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Relative controllability of semilinear fractional stochastic control
systems in Hilbert spaces
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Abstract. This paper is concerned with the relative controllability for a class of dynamical control systems
described by semilinear fractional stochastic differential equations with nonlocal conditions in Hilbert
space. Sufficient conditions for relative controllability results are obtained using Schaefer’s fixed point
theorem. An example is provided to show the application of our result.

1. Introduction

Fractional dynamical equations have played a central role in the modeling of anomalous relaxation
and diffusion processes. The fact that fractional derivatives introduce a convolution integral with a power-
law memory kernel makes the fractional differential equations important to describe memory effects in
complex systems [11]. The increasing interest of fractional equations is motivated by their applications
in various fields of science such as physics, fluid mechanics, viscoelasticity, heat conduction in materials
with memory, chemistry and engineering [5, 10]. Hilfer [7, 8] showed that time fractional derivatives are
equivalent to infinitesimal generators of generalized time fractional evolutions that arise in the transition
from microscopic to macroscopic time scales. Also, it is shown that this transition from the ordinary time
derivative to the fractional time derivative arises in different physical problems [9]. Further, many different
applications of fractional calculus are presented in [10].

Controllability for nonlinear dynamical systems is not so uniform and connected as in the case of linear
dynamical systems. Most of the results obtained and of the controllability criteria have a local character
or concern only a very narrow class of dynamical systems. The main difficulty arising in the investigation
of controllability for nonlinear dynamical systems is the lack of general methods for solving nonlinear
differential or functional differential equations. Fixed point technique is the most powerful method to
obtain the controllability results for nonlinear dynamical systems (see, for instance [2, 3]).

On the other hand, stochastic differential equations have attracted great interest due to their applications
in various fields of science and engineering. There are many interesting results in the theory and applications
of stochastic differential equations, (see [6, 18] and the references therein). In recent years, controllability
problems for stochastic differential equations have become a field of increasing interest (see [12, 17, 19, 23, 24]

2010 Mathematics Subject Classification. Primary 34G20; Secondary 34G60, 34A37, 60H40
Keywords. Relative controllability, stochastic systems, sractional differential equation, nonlocal condition
Received: 21 January 2013; Accepted: 05 June 2013
Communicated by Svetlana Jankovic
Research supported by The National Agency of Development of University Research (ANDRU), Algeria (PNR-Modèles Stochas-
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and references therein). The extensions of deterministic controllability concepts to stochastic control systems
have been discussed only in a limited number of publications. More precisely, there are less number of
papers on the relative controllability of stochastic nonlinear systems [13, 26]. Klamka [12, 14] studied
stochastic relative exact and approximate controllability problems for finite dimensional linear stationary
dynamical systems with single time-variable point delay in the control by implementing the open mapping
theorem. A set of necessary and sufficient conditions are established for the exact and approximate
stochastic controllability of linear system with state delays in [16]. Shen et al. [26] investigated the
relative controllability of the stochastic differential systems with delay in control. The authors derive a new
sufficient conditions for the relative controllability and relative approximate controllability in finite and
infinite dimensional spaces.

However, to the best of our knowledge, the relative controllability problem for semilinear fractional
stochastic system in Hilbert spaces has not been investigated yet. Motivated by this consideration, in this
paper we will study the relative controllability of semilinear fractional stochastic systems, which are natural
generalizations of controllability concepts well known in the theory of infinite dimensional deterministic
control systems. Specifically, we study the relative controllability of semilinear fractional control systems
under the assumption that the associated linear system is relatively controllable. The paper is organized
as follows. Some preliminary facts are recalled in Section 2. Section 3 is devoted to sufficient condition on
the relative controllability of semilinear SDEs with nonlocal conditions in Hilbert spaces. In section 4, an
example is discussed to illustrate the effectiveness of our results.

