Matrix Transforms of A-statistically Convergent Sequences with Speed

Ants Aasma ${ }^{\text {a }}$
${ }^{a}$ Department of Economics, Tallinn University of Technology, Akadeemia Road 3-456, 12618 Tallinn, Estonia

Abstract

Let X, Y be sequence spaces and (X, Y) the set of all matrices mapping X into Y. Let A be a non-negative regular matrix and λ a speed, i.e. a positive monotonically increasing sequence. In this paper the notion of A-statistical convergence with speed λ is introduced and the class of matrices ($s t_{A}^{\lambda} \cap X, Y$), where $s t_{A}^{\lambda}$ is the set of all A-statistically convergent sequences with speed λ, is described.

1. Introduction

The notion of statistical convergence of a sequence was defined by Fast [6] and Steinhaus [20] independently in 1951. Further this subject have been studied in several works (see, for example, [1], [8], [13], [17]-[19]). In 1988 Kolk [14] (see also [15]-[16]) introduced the concept of A-statistical convergence for a non-negative regular matrix A and studied matrix transforms of A-statistically convergent sequences.

The speed (or the rate) of convergence of statistically and A-statistically convergent sequences were introduced in various ways [3]-[5], [9]. In the present paper we choose another way to define the speed of convergence of A-statistically convergent sequences, applying the notion of convergence with speed λ (λ is a monotonically increasing positive sequence), introduced by Kangro in 1969 [11]. Also we investigate the matrix transforms of A-statistically convergent sequences with speed. We show that in the special case, if λ is bounded, from our results follow some results of Kolk [15]-[16]. The author wish to thank professor Kolk for valuable advices for preparing this paper.

2. Notation and preliminaries

Let, as usual, s, m, c, c_{0} be respectively the spaces of all sequences $x:=\left(x_{k}\right)$ (with real or complex entries), of all bounded sequences, of all convergent sequences, of all sequences converging to 0 . Throughout this paper we assume that indices and summation indices run from 0 to ∞ unless otherwise specified.

In the following by an index set we mean an infinite subset $\left\{k_{i}\right\}$ of \mathbf{N} with $k_{i}<k_{i+1}$. For an arbitrary index set $K=\left\{k_{i}\right\}$ the sequence $x^{[K]}=\left(y_{k}\right)$, where

$$
y_{k}= \begin{cases}x_{k} & \text { if } k \in K \\ 0 & \text { otherwise }\end{cases}
$$

[^0]is called the K-section of x. A sequence space X is called section-closed if $x^{[K]} \in X$ for every $x \in X$ and for every index set K. A sequence space X is called subsequence-c1osed if every subsequence of X belongs to X. For example, the spaces s, m, c_{0} are section-closed and the space c is subsequence-c1osed, but not section-closed.

Let X, Y be two sequence spaces and $A=\left(a_{n k}\right)$ be a matrix with real or complex entries. If for each $x=\left(x_{k}\right) \in X$ the series

$$
A_{n} x=\sum_{k} a_{n k} x_{k}
$$

converge and the sequence $A x=\left(A_{n} x\right)$ belongs to Y, we say that the matrix A transforms X into Y. By (X, Y) we denote the set of all matrices which transform X into Y. A matrix A is said to be regular if $A \in(c, c)$ and

$$
\lim _{n} A_{n} x=\lim _{k} x_{k}
$$

for each $x \in c$. It is well-known (see [2]) that $A=\left(a_{n k}\right)$ is regular if and only if

$$
\begin{align*}
& \lim _{n} a_{n k}=0 \tag{2.1}\\
& \lim _{n} \sum_{k} a_{n k}=1, \tag{2.2}\\
& \sum_{k}\left|a_{n k}\right|=O(1) . \tag{2.3}
\end{align*}
$$

A matrix A is called uniformly regular if it satisfies the conditions (2.2)-(2.3) and

$$
\begin{equation*}
\limsup _{n}\left|a_{n k}\right|=0 \tag{2.4}
\end{equation*}
$$

For example, the Cesàro matrix $C^{1}=\left(a_{n k}\right)$, where $a_{n k}=1 / n$ for $k \leq n$ and $a_{n k}=0$ otherwise, is uniformly regular.

