
Filomat 27:8 (2013), 1551–1559
DOI 10.2298/FIL1308551J

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Shellability of complexes of directed trees
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Abstract. The question of shellability of complexes of directed trees was asked by R. Stanley. D. Kozlov
showed that the existence of a complete source in a directed graph provides a shelling of its complex of
directed trees. We will show that this property gives a shelling that is straightforward in some sense.
Among the simplicial polytopes, only the crosspolytopes allow such a shelling. Furthermore, we show that
the complex of directed trees of a complete double directed graph is a union of suitable spheres. We prove
that the complex of directed trees of a directed graph which is essentially a tree is vertex-decomposable.
For these complexes we describe their sets of generating facets.

1. Introduction

A directed tree with a root r is an acyclic directed graph T = (V(T),E(T)) such that for every x ∈ V(T) there
exists a unique path from r to x. A directed forest is a family of disjoint directed trees. We say that a vertex y
is below a vertex x in a directed tree T if there exists a unique path from x to y. In this paper we write −→xy for
a directed edge from x to y.

Definition 1.1. Let D be a directed graph without loops. The vertices of the complex of directed trees ∆(D) are
oriented edges of D. The faces of ∆(D) are all directed forests that are subgraphs of D.

The investigation of complexes of directed trees was initiated by D. Kozlov in [10]. The complex of directed
trees of a graph G is recognized in [4] as a discrete Morse complex of this graph (the authors treat graph
as a 1-dimensional complex). Directed forests of G correspond with Morse matchings on G. Complexes of
directed trees are also studied in [7] and [11].

Some important results in combinatorics and discrete geometry are based on investigation of topolog-
ical properties of appropriate simplicial complexes. One of the key steps in Lovász’ proof of Kneser’s
conjecture is verifying that the neighborhood complex of a Kneser graph KGn,k is n − 2k − 1 connected, see
[12]. Complexes of all partial matchings in complete bipartite graphs (chessboard complexes) played the
fundamental role in the proof of the colourful version of Tverberg’s theorem, see [20] and [17]. A detailed
treatment of simplicial complexes on graphs and plenty of interesting examples can be found in [9].

A d-dimensional simplicial complex is pure if every simplex of dimension less than d is a face of some
d-simplex. For further definitions about simplicial complexes and other topological concepts used in this
paper we refer the reader to the textbook [16].
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A simplicial complex ∆ is shellable if it can be built up inductively in a nice way. To be more precise, its
facets can be ordered so that each one of them (except for the first one) intersects the union of its predecessors
in a non-empty union of maximal proper faces. Very often the following definition of shelling is useful.

Definition 1.2. A simplicial complex ∆ is shellable if ∆ is pure and there exists a linear ordering (shelling order)
F1,F2, . . . , Fk of maximal faces (facets) of ∆ such that for all i < j 6 k, there exists some l < j and a vertex v of F j,
such that

Fi ∩ F j ⊆ Fl ∩ F j = F j \ {v}.

For a fixed shelling order F1,F2, . . . ,Fk of ∆, the restriction R(F j) of the facet F j is defined by:

R(F j) = {v is a vertex of F j : F j \ {v} ⊂ Fi for some 1 6 i < j}.

Geometrically, if we build up ∆ from its facets according to the shelling order, then R(F j) is the unique
minimal new face added at the j-th step. The type of the facet F j in the given shelling order is the cardinality
of R(F j), that is, type(F j) = |R(F j)|.
For a d-dimensional simplicial complex ∆ we denote the number of i-dimensional faces of ∆ by fi, and call
f (∆) = ( f−1, f0, f1, . . . , fd) the f -vector. The empty set is a face of every simplicial complex, so we have that
f−1 = 1. A new invariant, the h-vector of ∆ is h(∆) = (h0, h1, . . . , hd, hd+1) defined by the formula

hk =

k∑
i=0

(−1)k−i
(
d + 1 − i
d + 1 − k

)
fi−1.

