma(T) = \sigma(T + R)$ always hold for operators $T, R \in B(X)$ such that R is Riesz and [T, R] = 0; the tensor product $T \otimes R$ is not a Riesz operator (the Fredholm spectrum $\sigma_e(T \otimes R) = \sigma(T)\sigma_e(R) \cup \sigma_e(T)\sigma(R) = \sigma_e(T)\sigma(R) = \{0\}$ for a particular choice of T only). However, σ_w (also, σ_{BW}) is stable under perturbation by commuting Riesz operators [17, 18], and so T satisfies Browder's theorem if and only if T + R satisfies Browder's theorem. Thus, if $T, R \in B(X)$ (such that R is Riesz and [T, R] = 0), then $\pi^0(T) = \sigma(T) \setminus \sigma_w(T) = \sigma(T + R) \setminus \sigma_w(T + R) = \pi^0(T + R)$, where $\pi^0(T)$ is the set of $\lambda \in iso\sigma(T)$ which are finite rank poles of the resolvent of T. If we now suppose additionally that T satisfies property (Bw), then

$$E^{0}(T) = \sigma(T) \setminus \sigma_{BW}(T) = \sigma(T+R) \setminus \sigma_{BW}(T+R)$$
(1)

and a necessary and sufficient condition for T + R to satisfy property (*Bw*) is that $E^0(T) = E^0(T + R)$. One such condition, namely *T* is finitely isoloid.

Proposition 4.3. Let $T, R \in B(X)$, where R is Riesz, and T is finitely isoloid. Then T satisfies property (Bw) implies T + R satisfies property (Bw).

Proof. Observe that if *T* satisfies property (*Bw*), then identity (1) holds. Let $\lambda \in E^0(T)$. Then, $\lambda \in E^0(T) \cap \sigma(T) = E^0(T + R - R) \cap \sigma(T + R) \subseteq iso\sigma(T + R)$, and so $T^* + R^*$ has SVEP at λ . Since $\lambda \in \sigma(T + R) \setminus \sigma_{BW}(T + R)$, $T^* + R^*$ has SVEP at λ implies that $T + R - \lambda I$ is Fredholm of index 0 and so $\lambda \in E^0(T + R)$. Hence, $E^0(T) \subseteq E^0(T + R)$. Now let $\lambda \in E^0(T + R)$. Then $\lambda \in E^0(T + R) \cap \sigma(T + R) = E^0(T + R) \cap \sigma(T) \subseteq iso\sigma(T)$, which by the finite isoloid property of *T* implies $\lambda \in E^0(T)$. Thus, $E^0(T + R) \subseteq E^0(T)$. \Box

Theorem 4.4. Let $A \in B(X)$ and $B \in B(Y)$ be finitely isoloid operators which satisfy property (Bw). If $R_1 \in B(X)$ and $R_2 \in B(Y)$ are Riesz operators such that $[A, R_1] = [B, R_2] = 0$, $\sigma(A + R_1) = \sigma(A)$ and $\sigma(B + R_2) = \sigma(B)$, then $A \otimes B$ satisfies property (Bw) implies $(A + R_1) \otimes (B + R_2)$ satisfies property (Bw) if and only if generalized Browder's theorem transforms from $A + R_1$ and $B + R_2$ to their tensor product.

1302

Proof. The hypotheses imply (by Proposition 4.3) that both $A + R_1$ and $B + R_2$ satisfy property (*Bw*). Suppose that $A \otimes B$ satisfies property (*Bw*). Then $\sigma(A \otimes B) \setminus \sigma_{BW}(A \otimes B) = E^0(A \otimes B)$. Evidently $A \otimes B$ satisfies generalized Browder's theorem, and so the hypothesis *A* and *B* satisfy property (*Bw*) implies that generalized Browder's theorem transfers from *A* and *B* to $A \otimes B$. Furthermore, since , $\sigma(A + R_1) = \sigma(A)$, $\sigma(B + R_2) = \sigma(B)$, and σ_{BW} is stable under perturbations by commuting Riesz operators,

$$\sigma_{BW}(A \otimes B) = \sigma(A)\sigma_{BW}(B) \cup \sigma_{BW}(A)\sigma(B)$$
$$= \sigma(A + R_1)\sigma_{BW}(B + R_2) \cup \sigma_{BW}(A + R_1)\sigma(B + R_2).$$

Suppose now that generalized Browder's theorem transfers from $A + R_1$ and $B + R_2$ to $(A + R_1) \otimes (B + R_2)$. Then

$$\sigma_{BW}(A \otimes B) = \sigma_{BW}((A + R_1) \otimes (B + R_2))$$

and

$$E^{\mathbb{O}}(A \otimes B) = \sigma((A + R_1) \otimes (B + R_2)) \setminus \sigma_{BW}((A + R_1) \otimes (B + R_2)).$$