Let K be a fixed index set. By $A^{[K]}$ we denote the K-column-section of the matrix A, i.e. $A^{[K]}=\left(d_{n k}\right)$, where

$$
d_{n k}= \begin{cases}a_{n k} & \text { if } k \in K \\ 0 & \text { otherwise }\end{cases}
$$

By $\varphi^{[K]}$ we denote the characteristic sequence of K, i.e. $\varphi^{[K]}=\left(\varphi_{j}^{[K]}\right)$, where

$$
\varphi_{j}^{[K]}= \begin{cases}1 & \text { if } j \in K, \\ 0 & \text { otherwise } .\end{cases}
$$

If C^{1} transforms $\varphi^{[K]}$ into c, then the limit

$$
\lim _{n} \frac{1}{n} \sum_{j=0}^{n} \varphi_{j}^{[K]}
$$

is said to be the asymptotic density of K and is denoted by $\delta(K)$. Let further throughout the paper A is a regular non-negative matrix. Following Freedman and Sember [7], for A an index set K is said to have A-density

$$
\delta_{A}(K):=\lim _{n} A_{n} \varphi^{[K]}
$$

if $A \varphi^{[K]} \in c$. So

$$
\delta_{A}(K)=\lim _{n} \sum_{k \in K} a_{n k}
$$

By Fast [6] (see also [20]), a sequence $x=\left(x_{k}\right)$ is called statistically convergent to a number ξ if $\delta\left(K_{\epsilon}\right)=0$ for every $\epsilon>0$, where

$$
K_{\epsilon}:=\left\{k:\left|x_{k}-\xi\right| \geq \epsilon\right\} .
$$

A sequence x is said to be A-statistically convergent to ξ if $\delta_{A}\left(K_{\epsilon}\right)=0$ for every $\epsilon>0$ (see [14], [16]). In this case we write

$$
s t_{A}-\lim x_{k}=\xi
$$

We denote the set of all A-statistically convergent sequences by $s t_{A}$, and the set of all sequences, converging A-statistically to 0 , by $s t_{A}^{0}$.

As for every $x=\left(x_{k}\right) \in c$ the set K_{ϵ} is finite for each $\epsilon>0$, then $\delta_{A}\left(K_{\epsilon}\right)=0$ for every $\epsilon>0$ by condition (2.1). Thus every convergent sequence is A-statistically convergent, i.e. $c \in s t_{A}$. It was shown in [16] that for a uniformly regular non-negative matrix A the A-statistical convergence is strictly stronger than ordinary convergence.

Observe that for $A=I$ (where I is the identity matrix) the concept of A-statistical convergence coincides with ordinary convergence, and for $A=C^{1}$ with the statistical convergence.

Let throughout this paper $\lambda=\left(\lambda_{k}\right)$ be a positive monotonically increasing sequence. Following Kangro [11], [12] a convergent sequence $x=\left(x_{k}\right)$ with

$$
\begin{equation*}
\lim _{k} x_{k}:=\xi \text { and } l_{k}=\lambda_{k}\left(x_{k}-\xi\right) \tag{2.5}
\end{equation*}
$$

is called bounded with the speed λ (shortly, λ-bounded) if $l_{k}=O(1)$, and convergent with the speed λ (shortly, λ-convergent) if

$$
\begin{equation*}
\exists \lim _{k} l_{k}:=b \tag{2.6}
\end{equation*}
$$

We denote the set of all λ-bounded sequences by m^{λ}, and the set of all λ-convergent sequences by c^{λ}. Let

$$
\begin{gathered}
c_{0}^{\lambda}=\left\{x=\left(x_{k}\right): x \in c^{\lambda} \text { and } b=0\right\}, \\
m_{0}^{\lambda}=\left\{x=\left(x_{k}\right): x \in m^{\lambda} \text { and } \xi=0\right\}, \\
z^{\lambda}=\left\{x=\left(x_{k}\right): x \in c^{\lambda} \text { and } \xi=0\right\}, \\
n^{\lambda}=\left\{x=\left(x_{k}\right): x \in c^{\lambda} \text { and } \xi=b=0\right\} .
\end{gathered}
$$

It is not difficult to see that $n^{\lambda} \subset z^{\lambda} \subset c^{\lambda} \subset m^{\lambda} \subset c$ and $n^{\lambda} \subset c_{0}^{\lambda} \subset c^{\lambda}$. In addition to it, for unbounded sequence λ these inclusions are strict. For $\lambda_{k}=O(1)$ we get $c_{0}^{\lambda}=c^{\lambda}=m^{\lambda}=c$ and $z^{\lambda}=n^{\lambda}=c_{0}$.