If a simplicial complex ∆ is shellable, then hk(∆) = |{F is a facet of ∆ : type(F) = k}| is an important combi-
natorial interpretation of h(∆). This interpretation of the h-vector was of great significance in the proof of
the upper-bound theorem and in the characterization of f -vectors of simplicial polytopes (see chapter 8 in
[19]).

If a d-dimensional simplicial complex ∆ is shellable, then ∆ is homotopy equivalent to a wedge of hd+1
spheres of dimension d. A set of maximal simplices from a simplicial complex ∆ is a set of generating
simplices if the removal of their interiors makes ∆ contractible.

For a given shelling order of a complex ∆ we have that {F ∈ ∆ : F is a facet and R(F) = F} is a set of
generating facets of ∆. Note that a facet F is in this set if and only if

∀v ∈ F there exists a facet F′ before F such that F ∩ F′ = F \ {v}. (1)

The concept of shellability for nonpure complexes is introduced in [3]. In the definition of shellability of
nonpure complexes we just drop the requirement of purity from Definition 1.2.

For a facet F of a shellable nonpure complex we can define its restriction R(F) as before. The definitions
of f -vector and h-vector of a nonpure complex are extended for double indexed arrays. For a nonpure
complex ∆ let

fi, j(∆) = |{A ∈ ∆ : |A| = j, i = max{|T| : A ⊆ T,T ∈ ∆}}|,

and hi, j(∆) =
j∑

k=0

(−1) j−k
(
i − k
j − k

)
fi,k.

The above defined arrays are called the f -triangle and the h-triangle of ∆. If ∆ is a shellable complex, we
have the following combinatorial interpretation of the h-triangle: hi, j(∆) = |{F a facet of ∆ : |F| = i, |R(F)| = j}|.

If a nonpure simplicial complex ∆ is shellable, we know that ∆ has a homotopy type of a wedge of
spheres, consisting of h j, j copies of the ( j − 1)-spheres (see Theorem 4.1 in [3]). The conditions described in
(1) help us to identify a generating set of a nonpure shellable complex.

So, establishing shellability of a simplicial complex is an easy combinatorial way to obtain a lot of
information about topology of this complex. In this paper we investigate some specific properties of the
shelling of complexes of directed trees. These complexes are more complicated than simplicial polytopes.
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However, the only simplicial d-polytope whose boundary admits a shelling satisfying these properties is
the crosspolytope. Also, we will use shelling to determine the set of generating simplices of the complex of
directed trees for a digraph that is essentially a tree. We want to find a relation between homology of these
complexes and some combinatorial invariants for trees.

More information about shellable complexes can be found in [1], [2] and [3].

2. Shelling of complexes of directed trees for graphs with a complete source

A vertex x is a complete source of a directed graph D if −→xy ∈ E(D) for all y ∈ V(D) \ {x}. D. Kozlov proved
(Theorem 3.1 in [10]) that if a directed graph D has a complete source, then the complex ∆(D) is shellable.
He used a version of shelling described in the following remark.

Remark 2.1. Let Γ be a simplicial complex. Assume that we can partition the facets of Γ into sets F0,F1,F2, . . . ,Fm
in such a way that the following holds:

|F0| = 1; for all i 6 j, and for different facets F ∈ Fi,F′ ∈ F j, there exist

k < j, a facet F′′ ∈ Fk, and a vertex v ∈ F′ such that F ∩ F′ ⊆ F′′ ∩ F′ = F′ \ {v}. (2)

In that case, any linear order that refines the above partition F0,F1,F2, . . . ,Fm (for i < j we list facets from Fi before
facets from F j) is a shelling of Γ.
If T is a directed tree and v ∈ V(T), let dT(v) denote the out-degree of v, i.e., dT(v) = |{x ∈ V(T) : −→vx ∈ E(T)}|.