Let $\lambda \in E^0(A \otimes B)$. Then $\lambda \neq 0$, and hence there exist $\mu \in \sigma(A+R_1) \setminus \sigma_{BW}(A+R_1)$ and $\nu \in \sigma(B+R_2) \setminus \sigma_{BW}(B+R_2)$ such that $\lambda = \mu\nu$. As observed above, both $A + R_1$ and $B + R_2$ satisfy property (Bw); hence $\mu \in E^0(A+R_1)$ and $\nu \in E^0(B+R_2)$. This, since $\lambda \in \sigma(A \otimes B) = \sigma((A+R_1) \otimes (B+R_2))$, implies $\lambda \in E^0((A+R_1) \otimes (B+R_2))$. Conversely, if $\lambda \in E^0((A+R_1) \otimes (B+R_2))$, then $\lambda \neq 0$ and there exist $\mu \in E^0(A+R_1) \subseteq iso\sigma(A)$ and $\nu \in E^0(B+R_2) \subseteq iso\sigma(B)$ such that $\lambda = \mu\nu$. Recall that $E^0((A+R_1) \otimes (B+R_2)) \subseteq E^0(A+R_1)E^0(B+R_2)$. Since A and B are finite isoloid, $\mu \in E^0(A)$ and $\nu \in E^0(B)$. Hence, since $\sigma((A+R_1) \otimes (B+R_2)) = \sigma(A \otimes B)$, $\lambda = \mu\nu \in E^0_a(A \otimes B)$. To complete the proof, we observe that if the implication of the statement of the theorem holds, then (necessarily) $(A + R_1) \otimes (B + R_2)$ satisfies generalized Browder's theorem. This, since $A + R_1$ and $B + R_2$ satisfy generalized Browder's theorem transfers from $A + R_1$ and $B + R_2$ to $(A + R_1) \otimes (B + R_2)$. \Box

References

- [1] P. Aiena, Fredhlom and Local Specral Theory with Application to Multipliers, Kluwer Acad. Publishers, Dordrecht, 2004.
- [2] P. Aiena, J.R Guillen, P. Peña, Property (*w*) for perturbations of polaroid operators, Linear Algebra and its Applications 428 (2008) 1791-1802.
- [3] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Mathematical Journal 48 (2006) 179-185.
- M. Berkani , Index of B-Fredholm operators and generalisation of Weyls theorem, Proceedings of the American Mathematical Society 130(2002) 1717–1723.
- [5] M. Berkani, B-Weyl spectrum and poles of the resolvant, Journal of Mathematical Analysis and Applications 272 (2002) 596-603.
- [6] S.R. Caradus, W.E. Pfaffenberger, Y. Bertram, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
- [7] L.A. Cuburn, Weyl's theorem for non-normal operators, Michigan Mathematical Journal 13 (1966) 285-288.
- [8] R.E. Curto and Y.M Han, Generalized Browder's and Weyl's theorem's for Banach Space operators, Journal of Mathematical Analysis and Applications 336 (2007) 1424–1442.
- [9] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, Journal of Mathematical Analysis and Applications 340 (2008) 366–373.
- [10] B.P. Duggal, Tensor product and property (w), Rendiconti del Circolo Matematico di Palermo 60 (2011) 23-30.
- [11] B.P Dugal, S.V Djordjevic and C.S. Kubrusly, On a-Browder and a-Weyl spectra of tensor products, Rendiconti del Circolo Matematico di Palermo 59 (2010) 473-481.
- [12] A. Gupta and N. Kashyap, Property (*Bw*) and Weyl Type theorem's, Bulletin of Mathematical Analysis and Applications 3 (2011) 1–7.
- [13] H.G. Heuser, Functional Analysis, John Willy and Sons, Ltd., Chichester, 1982.
- [14] T. Ichinose, Spectral properties of linear operators I, Transactions of the American Mathematical Society 235 (1978) 75–113.
- [15] D. Kitson, R. Harte, and C. Hernandez, Weyl theorem and tensor product: a counter example, Journal of Mathematical Analysis and Applications 378 (2011) 128–132.
- [16] C.S. Kubrusly and B.P. Dugal, On Weyl and Browder spectra of tensor product, Glasgow Mathematical Journal 50 (2008) 289–302.
- [17] M. Oudghiri, Weyls Theorem and perturbations, Integral Equations and Operator Theory 53 (2005) 535-545.
- [18] M. Oudghiri, a-Weyl's theorem and perturbations, Studia Mathematica 173 (2006) 193–201.
- [19] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Transactions of the American Mathematical Society 349 (1997) 2115–2124.
- [20] M.H.M Rashid and T.Prasad, Varients of Weyl type theorems, Annals of Functional Analysis 4 (2013) 40-52.