2. Preliminaries and basic properties

In this section, we provide definitions, lemmas and notations necessary to establish our main results.
Throughout this paper, we use the following notations. Let (Ω,F , IP) be a complete probability space
equipped with a normal filtration Ft, t ∈ J = [0,T] satisfying the usual conditions (i.e., right continuous and
F0 containing all IP-null sets). We consider three real separable spaces X, E and U, and Q-Wiener process
on (Ω,FT, IP) with a linear bounded covariance operator Q such that trQ < ∞. We assume that there exists
a complete orthonormal system {en}n≥1 on E, a bounded sequence of non-negative real numbers {λn} such
that Qen = λnen, n = 1, 2, . . . and a sequence {βn}n≥1 of independent Brownian motions such that

⟨w(t), e⟩ =
∞∑

n=1

√
λn⟨en, e⟩βn(t), e ∈ E, t ∈ [0,T],

and Ft = F w
t , where F w

t is the sigma algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 = L2(Q1/2E; X)

be the Banach space of all FT-measurable square integrable random variables with values in the Hilbert
space X. Let IE(.) denote the expectation with respect to the measure IP. Let C([0,T]; L2(F ,X)) be the
Banach space of continuous maps from [0,T] into L2(F ,X) satisfying sup

t∈J
IE∥x(t)∥2 < ∞. Let H2([0,T]; X)

be the closed subspace of C([0,T]; L2(F ,X)) consisting of all measurable and Ft-adapted X-valued process
x ∈ C([0,T]; L2(F ,X)) endowed with the norm ∥x∥H2 = (sup

t∈J
IE∥x(t)∥2X)1/2.

The purpose of this paper is to investigate the relative controllability for a class of semilinear stochastic
fractional differential equation with nonlocal conditions of the form

cDα
t x(t) + Ax(t) = Bu(t) + f (t, x(t)) + σ(t, x(t))

dw(t)
dt

, t ∈ J = [0,T],
x(0) + 1(x) = x0,

(1)

where 0 < α < 1; cDα
t denotes the Caputo fractional derivative operator of order α; x(.) takes its values in

the Hilbert space X; A : D(A) ⊂ X → X is the infinitesimal generator of an α-resolvent family {Sα(t), t ≥ 0};
the control function u(.) is given in L2

F ([0,T],U) of admissible control functions, U is a Hilbert space. B is
a bounded linear operator from U into X; f : J × X → X and σ : J × X → L0

2 are appropriate functions to
be specified later; x0 is a suitable initial random function independent of w(t) and 1 ∈ C(X,X) is a given
function.

Let us recall the following known definitions. For more details see [10].
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Definition 2.1. The fractional integral of order α with the lower limit 0 for a function f is defined as

Iα f (t) =
1
Γ(α)

∫ t

0

f (s)
(t − s)1−α ds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Definition 2.2. Riemann-Liouville derivative of order α with lower limit zero for a function f : [0,∞)→ IR can be
written as

LDα f (t) =
1

Γ(n − α)
dn

dtn

∫ t

0

f (s)
(t − s)α+1−n ds, t > 0,n − 1 < α < n. (2)

Definition 2.3. The Caputo derivative of order α for a function f : [0,∞)→ IR can be written as

cDα f (t) =L Dα

(
f (t) −

n−1∑
k=0

tk

k!
f k(0)

)
, t > 0,n − 1 < α < n. (3)

If f (t) ∈ Cn[0,∞), then

cDα f (t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f n(s)ds = In−α f n(s), t > 0,n − 1 < α < n

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the Caputo
derivative of order α > 0 is given as

L{cDα f (t); s} = sαF(s) −
n−1∑
k=0

sα−k−1 f (k)(0); n − 1 ≤ α < n.

Definition 2.4. A two parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
=

1
2πi

∫
C

µα−βeµ

µα − z
dµ, α, β ∈ C,R(α) > 0,

where C is a contour which starts and ends at −∞ end encircles the disc |µ| ≤ |z|1/2 counter clockwise.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple generalization of the exponent
function: E1(z) = ez and the cosine function: E2(z2) = cos h(z), E2(−z2) = cos(z), and plays a vital role in the
theory of fractional differential equations. The most interesting properties of the Mittag-Leffler functions
are associated with their Laplace integral∫ ∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα − ω, Reλ > ω
1
α , ω > 0,

and for more details see [10].

Definition 2.5 ([27]). A closed and linear operator A is said to be sectorial if there are constants ω ∈ IR, θ ∈ [π2 , π],
M > 0, such that the following two conditions are satisfied:
• ρ(A) ⊂ Σθ,ω = {λ ∈ C : λ , ω, |ar1(λ − ω)| < θ},
• ∥R(λ,A)∥ ≤ M

|λ−ω| , λ ∈ Σθ,ω.