In the proof of Theorem 3.1 in [10], the facets of ∆(D) are ordered by their degree sequences lexicographically, i.e.,
trees T and T′ are in the same class if and only if dT(v) = dT′(v) for all v ∈ V(D). Substantially, the facets of ∆(D) are
classified by considering the out-degree of the complete source.

Here, we consider a directed graph D with a complete source c and detect some nice properties of a
shelling described in the above remark.
If |V(D)| = n, for i = 0, 1, . . . , n − 1, we set Fi = {T a facet in ∆(D) : dT(c) = n − i − 1}. In the same manner as
in the proof of Theorem 3.1 in [10] we can verify that the partition F0,F1,F2, . . . ,Fn−1 fulfills the condition
described in Remark 2.1. Namely, if dT(c) > dT′(c) and T , T′, then there exists an edge −→xy ∈ T′ \T such that
x , c. We define

T′′ = T′ \ {−→xy} ∪ {−→cy} if the vertex c is not below y in T′; or

T′′ = T′ \ {−→xy} ∪ {−→cr} if c is below y in T′ and r is the root of T′.

In both cases simplices T,T′,T′′ and the vertex −→xy satisfy the condition described in (2).
Furthermore, for a facet T ∈ ∆(D) the unique new face for T in the shelling order defined above is
R(T) = {−→xy ∈ T : x , c}. Therefore, the type of T is type(T) = n − 1 − dT(c), and we obtain that

hi(∆(D)) = |Fi| = |{T is a facet of ∆(D) : dT(c) = n − i − 1}|.

Corollary 2.2. Let Gn be the complete directed graph on n vertices. Then, for k = 0, 1, . . . , n − 1 we have

hk(∆(Gn)) =
(
n − 1

k

)
(n − 1)k.

Remark 2.3. If a directed graph D has a complete source, then the shelling of∆(D) is straightforward in the following
sense:

(1) We start the shelling with an appropriate facet F0 and let F0 = {F0}.

(2) When we order all facets fromFi−1, letFi denote the set of all facets of∆(D)\(F0∪· · ·∪Fi−1) that are neighborly
(share a common ridge) to a simplex from Fi−1.

(3) We continue the shelling of ∆(D) by arranging simplices from Fi in an arbitrary order.
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(4) In this shelling order, for any facet F we have that type(F) = i⇔ F ∈ Fi.

It may be interesting to find more examples of simplicial complexes that allow a shelling with the properties
(1)–(4) from the above remark.

Example 2.4. Let Dn be the directed graph with V(Dn) = [n] and E(Dn) = {−→1i : i ∈ [n], i , 1} ∪ {−→2 j : j ∈ [n], j , 2}.
It is easy to see that ∆(Dn) is combinatorially equivalent to the boundary of the (n − 1)-dimensional crosspolytope.

Theorem 2.5. The only simplicial d-dimensional polytope whose boundary admits a shelling as that described in
Remark 5 is the crosspolytope.

Proof. Assume that P is a simplicial d-polytope with a shelling satisfying desired properties. We identify a
facet of P with its set of vertices. Let F0 = {v1, v2, . . . , vd} be the first facet in this shelling.

Let wi denote the unique new vertex of the facet of P that contains (d − 2)-dimensional simplex F0 \ {vi}.
All facets of P whose type is 1 belong to F1 and therefore have the form F0 \ {vi} ∪ {wi}. We can conclude
that the set of the vertices of P is V(P) = {v1, v2, . . . , vd,w1,w2, . . . ,wd}.

There are no general results about the number of simplicial d-polytopes with 2d vertices. Grünbaum
and Sreedharan [8] proved that there are exactly 37 centrally symmetric 4-dimensional simplicial polytopes
with 8 vertices.

For any S ⊆ [d] we consider the (d− 1)-simplex FS = conv
(
{vi : i < S} ∪ {w j : j ∈ S}

)
. We do not know that

FS is a facet of P, but we use induction on k to show that

Fk = {FS : S ⊆ [d], |S| = k}. (3)

This is true for k = 0 and k = 1. Assume that the above statement holds for all t 6 k− 1. Let F ∈ Fk be a facet
(yet not listed) of P that shares a common ridge with a facet F̄ from Fk−1.