For a non-negative regular matrix A we say that a sequence $x=\left(x_{k}\right)$ is A-statistically convergent with speed λ (shortly, A^{λ}-statistically convergent) if $x \in s t_{A}$ and $l:=\left(l_{k}\right) \in s t_{A}$. For the particular case $A=C^{1}$ we say that a sequence x is statistically convergent to ξ with speed λ (shortly, λ-statistically convergent to $\xi)$. The set of all A^{λ}-statistically convergent sequences we denote by $s t_{A}^{\lambda}$.

Obviously $s t_{A}^{\lambda} \subset s t_{A}$. Also we can assert that $c^{\lambda} \subset s t_{A}^{\lambda}$. Indeed, for every $x \in c^{\lambda}$ we have $x \in c \subset s t_{A}$ and $l \in c \subset s t_{A}$. Consequently $x \in s t_{A}^{\lambda}$.

It is easy to see that for $A=I$ the concept of A^{λ}-statistical convergence coincides with the concept of λ-convergence, and for $\lambda_{k}=O(1)$ with the concept of ordinary A-statistical convergence.

For $x=\left(x_{k}\right) \in s t_{A}^{\lambda}$ we denote

$$
\begin{equation*}
s t_{A}-\lim x_{k}=\eta \text { and } s t_{A}-\lim t_{k}=\beta ; t_{k}=\lambda_{k}\left(x_{k}-\eta\right) \tag{2.7}
\end{equation*}
$$

Further we also need the following subsets of $s t_{A}^{\lambda}$:

$$
\begin{gathered}
s t_{A, 0}^{\lambda}=\left\{x=\left(x_{k}\right): x \in s t_{A}^{\lambda} \text { and } \beta=0\right\}, \\
z-s t_{A}^{\lambda}=\left\{x=\left(x_{k}\right): x \in s t_{A}^{\lambda} \text { and } \eta=0\right\}, \\
n-s t_{A}^{\lambda}=\left\{x=\left(x_{k}\right): x \in s t_{A}^{\lambda} \text { and } \eta=0, \beta=0\right\} .
\end{gathered}
$$

We note that $n-s t_{A}^{\lambda} \subset z-s t_{A}^{\lambda} \subset s t_{A}^{\lambda}$ and $n-s t_{A}^{\lambda} \subset s t_{A, 0}^{\lambda}$.

3. Matrix transforms of A-statistically convergent sequences with speed

At first we introduce some notations and formulate some results, which we need further. Let $e=(1,1, \ldots), e^{k}=(0, \ldots, 0,1,0, \ldots)$, where 1 is in the k-th position, and $\lambda^{-1}=\left(1 / \lambda_{k}\right)$.
Lemma 3.1 ([14], [15], see also [8]). Let A be a non-negative regular matrix. A sequence $x=\left(x_{k}\right)$ converges A-statistically to ξ if and only if there exists an infinite set of indices $K=\left\{k_{i}\right\}$ so that the subsequence $\left(x_{k_{i}}\right)$ converges to ξ and $\delta_{A}(\mathbf{N} \backslash K)=0$ (and hence $\delta_{A}(K)=1$).
Lemma 3.2 (see [16]). Let $Y \neq s$ be a subsequence-closed sequence space. If a matrix A is uniformly regular, the following statements about a matrix $B=\left(b_{n k}\right)$ (with real or complex entries) are equivalent:
(I) $B \in(s, Y)$;
(II) $B^{[K]} \in(s, Y)$ for every index set K with $\delta_{A}(K)=0$;
(III) $B e^{k} \in Y$ and there exists a number k_{0} such that