Definition 2.6. Let A be a closed and linear operator with the domain D(A) defined in a Banach space X. Let ρ(A)
be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0 and a strongly
continuous function Sα : IR+ → L(X), where L(X) is a Banach space of all bounded linear operators from X into X
and the corresponding norm is denoted by ∥.∥, such that {λα : Reλ > ω} ⊂ ρ(A) and

(λαI − A)−1x =
∫ ∞

0
eλtSα(t)xdt, Reλ > ω, x ∈ X, (4)

where Sα(t) is called the α-resolvent family generated by A.
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Definition 2.7. Let A be a closed and linear operator with the domain D(A) defined in a Banach space X and
α > 0. We say that A is the generator of a solution operator if there exist ω ≥ 0 and a strongly continuous function
Sα : IR+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI − A)−1x =
∫ ∞

0
eλtSα(t)xdt, Reλ > ω, x ∈ X, (5)

where Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent family. For more details
on α-resolvent family and solution operators, we refer the reader to [10].

Now, we give the definition of the mild solution of (1) based on the paper [20].

Definition 2.8 ([20]). A continuous stochastic process x : J → X is called a mild solution of (1) if the following
conditions hold:

(i) x(t) is measurable and Ft-adapted.
(ii) x(0) + 1(x) = x0.
(iii) x satisfies the following equation

x(t) = Tα(t)(x0 − 1(x)) +
∫ t

0
Sα(t − s)[Bu(s) + f (s, x(s))]ds +

∫ t

0
Sα(t − s)σ(s, x(s))dw(s), (6)

where Tα(t) = Eα,1(Atα) = 1
2πi

∫
B̂r

eλt λ
α−1

λα − A
dλ, Sα(t) = tα−1Eα,α(Atα) = 1

2πi

∫
B̂r

eλt 1
λα − A

dλ, B̂r denotes the

Bromwich path, Sα(t) is the α-resolvent family and Tα(t) is the solution operator generated by −A.

Definition 2.9 ([26]). Let xT(x0; u) be the state value of (1) at the terminal time T corresponding to the control u and
the initial value x0. Introduce the set

R(T, x0) = {x(T) = xT(x0; u) : u(.) ∈ L2
F ([0,T],U)},

which is called the reachable set of (1) at the terminal time T. Then the controlled system (1) is said to be relatively
controllable at T if R(T, x0) = L2(Ω,FT,X).

Definition 2.10 ([26]). The control system (1) is said to be relatively approximately controllable at T if the closure
set R(T, x0) = L2(Ω,FT,X).

To study the relative controllability of the fractional system (1), we will introduce the following equivalent
conditions.

Lemma 2.11 ([16]). The following conditions are equivalent:
(iv) The corresponding linear system with respect to (1) is relatively controllable on [0,T].
(v) The corresponding linear system with respect to (1) is relatively approximately controllable on [0,T].
(vi) The corresponding linear deterministic system with respect to (1) is relatively controllable on [0,T].

The following lemma is required to define the control function. The reader can refer to [17] for the proof.

Lemma 2.12. For any x̃T ∈ L2(FT,X), there exists 1̃ ∈ L2
F (Ω; L2(0,T; L0

2)) such that x̃T = IEx̃T +

∫ T

0
1̃(s)dw(s).
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Now, we define the control function in the following form

u(t, x) = B⋆S⋆α (T − s)
(
(ψT

0 )−1[IEx̃T − Tα(T)(x0 − 1(x))] +
∫ t

0
(ψT

0 )−11̃(s)dw(s)
)

− B⋆S⋆α (T − t)
∫ t

0
(ψT

0 )−1Sα(T − s) f (s, x(s))ds

− B⋆S⋆α (T − t)
∫ t

0
(ψT

0 )−1Sα(T − s)σ(s, x(s))dw(s),

where ψT
0 =

∫ T

0
Sα(T − s)BB⋆S⋆α (T − s) is the controllability Gramian, B⋆ denotes the adjoint of B and S⋆α (t)

the adjoint of Sα(t).

3. Controllability results

In this section it will be shown that the system (1) is relatively (approximately) controllable under
appropriate conditions.