From the inductive hypothesis we have F̄ = FS (for S ⊂ [d], |S| = k − 1) and F = FS \ {vi} ∪ {w j} for i, j < S.
If i , j, then the edge {v jw j} and the (k − 1)-simplex {ws : s ∈ S ∪ { j}} are two different minimal new faces
that F contributes in the shelling of P, which is impossible. Therefore, we can conclude that i = j, and
F = FS \ {vi} ∪ {wi} = FS∪{i}.
We have that any of the facets that belong to Fk has the form described in (3).

In the shelling of the boundary of a polytope, the type of a facet can be interpreted as the number of
adjacent facets that preceded it in this order. All facets from Fk can be listed in an arbitrary order and any
of them has the type k. Therefore, we conclude that two facets from Fk cannot share the same ridge, and
we obtain that

(d − k + 1)|Fk−1| = k|Fk|.
The inductive assumption and the above equations complete the proof of (3). So, we may conclude that P
is combinatorially equivalent to the d-dimensional crosspolytope.

If a directed graph D has a complete source c then the complex ∆(D) is homotopy equivalent to a wedge
of the spheres. In [10], D. Kozlov describes generating facets of ∆(D) as rooted trees of D having complete
source c as a leaf.

Here we study the combinatorics of the spheres in ∆(D) when D has a complete source. To each tree T
that is a generating facet we associate a sphere ST ⊂ ∆(D) that contains T and describe the combinatorial
type of ST.

We consider a directed graph D with n vertices. Assume that c is a complete source of D. Let T be a
rooted spanning tree of D with vertex c as a leaf. If x1 → x2 → . . . → xk → c is the unique directed path
from x1 (the root of T) to c, let σT denote the simplex {−−−→x1x2,

−−−→x2x3, . . . ,
−→xkc,−→cx1}. It is obvious that σT < ∆(D).

Also note that ∂σT ⊂ ∆(D).
Let AT = {y1, y2, . . . , yr} = V(D) \ {x1, x2, . . . , xk, c}, i.e., AT contains r = n − k − 1 vertices that do not belong
to the unique directed path from x1 to c in T. For any yi ∈ AT there exists the unique vertex zi such that−−→ziyi ∈ E(T). Now, we define

ST = ∂σT ∗ {−−→z1y1,
−−→cy1} ∗ {−−→z2y2,

−−→cy2} ∗ · · · ∗ {−−→zryr,
−→cyr}. (4)
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It is not complicated to prove that ST ⊂ ∆(D). The sphere ST is a (n − k − 1)-folded bipyramid over the
boundary of k-simplex σT.

Proposition 2.6. If a directed graph D has at least two complete sources, then∆(D) is the union of the spheres defined
in (4).

Proof. Let us denote two complete sources in D by c and c′. If c is a leaf in T, then we have T ∈ ST. If c is not
a leaf in a tree T, then let {u1,u2, . . . ,uk} be the set of all vertices of D such that −→cui ∈ E(T) for all i = 1, 2, . . . , k.

If the vertex c′ is not below c in T, we define

T′ = T \ {−→cu1,
−→cu2, . . . ,

−→cuk} ∪ {
−→
c′u1,

−→
c′u2, . . . ,

−→
c′uk}.

In the case when c′ is below c (then we have that c′ = ui or c′ is below ui) and the root of T is r we define

T′ = T \ {−→cu1,
−→cu2, . . . ,

−→cuk} ∪ {
−→
c′u1, . . . ,

−→
c′ui−1,

−→
c′r,
−→
c′ui+1, . . . ,

−→
c′uk}.

In both cases the directed tree T′ is a generating facet of ∆(D). Obviously, the facet T is contained in the
sphere ST′ .