$$
b_{n k}=0 \text { for every } k>k_{0} \text { and } n \in \mathbf{N} .
$$

Now we are able to prove the main results of the paper.
Theorem 3.3. Let λ be a monotonically increasing positive sequence and A a non-negative regular matrix. A sequence $x=\left(x_{k}\right)$ converges A^{λ}-statistically to η if and only if there exists an infinite set of indices $K=\left\{k_{i}\right\}$ so that the subsequence $\left(x_{k_{i}}\right)$ is λ-convergent to η and $\delta_{A}(\mathbf{N} \backslash K)=0$ (and hence $\delta_{A}(K)=1$).
Proof. As for a bounded sequence λ we have $s t_{A}^{\lambda}=s t_{A}$, then in this case Theorem 3.3 coincides with Lemma 3.1. Therefore suppose that λ is unbounded. By the definition, $x=\left(x_{k}\right) \in s t_{A}^{\lambda}$ if and only if relation (2.7) holds. With the help of Lemma 3.1 we get that $s t_{A}-\lim t_{k}=\beta$ if and only if there exists an infinite set of indices $K=\left\{k_{i}\right\}$ so that the ordinary limit

$$
\begin{equation*}
\lim _{i} t_{k_{i}}=\beta \tag{3.1}
\end{equation*}
$$

exists and $\delta_{A}(K)=1$. As the sequence λ is monotonically increasing, then the subsequence $\left(\lambda_{k_{i}}\right)$ of λ is unbounded. Consequently it follows from (3.1) that there exists the ordinary $\operatorname{limit} \lim x_{k_{i}}=\eta$. This relation together with $\delta_{A}(K)=1$ implies $s t_{A}-\lim x_{k}=\eta$. Thus the proof is complete.
Theorem 3.4. Let $\lambda=\left(\lambda_{k}\right)$ be a monotonically increasing positive sequence, X a section-closed sequence space containing e and λ^{-1}, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix $B \in\left(s t_{A}^{\lambda} \cap X, Y\right)$ if and only if $B \in\left(c^{\lambda} \cap X, Y\right)$ and

$$
\begin{equation*}
B^{[K]} \in(X, Y) \quad\left(\delta_{A}(K)=0\right) \tag{3.2}
\end{equation*}
$$

Proof. Necessity. Let $B \in\left(s t_{A}^{\lambda} \cap X, Y\right)$. As $c^{\lambda} \subset s t_{A}^{\lambda}$, we immediately have $B \in\left(c^{\lambda} \cap X, Y\right)$. Let K be a set of indices with $\delta_{A}(K)=0$, and $x=\left(x_{k}\right) \in X$. Then the sequence $y^{\lambda}:=\left(y_{k}^{\lambda}\right)$, where

$$
y_{k}^{\lambda}= \begin{cases}\lambda_{k} x_{k} & \text { if } k \in K \\ 0 & \text { otherwise }\end{cases}
$$

converges A-statistically to 0 . Consequently the sequence $y=x^{[K]}$ converges A^{λ}-statistically to 0 . Moreover, $y \in X$, since X is section-closed. Hence $y \in s t_{A}^{\lambda} \cap X$, and therefore $B y \in Y$. As

$$
B^{[K]} x=\left(B_{n}^{[K]} x\right)=\left(B_{n} y\right)=B y
$$

then $B^{[K]} x \in Y$. Thus condition (3.2) is valid.
Sufficiency. We show that $B \in\left(s t_{A}^{\lambda} \cap X, Y\right)$ if $B \in\left(c^{\lambda} \cap X, Y\right)$ and condition (3.2) is fulfilled. Let $x=\left(x_{k}\right) \in$ $s t_{A}^{\lambda} \cap X$, i.e. relation (2.7) holds. We prove that $B x \in Y$. It follows from (2.7) that

$$
x_{k}=\eta+\frac{\beta}{\lambda_{k}}+\frac{t_{k}-\beta}{\lambda_{k}}
$$

i.e. every $x \in s t_{A}^{\lambda}$ we can present in the form

$$
x=\eta e+\beta \lambda^{-1}+x^{0}, \text { where } x^{0}:=\left(\frac{t_{k}-\beta}{\lambda_{k}}\right) \in n \text {-st } t_{A}^{\lambda} .
$$