Let us assume the following conditions:
(vii) The corresponding linear system with respect to (1) is relatively controllable
(viii) If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for x ∈ X and t > 0 we have ∥Tα(t)∥ ≤ Meωt and ∥Sα(t)∥ ≤
Ceωt(1 + tα−1), ω > ω0. Thus we have

∥Tα(t)∥ ≤ M̃T and ∥Sα(t)∥ ≤ tα−1M̃S,

where M̃T = sup
0≤t≤T

∥Tα(t)∥, and M̃S = sup
0≤t≤T

Ceωt(1 + t1−α) (fore more details, see [27]).

(ix) f ∈ C(J × X,X), 1 ∈ C(X,X) and σ ∈ C(J × X,L0
2). Moreover, there exists a constant C1 > 0 such that for

x ∈ X, IE∥1(x)∥2X ≤ C1, and for s ∈ J, x ∈ Br there exist two continuous functions L̃ f , L̃σ : J→ (0,∞) such that

IE∥ f (t, x)∥2X ≤ L̃ f (t)ϕ(IE∥x∥2X), IE∥σ(t, x)∥2L0
2
≤ L̃σ(t)φ(IE∥x∥2X),

where ϕ,φ : [0,∞)→ (0,∞) are a continuous nondecreasing functions with∫ T

0
ξ(s)ds ≤

∫ ∞

c

ds
ϕ(s) + φ(s)

,

where ξ(t) = max
{

5M̃2
STα

α
tα−1η̃L f (t), 5M̃2

St2(α−1)η̃Lσ(t)
}

, c = 5M̃2
T(IE∥x0∥2X + C1), and

η =

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

]
.

Our result is based on the following Schaefer’s fixed point theorem.

Theorem 3.1. Let K be a closed convex subset of a Banach space H such that 0 ∈ K. Let P : K→ K be a completely
continuous map. Then the set {x ∈ K; x = νPx; 0 ≤ ν ≤ 1} is unbounded or P has a fixed point.

Theorem 3.2. The fractional stochastic system (1) is relatively controllable if (vii)-(ix) are satisfied.

Proof. First, it will be show that the fractional stochastic system (1) has at least one mild solution on J.
Let λ : H2 → H2 be the operator defined by

(λx)(t) = Tα(t)(x0 − 1(x)) +
∫ t

0
Sα(t − s)[Bu(s, x) + f (s, x(s))]ds +

∫ t

0
Sα(t − s)σ(s, x(s))dw(s).
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In order to use the Schaefer’s fixed point theorem, it will be shown that λ is a completely continuous
operator. We note that the operator λ is well defined in H2.
For the sake of convenience, we divide the proof into several steps.

Step 1. We prove that λ is continuous.
Let {xn}∞n=0 be a sequence in H2 such that xn → x in H2. Since the function f , 1, u and σ are continuous,

lim
n→∞

IE∥λxn(t) − λx(t)∥2X = 0 in H2 for every t ∈ J. This implies that the mapping λ is continuous on H2.

Step 2. Next we prove that λ maps bounded sets into bounded sets in H2.
To prove that for any r > 0, there exists a γ > 0 such that for x ∈ Br = {x ∈ H2 : IE∥x∥2X ≤ r}, we have
IE∥λx∥2X ≤ γ. For any x ∈ Br, t ∈ J, we have

IE∥λx(t)∥2X
≤ 5∥Tα(t)∥2IE∥x0∥2X + 5∥Tα(t)∥2IE∥1(x)∥2X + 5

∫ t

0
∥Sα(t − s)∥ds ×

∫ t

0
∥Sα(t − s)∥IE∥ f (s, x(s))∥2Xds

+ 5
∫ t

0
∥Sα(t − s)∥ds ×

∫ t

0
∥Sα(t − s)∥IE∥Bu(s, x)∥2ds + 5

∫ t

0
∥Sα(t − s)∥IE∥σ(s, x(s))∥2L0

2
ds.

For simplicity, let L1̃ = max{∥1̃(s)∥2 : s ∈ [0,T]}. Note that if (vii) folds, the operator ψT
0 is strictly positive

definite and thus the inverse linear operator (ψT
0 )−1 is bounded, say, by l (see [14] for more details).