We conclude now that ∆(Gn) is the union of the (n − k − 1)-folded bipyramids over the boundary of a
k-simplex. A simple calculation and the well-known formulae for the number of forests with n − 1 vertices
and k trees such that k specified nodes belong to distinct trees (Theorem 3.3 in [14]) give us the number of
spheres in ∆(Gn) of the same combinatorial type.

Corollary 2.7. For any n > 1 the complex ∆(Gn) is a union of (n − 1)n−1 spheres of dimension n − 2. For 0 < k < n
there are exactly

(n − 1)!
(n − k − 1)!

k(n − 1)n−k−2

of these spheres that are (n − k − 1)-folded bipyramid over the boundary of a (k − 1)-simplex.

For two spanning directed trees T and T′ of Gn having 1 as a leaf (generating simplices of ∆(Gn)), from (4)
we are able to determine the intersection of the spheres ST and ST′ . For example, if x1 → x2 → . . .→ xk → 1
is the common directed path from the root x1 to 1 in T and T′, then ST ∩ ST′ is an n − 2 dimensional disc. If
|E(T)∩ E(T′)| = s > k, then ST ∩ ST′ is an (n− 1− s)-pyramid over an (s− k)-bipyramid over the boundary of
a k-simplex.

3. Trees

A subset of the vertex set of a graph is independent if no two vertices in it are adjacent. For a simple
graph G = (V,E) the independence complex I(G) is the simplicial complex with vertex set V and with faces the
independent sets of G. The independence complex has been previously studied in many papers, see for
example [6],[13].

Shellability and vertex-decomposability of independence complexes are discussed in[5] and [18]. A
complex ∆ is vertex decomposable if it is a simplex or (recursively) ∆ has a shedding vertex, i.e., a vertex v
such that both ∆ \ {v} and link∆v are vertex decomposable. It is well-known that any vertex decomposable
complex is shellable too.

A chordless cycle of length n in a graph G is a cycle v1, v2, . . . , vn, v1 in G with no chord, i.e., with no edges
except {v1v2, v2v3, . . . , vn−1vn, vnv1}.

We will use the following Theorem.

Theorem 3.1 (Theorem 1, [18]). If G is a graph with no chordless cycles of length other than 3 or 5, then I(G) is
vertex decomposable (hence shellable and sequentially Cohen-Macaulay.)
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We follow Kozlov [10] and say that a digraph D is essentially a tree if it becomes an undirected tree
when one replaces all directed edges (or pairs of directed edges going in opposite directions) by an edge.

Theorem 3.2. Let D = (V(D),E(D)) be essentially a tree. Then ∆(D) is vertex decomposable and hence shellable.

Proof. For a given tree D we define a simple graph G in the following way. For v ∈ V(D) let d−(v) = |{x ∈
V(D) : −→xv ∈ E(D)}| denote the in-degree of v in D. We replace every v ∈ V(D) with a complete graph Kd−(v)
whose vertices correspond with directed edges having v as sink. Further, if both of directed edges −→uv,−→vu
are contained in E(D), then the corresponding vertices of Kd−(v) and Kd−(u) are adjacent in G. Formally, we

define V(G) = E(D), and edges with the same sink −→ax,
−→
bx are adjacent in G. Also, if

−→
ab,
−→
ba ∈ E(D) they are

adjacent as vertices of G.
Note that A ⊂ V(G) is an independent set in G if and only if A is the set of edges of a directed forest

in D. Therefore we have that ∆(D) = I(G). Moreover, the construction of G and the assumption that D is
essentially a tree guaranteed that G does not contain a chordless cycle of length other than 3. Now, the
statement of our theorem follows from Theorem 3.1.

Note that these complexes generally are not pure (unlike the case when a digraph has a complete source).
We describe a way to find an explicit shelling of ∆(D). Let D be a directed graph and let v ∈ V(D) be a leaf
in D. In other words there exists the unique vertex x ∈ V(D) such that −→vx or −→xv or both of them are in E(D)
and there are no other edges where v is a source or a sink.