As $e \in c^{\lambda} \cap X$ and $\lambda^{-1} \in c^{\lambda} \cap X$, then $B e \in Y$ and $B \lambda^{-1} \in Y$. Therefore it is sufficient to show that $B x \in Y$ for every $x \in n$-st t_{A}^{λ}. Thus suppose $x \in n$-st A_{A}^{λ}, i.e. relation (2.7) holds with $\eta=\beta=0$. Then by Theorem 3.3 there exist a set of indices K with $\delta_{A}(K)=0$ (then $\delta_{A}(\mathbf{N} \backslash K)=1$) so that $\lim _{k} u_{k}=0$, where $u:=\left(u_{k}\right)$ is the $\mathbf{N} \backslash K$-section of $t:=\left(t_{k}\right)$, i.e.

$$
u_{k}= \begin{cases}\lambda_{k} x_{k} & \text { if } k \in \mathbf{N} \backslash K, \\ 0 & \text { otherwise. }\end{cases}
$$

Hence for $y=\left(y_{k}\right):=x^{[\mathbf{N} \backslash K]}$ we get $\lim _{k} y_{k}=0$. Thus $y \in n^{\lambda} \subset c^{\lambda}$. Also $y \in X$, since X is section-closed. This implies $B y \in Y$. Moreover, $B^{[K]} x \in Y$ by (3.2), and

$$
B x=B y+B^{[K]} x .
$$

Therefore $B x \in Y$. The proof is complete.
Similarly to Theorem 3.4 we can prove the analogous results for the sets $c_{0}^{\lambda}, z^{\lambda}$ and n^{λ}.
Theorem 3.5. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space containing e, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix $B \in\left(s t_{A, 0}^{\lambda} \cap X, Y\right)$ if and only if $B \in\left(c_{0}^{\lambda} \cap X, Y\right)$ and relation (3.2) holds.
Theorem 3.6. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space containing λ^{-1}, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix $B \in\left(z-s t_{A}^{\lambda} \cap X, Y\right)$ if and only if $B \in\left(z^{\lambda} \cap X, Y\right)$ and relation (3.2) holds.
Theorem 3.7. Let λ be a monotonically increasing positive sequence, X a section-closed sequence space, Y an arbitrary sequence space and A a regular non-negative matrix. Then a matrix $B \in\left(n-s t_{A}^{\lambda} \cap X, Y\right)$ if and only if $B \in\left(n^{\lambda} \cap X, Y\right)$ and relation (3.2) holds.

For a bounded sequence λ from Theorem 3.4 it follows Theorem 4.1 of Kolk [16] and from Theorem 3.6 (or Theorem 3.7) we get Theorem 4.2 of Kolk [16]. For a uniformly regular matrix A we get the following result.
Theorem 3.8. Let λ be a monotonically increasing positive sequence, $Y \neq s$ a subsequence-closed sequence space and A a uniformly regular non-negative matrix. Then $\left(s t_{A}^{\lambda}, Y\right)=\left(s t_{A, 0}^{\lambda}, Y\right)=\left(z-s t_{A}^{\lambda}, Y\right)=\left(n-s t_{A}^{\lambda}, Y\right)=(s, Y)$.

Proof. As

$$
(s, Y) \subset\left(s t_{A}^{\lambda}, Y\right) \subset\left(s t_{A, 0}^{\lambda}, Y\right) \subset\left(n-s t_{A}^{\lambda}, Y\right)
$$

and

$$
(s, Y) \subset\left(s t_{A, 0}^{\lambda}, Y\right) \subset\left(n-s t_{A}^{\lambda}, Y\right),
$$

then it is sufficient to prove that $\left(n\right.$-st $\left.A_{A}^{\lambda}, Y\right) \subset(s, Y)$. If $B \in\left(n\right.$-st $\left.A_{A}^{\lambda}, Y\right)$, then by Theorem 3.7 (for the case $X=s$) $B^{[K]} \in(s, Y)$ for every set of indices K with $\delta_{A}(K)=0$. Hence $B \in(s, Y)$ by Lemma 3.2. The proof is complete.