We have

IE∥u(s, x)∥2

≤ 3IE

∥∥∥∥∥∥B⋆S⋆α (T − t)
(
(ψT

0 )−1[IEx̃T − Tα(T)(x0 − 1(x))] +
∫ t

0
(ψT

0 )−11̃(s)dw(s)
)∥∥∥∥∥∥

2

+ 3IE

∥∥∥∥∥∥B⋆S⋆α (T − t)
∫ t

0
(ψT

0 )−1Sα(T − s) f (s, x(s))ds

∥∥∥∥∥∥
2

+ 3IE

∥∥∥∥∥∥B⋆S⋆α (T − t)
∫ t

0
(ψT

0 )−1Sα(T − s)σ(s, x(s))dw(s)

∥∥∥∥∥∥
2

≤ 3∥B∥2T2α−2M̃2
Sl2

[
IE∥x̃T∥2 + M̃2

Tr + M̃2
TC1 + TL1̃

]
+ 3∥B∥2T2α−2M̃4

Sl2
Tα

α

×
∫ t

0
(T − s)α−1̃L f (s)ds + 3∥B∥2T2α−2M̃4

Sl2φ(r)
∫ t

0
(T − s)2α−2̃Lσ(s)ds.

Thus

IE∥λx(t)∥2X
≤ 5M̃2

Tr + 5M̃2
TC1 + 15M̃4

S
Tα

α
∥B∥4 t2α−1

2α − 1
T2α−2l2

[
IE∥x̃T∥2 + M̃2

Tr + M̃2
TC1 + TL1̃

]
+ 5M̃2

S
Tα

α
ϕ(r)

[
1 + 3M̃4

S
t2α−1

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)α−1̃L f (s)ds

+ 5M̃2
Sφ(r)

[
1 + 3M̃4

S
t2α−1

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)2α−2̃Lσ(s)ds

= γ, t ∈ J.

Step 3. We show that λ maps bounded sets into equicontinuous sets of Br.
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Let 0 < t1 < t2 ≤ T, for each x ∈ Br, we have

IE∥λx(t2) − λx(t1)∥2X
≤ 8∥Tα(t2) − Tα(t1)∥2IE∥x0∥2X + 8∥Tα(t2) − Tα(t1)∥2IE∥1(x)∥2X
+ 8IE

∥∥∥∥∥∥
∫ t1

0
[Sα(t2 − s) − Sα(t1 − s)] f (s, x(s))ds

∥∥∥∥∥∥
2

X

+ 8IE

∥∥∥∥∥∥
∫ t2

t1

Sα(t2 − s) f (s, x(s))ds

∥∥∥∥∥∥
2

X

+ 8IE

∥∥∥∥∥∥
∫ t1

0
[Sα(t2 − s) − Sα(t1 − s)]σ(s, x(s))dw(s)

∥∥∥∥∥∥
2

X

+ 8IE

∥∥∥∥∥∥
∫ t2

t1

Sα(t2 − s)σ(s, x(s))dw(s)

∥∥∥∥∥∥
2

X

+ 8IE

∥∥∥∥∥∥
∫ t1

0
[Sα(t2 − s) − Sα(t1 − s)]Bu(s, x)ds

∥∥∥∥∥∥
2

X

+ 8IE

∥∥∥∥∥∥
∫ t2

t1

Sα(t2 − s)Bu(s, x)ds

∥∥∥∥∥∥
2

X

.

Therefore we obtain

IE∥λx(t2) − λx(t1)∥2X
≤ 8(r + C1)∥Tα(t2) − Tα(t1)∥2 +

∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥ds

×
∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥IE∥ f (s, x(s))∥2Xds

+ 8
∫ t2

t1

∥Sα(t2 − s)∥ds
∫ t2

t1

∥Sα(t2 − s)∥IE∥ f (s, x(s))∥2Xds

+

∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥ds

∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥∥B∥2IE∥u(s, x)∥2ds

+ 8
∫ t2

t1

∥Sα(t2 − s)∥ds
∫ t2

t1

∥Sα(t2 − s)∥∥B∥2IE∥u(s, x)∥2Xds

+ 8
∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥2IE∥σ(s, x(s))∥2L0

2
ds + 8

∫ t2

t1

∥Sα(t2 − s)∥2IE∥σ(s, x(s))∥2L0
2
ds.