Let D′ = D \ {v} and let {y1, y2, . . . , yk} = {y ∈ V(D′) : −→yx ∈ E(D′)}. Furthermore, let D0 = D′ \
{−−→y1x,−−→y2x, . . . ,−−→ykx} and assume that −→xyi ∈ E(D) for i = 1, 2, . . . , s. Now, for p = 1, 2, . . . , k we set Dp = D0 \ {−→xyi}.
Note that Dp = D0 for p > s.

If a directed graph D is a disjoint union of subgraphs H1,H2, . . . ,Hm then∆(D) = ∆(H1)∗∆(H2)∗· · ·∗∆(Hm).
The join of shellable complexes is also shellable, see [3]. So, we know that the complexes ∆(D′), ∆(D0) and
∆(Dp) are shellable.
Assume that:

(i) F1,F2, . . . ,Ft is a shelling of ∆(D′);

(ii) H1,H2, . . . ,Hr is a shelling of ∆(D0);

(iii) Gp
1,G

p
2, . . . ,G

p
tp

is a shelling of ∆(Dp) (for p = 1, 2, . . . , k).

We use the above notation in the next proposition.

Proposition 3.3. We consider three possible cases.

(a) If −→xv ∈ E(D) and −→vx < E(D), then F1 ∪ {−→xv},F2 ∪ {−→xv}, . . . , Ft ∪ {−→xv} is a shelling of ∆(D). Also, we have that
hi, j(∆(D)) = hi−1, j(∆(D′)).

(b) If −→xv < E(D) and −→vx ∈ E(D), then

H1 ∪ {−→vx}, . . . ,Hr ∪ {−→vx},G1
1 ∪ {
−−→y1x}, . . . ,G1

t1
∪ {−−→y1x}, . . . ,Gk

tk
∪ {−−→ykx}

is a shelling of ∆(D). Furthermore, we have that

hi, j(∆(D)) = hi−1, j(∆(D0)) +
k∑

p=1

hi−1, j−1(∆(Dp)).

(c) If −→xv,−→vx ∈ E(D), then

F1 ∪ {−→xv},F2 ∪ {−→xv}, . . . ,Ft ∪ {−→xv},H1 ∪ {−→vx},H2 ∪ {−→vx}, . . . ,Hr ∪ {−→vx}

is a shelling of D. In that case we have that

hi, j(∆(D)) = hi−1, j(∆(D′)) + hi−1, j−1(∆(D0)).
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Proof.

(a) This is obvious, because ∆(D) is a cone over ∆(D′) with apex −→xv. Therefore, we have RD(Fi ∪ {−→xv}) =
RD′(Fi) and ∆(D) is contractible.

(b) If a facet F of ∆(D) contains −→vx, then F does not contain any of edges {−−→y1x,−−→y2x, . . . ,−−→ykx}. So, in that case
we have that F = H∪ {−→vx}, for a facet H of ∆(D0). If a facet F′ of ∆(D) does not contain −→vx, then F′ must
contain exactly one of the edges {−−→y1x,−−→y2x, . . . ,−−→ykx}. Therefore, we have that F′ = G ∪ {−−→ypx} for a facet
G of Dp.

The supposed shelling of ∆(D0) provides that for i < j and facets Hi,H j of ∆(D0) there exists k < j and
−→wz ∈ H j such that

(Hi ∪ {−→vx}) ∩ (H j ∪ {−→vx}) ⊆ (Hk ∪ {−→vx}) ∩ (H j ∪ {−→vx}) =
(
H j ∪ {−→vx}

)
\ {−→wz}.

Note that for any p such that 1 6 p 6 s and a facet Gp
j of ∆(Dp) there exists a facet Hk of ∆(D0) such that

Gp
j ⊆ Hk. Therefore, for any facet Hi of ∆(D0) we have

(Hi ∪ {−→vx}) ∩ (Gp
j ∪ {
−−→ypx}) ⊆ (Hk ∪ {−→vx}) ∩ (Gp

j ∪ {
−−→ypx}) = Gp

j .