For a bounded sequence λ from Theorem 3.8 we get Theorem 4.3 of [16]. Using the equivalence of conditions (I) and (III) of Lemma 3.2, from Theorem 3.8 we immediately get the extension of Corollary 4.4 of [16].
Corollary 3.9. By the assumptions of Theorem 3.8 the equivalent inclusions $B \in\left(s t_{A}^{\lambda}, Y\right), B \in\left(s t_{A, 0}^{\lambda}, Y\right), B \in$ $\left(z\right.$-st $\left.A_{A}^{\lambda}, Y\right)$ and $B \in\left(n\right.$-st $\left.t_{A}^{\lambda}, Y\right)$ hold if and only if B has at most finitely many non-zero columns belonging to Y.

As s, m, c_{0} are section- and subsequence-closed, and c is only subsequence-closed, then Theorems 3.4-3.7 it is possible to apply for the cases $X=s, X=m$ and $X=c_{0}$, and Theorem 3.8 for the cases $Y=m$, $Y=c_{0}$ and $Y=c_{0}$. We prove that similarly we can apply Theorems 3.4-3.7 for $X=m_{0}^{\lambda}$ and $X=n^{\lambda}$, and Theorem 3.8 for $Y=c_{0}^{\lambda}, Y=n^{\lambda}$ and $Y=m^{\lambda}$. Also we show that Theorem 3.8 is applicable for $Y=c^{\lambda}$ and $Y=z^{\lambda}$ only in the special case.
Proposition 3.9. Let $\lambda=\left(\lambda_{k}\right)$ be a monotonically increasing positive unbounded sequence. Then the following statements hold:
a) m_{0}^{λ} and n^{λ} are section-closed, but $m^{\lambda}, c^{\lambda}, c_{0}^{\lambda}$ and z^{λ} are not;
b) $m_{0}^{\lambda}, m^{\lambda}, n^{\lambda}$ and c_{0}^{λ} are subsequence-closed;
c) c^{λ} and z^{λ} are subsection-closed if and only if there exists the finite limit

$$
\begin{equation*}
\lim _{k} \frac{\lambda_{k}}{\lambda_{i_{k}}} \tag{3.3}
\end{equation*}
$$

for every subsequence $\left(\lambda_{i_{k}}\right)$ of λ.

Proof.

a) The assertion immediately follows from the definitions of these sets.
b) Let $x=\left(x_{k}\right) \in m^{\lambda}$, i.e. relation (2.5) with $l_{k}=O(1)$ is satisfied. Then for every subsequence $\left(x_{i_{k}}\right)$ of x we get $\lim _{k} x_{i_{k}}=\xi$, since $m^{\lambda} \subset c$. For every subsequence $\left(x_{i_{k}}\right)$ of x we define the sequence $\left(u_{k}\right)$ with

$$
u_{k}:=\lambda_{k}\left(x_{i_{k}}-\xi\right) .
$$

As λ is monotonically increasing, then

$$
\left|u_{k}\right| \leq \lambda_{i_{k}}\left|x_{i_{k}}-\xi\right| \leq \lambda_{k} \mid\left(x_{k}-\xi \mid .\right.
$$

This implies $u_{k}=O(1)$ for each $x \in m^{\lambda}$ and each subsequence $\left(x_{i_{k}}\right)$ of x, and $\lim _{k} u_{k}=0$ for each $x \in c_{0}^{\lambda}$ and each subsequence $\left(x_{i_{k}}\right)$ of x. Moreover, $m_{0}^{\lambda} \subset m^{\lambda}$ and $n^{\lambda} \subset c_{0}^{\lambda}$. Hence $m_{0}^{\lambda}, m^{\lambda}, n^{\lambda}$ and c_{0}^{λ} are subsequence-closed.
c) Let $x=\left(x_{k}\right) \in c^{\lambda}$, i.e. relations (2.5) and (2.6) are valid. As in this case $l:=\left(l_{k}\right) \in c$, then l can be represented in the form

$$
l=l^{0}+b e, l^{0}:=\left(l_{k}^{0}\right) \in c_{0}
$$

Thus

$$
l_{k}^{0}+b=\lambda_{k}\left(x_{k}-\xi\right)
$$

and consequently

$$
\begin{equation*}
x_{k}=\frac{l_{k}^{0}}{\lambda_{k}}+\frac{b}{\lambda_{k}}+\xi \tag{3.4}
\end{equation*}
$$