Thus
IE∥λx(t2) − λx(t1)∥2X

≤ 8(r + C1)∥Tα(t2) − Tα(t1)∥2 + 8ϕ(r)η̃
∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥ds

×
∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥̃L f (s)ds

+ 8M̃2
S

(t2 − t1)α

α
ϕ(r)

[
1 + 3M̃4

S
t2α−1

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t2

t1

(t2 − s)α−1̃L f (s)ds

+ 8φ(r)η̃
∫ t1

0
∥Sα(t2 − s) − Sα(t1 − s)∥2̃Lσ(s)ds

+ 8M̃2
Sφ(r)

[
1 + 3M̃4

S
t2α−1

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t2

t1

(t2 − s)2α−2̃Lσ(s)ds,

where η̃ is a positive constant depending only on α, l,B,T and M̃S. Since Tα(t) and Sα(t) are strongly contin-
uous, ∥Tα(t2) − Tα(t1)∥ → 0 and ∥Sα(t2 − s) − Sα(t1 − s)∥ → 0 as t1 → t2. Thus, from the above inequality we
have lim

t1→t2
IE∥λx(t2) − λx(t1)∥2X = 0. Thus, the set {λx, x ∈ Br} is equicontinuous. Finally, combining Step 1 to

3 with Ascoli’s theorem, we conclude that the operator λ is compact.

Step 4. Next, we show that the set
N = {x ∈ H2 such that x = qλx(t) for some 0 < q < 1}

is bounded. Let x ∈ N then x(t) = qλx(t) for some 0 < q < 1. Then for each t ∈ J, we have

x(t) = q
(
Tα(t)(x0 − 1(x)) +

∫ t

0
Sα(t − s)[Bu(s, x) + f (s, x(s))]ds +

∫ t

0
Sα(t − s)σ(s, x(s))dw(s)

)
,
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which implies that

IE∥x(t)∥2X
≤ 5∥Tα∥2IE∥x0∥2X + 5∥Tα∥2IE∥1(x)∥2X + 5

∫ t

0
∥Sα(t − s)∥ds

∫ t

0
∥Sα(t − s)∥IE∥ f (s, x(s))∥2Xds

+ 5
∫ t

0
∥Sα(t − s)∥ds

∫ t

0
∥Sα(t − s)∥IE∥Bu(s, x)∥2ds + 5

∫ t

0
∥Sα(t − s)∥2IE∥σ(s, x(s))∥2L0

2
ds

≤ 5M̃2
TIE∥x0∥2X + 5M̃2

TC1

+ 5M̃2
S

Tα

α

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)α−1̃L f (s)ϕ(IE∥x(s)∥2X)ds

+ 5M̃2
S

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)2α−2̃Lσ(s)φ(IE∥x(s)∥2X)ds.

Consider the function µ(t) defined by
µ(t) = sup{IE∥x(s)∥2X; 0 ≤ s ≤ t}, 0 ≤ t ≤ T.

µ(t) ≤ 5M̃2
T[IE∥x0∥2X + C1]

+ 5M̃2
S

Tα

α

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)α−1̃L f (s)ϕ(µ(s))ds

+ 5M̃2
S

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

] ∫ t

0
(t − s)2α−2̃Lσ(s)φ(µ(s))ds.

Denoting by ν(t) the right hand side of the last inequality, we have ν(0) = c = 5M̃2
T[IE∥x0∥2X + C1], µ(t) ≤ ν(t),

t ∈ J.
Moreover,

ν′(t) = 5M̃2
S

Tα

α

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

]
tα−1̃L f (t)ϕ(µ(t))

+ 5M̃2
S

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

]
t2α−2̃Lσ(t)φ(µ(t))

≤ 5M̃2
S

Tα

α

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

]
tα−1̃L f (t)ϕ(ν(t))

+ 5M̃2
S

[
1 + 3M̃4

S
T2α

2α − 1
∥B∥4T2α−1l2

Tα

α

]
t2α−2̃Lσ(t)φ(ν(t)),

or equivalently by (ix), we have∫ ν(t)

ν(0)

ds
ϕ(s) + φ(s)

≤
∫ T

0
ξ(s)ds <

∫ ∞

c

ds
ϕ(s) + φ(s)

, 0 ≤ t ≤ T.