Also, for q 6 p and a facet Gq
r of ∆(Dq) we have

(Gq
r ∪ {−−→yqx}) ∩ (Gp

j ∪ {
−−→ypx}) ⊆ (Hk ∪ {−→vx}) ∩ (Gp

j ∪ {
−−→ypx}) = Gp

j .

So, we obtain that the order defined in (b) is a shelling order for ∆(D). In this order we have that the
restriction of the facets of ∆(D) is

RD(Hi ∪ {−→vx}) = RD0 (Hi) and RD(Gp
i ∪ {
−−→ypx}) = RDp (Gp

i ) ∪ {−−→ypx}.

(c) In this case a facet of ∆(D) has the form

{−→xv} ∪ F, for a facet F of ∆(D′) or {−→vx} ∪H, for a facet H of ∆(D0).

Again, for a facet H j of ∆(D0) there exists a facet Fi of ∆(D′) such that H j ⊆ Fi. In the similar manner as
in (b) we can prove that the considered order is a shelling order. Further, the restriction in this order
is

RD(Fi ∪ {−→xv}) = RD′(Fi) and RD(Hi ∪ {−→vx}) = RD0 (Hi) ∪ {−→vx}.

The complexity of the above described algorithm for shelling is O(2n). The worst case example for our
algorithm is ∆(Pn), where Pn is a double directed path with n vertices.

The trivial, brute-force algorithm that simply generates all permutations of t facets and checks whether
that ordering is a shelling takes O(t! · t), see [15]. The number of facets of ∆(Pn) exponentially depends on
the number of vertices.

Remark 3.4. Now, we can identify a set of generating facets of∆(D). We use the same notation as above. If−→xv ∈ E(D)
and −→vx < E(D), then ∆(D) is contractible. If −→xv < E(D) and −→vx ∈ E(D), let Gp denote a set of generating faces of
∆(Dp) for p = 1, 2, . . . , k. Then, a generating set of facets of ∆(D) is

k∪
p=1

{G ∪ {−−→ypx} : G ∈ Gp}.

If −→xv,−→vx ∈ E(D), then a set of generating facets of ∆(D) is {H ∪ {−→vx} : H is a generating facet of ∆(D0)}.
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A directed acyclic graph is a directed graph without directed cycles. By successive applications of Proposition
3.3 and Remark 3.4 we obtain the following result of A. Engström.

Theorem 3.5 (Theorem 2.12, [7]). If G is a directed acyclic graph, then ∆(G) is homotopy equivalent to a wedge of∏
v∈V(G)\R(d−(v) − 1) spheres of dimension |V(G)| − |R| − 1, where R is the set of vertices without edges directed to

them.

A double directed tree D is obtained by replacing every edge of a tree by a pair of directed edges going in
opposite directions. Now, we investigate homotopy type of ∆(D), where D is a double directed tree.

Definition 3.6. A tree T with 2n vertices (n leaves and n non-leaves) such that every non-leaf is adjacent to exactly
one leaf we call basic tree. Also, we say that a tree with exactly two vertices is a basic tree. We say that the edge
connecting a non-leaf and a leaf is peripheral.

We can produce a basic tree if we start with an arbitrary tree T′ and add a leaf to each node of T′. We use
description of generating facets from Remark 3.4 to obtain the following proposition.

Proposition 3.7. Let D be a double directed tree with 2n vertices obtained from a basic tree T by replacing every edge
of T by a pair of directed edges going in opposite directions. Then we have that ∆(D) ≃ Sn−1.

Proof. Assume that v1, v2, . . . , vn are leaves of T. We label the rest of the vertices of T with u1,u2, . . . ,un
so that viui ∈ E(T) for all i = 1, 2, . . . , n. By applying Remark 3.4 successively we obtain that the set of
peripheral edges {−−→viui : i = 1, 2, . . . ,n} is the unique generating facet of ∆(D).