This inequality implies that there is a constant k such that ν(t) ≤ k, t ∈ J, and hence, µ(t) ≤ k. Furthermore,
we get ∥x(t)∥2 ≤ µ(t) ≤ ν(t) ≤ k, t ∈ J. By the Schaefer’s fixed point theorem, we deduce that λ has a fixed
point x(t) on J, with x(T) = xT, which is a mild solution of (1). That means it is along this trajectory that the
solution of (1) will be steered by u from x0 to xT. That completes the proof.

�
In order to study the approximate controllability for the fractional stochastic control system (1), we

introduce the approximate controllability of its linear part

cDα
t x(t) = Ax(t) + (Bu)(t), t ∈ J = [0,T],

x(0) + 1(x) = x0.
(7)
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For this purpose, we need to introduce the relevant operator

ψT
0 =

∫ T

0
Sα(T − s)BB⋆S⋆α (T − s)

R(q, ψT
0 ) = (qI + ψT

0 )−1,

where q > 0 and ψT
0 is a linear bounded operator.

We assume the following additional conditions
(x) qR(q, ψT

0 )→ 0 as q→ 0+ in the strong operator topology.
(xi) f (t, x) : J × X→ X and σ(t, x) : J × X→ L0

2 are bounded for t ∈ J and x ∈ X.

Remark 3.3. From [17] (Theorem 2), the condition (x) is equivalent to the fact that the linear fractional control
system (7) is approximately controllable on J := [0,T]. Hence, by Lemma 2.11, (vii) is equivalent to qR(q, ψT

0 ) :=
(qI + ψT

0 )−1 → 0 as q → 0+ in the strong operator. Moreover, (vii) can be replaced by the following more verifiable
criterion:
There exists some positive constant γ̃ such that ⟨ψT

s z, z⟩ ≤ γ̃∥z∥2 for all 0 ≤ s < T and all z ∈ X.

Theorem 3.4. Under the conditions (vii)− (xi), and if Sα(t) is a compact, then system (1) is relatively approximately
controllable on [0,T].

Proof. For all q > 0 define the control function as

uq(t, x) = B⋆S⋆α (T − s)
(
(qI + ψT

0 )−1[IEx̃T − Tα(T)(x0 − 1(x))] +
∫ t

0
(qI + ψT

0 )−11̃(s)dw(s)
)

− B⋆S⋆α (T − t)
∫ t

0
(qI + ψT

0 )−1Sα(T − s) f (s, x(s))ds

− B⋆S⋆α (T − t)
∫ t

0
(qI + ψT

0 )−1Sα(T − s)σ(s, x(s))dw(s),

(8)

and the operator λq : H2 → H2 as follows

(λqx)(t) = Tα(t)(x0 − 1(x)) +
∫ t

0
Sα(t − s)[Buq(s, x) + f (s, x(s))]ds +

∫ t

0
Sα(t − s)σ(s, x(s))dw(s). (9)

Replacing l2 with 1
q2 and using the same procedure as in the proof of Theorem 3.2, one can prove that λq

has a unique fixed point xq.
By using the stochastic Fubini theorem, it is easy to see that

xq(T) = x̃T − q(qI + ψ)−1[IEx̃T − Tα(T)(x0 − 1(x))] + q
∫ T

0
(qI + ψT

s )−1Sα(T − s) f (s, xq(s))ds

+ q
∫ T

0
(qI + ψT

s )−1[Sα(T − s)σ(s, xq(s)) − 1̃(s)]dw(s).
(10)

It follows from the properties of f and σ that ∥ f (s, xq(s))∥2 + ∥σ(s, xq(s))∥2 ≤ L1. Then there is a subsequence
denoted by { f (s, xq(s)), σ(s, xq(s))} weakly converging to say { f (s), σ(s)}. Thus from the above equation, we
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have