We denote the unique generating facet for a basic tree T by GT, that is, GT = {−−−→v1u1,
−−−→v2u2, . . . ,

−−−→vnun}.
Let D be a double directed tree obtained from a tree T. We describe a bijection between generating

simplices of ∆(D) and decompositions of T into basic trees.
Let v1, v2, . . . , vn be a fixed linear order of V(D) and choose the first leaf v ∈ V(D) in this order. Assume

that N(v) = {x} and N(x) = {v, y1, . . . , yk}. From Remark 3.4 we know that all generating facets of ∆(D)
have to contain the edge −→vx. Next, we are looking for generating facets of complex ∆(D0) where D0 =
(D \ {v}) \ {−−→y1x, . . . ,−−→ykx}. From (b) of Proposition 3.3 we have that a generating facet of ∆(D0) must contain
edges −−→z1y1,

−−→z2y2, . . . ,
−−→zkyk where zi ∈ N(yi) and zi , x. If dT(yi) = 2 for all i = 1, 2, . . . , k, we consider a subtree

of T spanned by {v, x, y1, . . . , yk, z1, . . . , zk}. In the case when NT(yi) = {x, zi,u1, . . . ,ur}, a generating facet of
∆(D) that contains {−→vx,−−→z1y1, . . . ,

−−→zkyk} also must contain edges −−−→w ju j for j = 1, 2, . . . , r.
By repeating this procedure we obtain a subtree B1 of T such that

(1) B1 is a basic tree and v ∈ V(B1),
(2) for any x ∈ V(B1) that is not a leaf in B1 we have that dB1 (x) = dT(x),
(3) |V(B1)| > 2 whenever |V(T)| > 2.

Note that there can be more possibilities for a basic tree B1, see Figure 1. If we can not find a subtree B1 that
satisfies the above conditions, then we obtain that ∆(D) is contractible. After we choose a basic tree B1 that
satisfies (1)–(3) we proceed in the same way with T′ = T \ {x ∈ V(B1) : dB1 (x) = dT(x)}. Note that T′ is a forest
or a tree.

Let v′ be the first leaf of T′ and let T1 be the maximal tree of T′ that contains v′. Now, we are looking for
B2, a subtree of T1 that satisfies (1)–(3). If we can decompose T into B1,B2, . . . ,Bm we say that (B1,B2, . . . ,Bm)
is an ordered decomposition of T into m basic trees.

An ordered decomposition (B1,B2, . . . ,Bm) of T that satisfies (1)–(3) produces a generating facet GB1 ∪
GB2 ∪ · · · ∪ GBm of ∆(D).

Theorem 3.8. Let D be a double directed tree with n vertices. Let µm denote the number of ordered decompositions
of D into m basic trees. Then we have that

∆(D) ≃
∨

m

 µm∨
S

n+m−3
2

 .
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Figure 1: A tree and its decompositions into basic trees. Oriented edges represent generating facets of ∆(D). Note that ∆(D) ≃ S5 ∨ S6

Proof. We described above a bijection between generating sets of ∆(D) and ordered decompositions of D
that satisfy (1)–(3). Consider such an ordered partition (B1,B2, . . . ,Bm) with m basic trees. If a basic tree
Bi contains 2si vertices (and 2si − 1 edges) it contains si edges of a generating set of ∆(D). Then we have
2s1 − 1 + 2s2 − 1 + · · · + 2sm − 1 = n − 1, and this decomposition corresponds with

s1 + s2 + · · · + sm − 1 =
n +m − 1

2
− 1

dimensional generating facet of ∆(D).

Corollary 3.9. For a double directed tree D with n vertices the nontrivial homology of ∆(D) can occur in dimensions
between

⌈
n−2

2

⌉
and n − ⌊ n

3 ⌋ − 2.
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