IE∥xq(T) − x̃T∥2 ≤ 6∥q(qI + ψT
0 )−1[IEx̃T − Tα(T)(x0 − 1(x))]∥2 + 6IE

( ∫ T

0
∥q(qI + ψT

s )−11̃(s)∥2L0
2
ds

)
+ 6IE

( ∫ T

0
∥q(qI + ψT

0 )−1∥∥Sα(T − s)( f (s, xq(s)) − f (s))∥ds
)2

+ 6IE
( ∫ T

0
∥q(qI + ψT

s )−1Sα(T − s) f (s)∥ds
)2

+ 6IE
( ∫ T

0
∥q(qI + ψT

s )−1∥∥Sα(T − s)(σ(s, xq(s)) − σ(s))∥2L0
2
ds

)
+ 6IE

( ∫ T

0
∥q(qI + ψT

s )−1Sα(T − s)σ(s)∥2L0
2
ds

)
.

On the other hand, by assumption (x) for all 0 ≤ s ≤ T, the operator q(qI+ψT
s )−1 → 0 strongly as q→ 0+, and

moreover ∥q(qI +ψT
s )−1∥ ≤ 1. Thus, by the Lebesgue dominated convergence theorem and the compactness

of Sα(t), we obtain IE∥xq(T) − x̃T∥2 → 0 as q → 0+. This gives the approximate controllability of (1). Hence
the proof is complete.

�

4. Example

Consider the fractional partial stochastic differential equation in the following form

cDα
t [z(t, x)] =

∂2

∂x2 [z(t, x)] + h(t, z(t, x)) + h̃(t, z(t, x))
dβ
dt
, 0 ≤ t ≤ T, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0,

z(0, x) +

p∑
i=0

∫ π

0
K(x, y)z(t, y)dy = z0(x), 0 ≤ x ≤ π,

(11)

where p is a positive integer, T ≤ π, 0 < t0 < t1, . . . < tp < T, z0(x) ∈ X = L2([0, π]), K(x, y) ∈ L2([0, π] × [0, π])
and cDα

t is the Caputo fractional derivative of order 0 < α < 1.
We take X = L2([0, π]) and let A be the operator defined by Ay = y′′ with domain D(A) = {y ∈ X :

y, y′ are absolutely continuous , y′′ ∈ X, y(0) = y(π) = 0}. It is well known that A is the infinitesimal
generator of an analytic semigroup {T(t)}t≥0 in X. Furthermore, A has a discrete spectrum with eigenvalues

of the form −n2 and the corresponding normalized eigenfunctions are given by xn(z) =
√

2
π sin(nz). In

addition {xn : n ∈ IN} is an orthonormal basis for X, T(t)y =
∞∑

n=1

e−n2t(y, xn)xn, for all y ∈ X, and every t > 0.

From these expressions it follows that {T(t)}t≥0 is a uniformly bounded compact semigroup, so that R(λ,A) =
(λ − A)−1 is a compact operator for all λ ∈ ρ(A) i.e., A ∈ Aα(θ0, ω0).

To represent the above fractional system (11) into the abstract form of (1), we introduce the functions

f : J×X→ X, σ : J×X→ L0
2 and 1 : X→ X by f (t, z)(x) = h(t, z(x)), σ(t, z)(x) = h̃(t, z(x)) and 1(ω) =

p∑
i=0

Kω(ti),

where K(z)(x) =
∫ π

0
K(x, y)z(y)dy. Thus f , σ and 1 satisfy the assumption of Theorem 3.2. Hence by Theorem

3.2, if the corresponding linear system with respect to (11) is relatively controllable, then system (11) is
relatively controllable on [0,T]. So one can deduce by Lemma 2.11 that the linear system corresponding to
(11) is relatively approximately controllable, therefore (x) is fulfilled. In addition, if (xi) is satisfied, then
system (11) is relatively approximately controllable on [0,T] by Theorem 3.4.
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5. Conclusion

This paper has investigated the relative controllability for a class of dynamical control systems
described by semilinear fractional stochastic differential equations with nonlocal conditions in Hilbert
space. A new set of sufficient conditions for the relative controllability of the considered system have been
formulated and proved. As the differential inclusion system is considered as a generalization of the system
described by differential equations, it should be pointed out that under some suitable conditions on f and
σ, one can establish the relative controllability of fractional stochastic differential inclusions with nonlocal
conditions by adapting the techniques and ideas established in this paper and suitably introducing the
technique of single valued maps defined in [4]. This is one of our future goals.
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