Obviously for every subsequence $\left(x_{i_{k}}\right)$ of x we get $\lim _{k} x_{i_{k}}=\xi$. Using (3.4) we can write

$$
v_{k}:=\lambda_{k}\left(x_{i_{k}}-\xi\right)=\frac{\lambda_{k}}{\lambda_{i_{k}}}\left(l_{i_{k}}^{0}+b\right) .
$$

If $b=0$, then $\left(v_{k}\right) \in c$, because $\lambda_{k} / \lambda_{i_{k}}=O(1)$ by the monotonicity of λ. If $b \neq 0$, then $\left(v_{k}\right) \in c$ for every subsequence $\left(x_{i_{k}}\right)$ of x if and only if there exists finite limit (3.3) for every subsequence $\left(\lambda_{i_{k}}\right)$ of λ. Thus in this case c^{λ} is subsequence-closed. The proof for z^{λ} is similar.
Remark 3.1. We note that the finite limit (3.3) exists for every subsequence $\left(\lambda_{i_{k}}\right)$ of λ if, for example, λ is defined by the equality $\lambda_{k}:=(k+1)^{k}$.

4. Matrix transforms of A^{λ}-statistically convergent λ-bounded null sequences

Let throughout this section $\lambda=\left(\lambda_{k}\right)$ and $\mu=\left(\mu_{k}\right)$ are monotonically increasing positive unbounded sequences. We consider some applications of the results of previous section. Taking $X=m_{0}^{\lambda}$ and $Y=z^{\mu}$ in theorem 3.6, we get that $B \in\left(z-s t_{A}^{\lambda} \cap m_{0}^{\lambda}, z^{\mu}\right)$ if and only if $B \in\left(z^{\lambda}, z^{\mu}\right)$ and $B^{[K]} \in\left(m_{0}^{\lambda}, z^{\mu}\right)$ for every index set K with $\delta_{A}(K)=0$ (since $z^{\lambda} \subset m_{0}^{\lambda}$). Similarly, if we take $X=m_{0}^{\lambda}$ and $Y=n^{\mu}$ in theorem 3.7, we get that $B \in\left(n-S t_{A}^{\lambda} \cap m_{0}^{\lambda}, n^{\mu}\right)$ if and only if $B \in\left(n^{\lambda}, n^{\mu}\right)$ and $B^{[K]} \in\left(m_{0}^{\lambda}, n^{\mu}\right)$ for every index set K with $\delta_{A}(K)=0$ (since $\left.n^{\lambda} \subset m_{0}^{\lambda}\right)$. The characterizations of matrix classes $\left(c^{\lambda}, c^{\mu}\right)$ and $\left(m^{\lambda}, m^{\mu}\right)$ are given by Kangro (Theorem 1 of [11] and Theorem 1 of [12]). Similarly, using the known characterizations of matrix classes $(c, c),\left(c_{0}, c_{0}\right)$, (m, c) and $\left(m, c_{0}\right)$ (see [2], [10]), it can be easily show that the following results hold.

Lemma 4.1. A matrix $B=\left(b_{n k}\right) \in\left(z^{\lambda}, z^{\mu}\right)$ if and only if $B e^{k} \in z^{\mu}, B \lambda^{-1} \in z^{\mu}$ and
(IV) $\mu_{n} \sum_{k} \frac{\left|b_{n k}\right|}{\lambda_{k}}=O(1)$.

Lemma 4.2. A matrix $B=\left(b_{n k}\right) \in\left(m_{0}^{\lambda}, z^{\mu}\right)$ if and only if condition (IV) holds and
(V) $\exists \lim _{n} \mu_{n} b_{n k}:=L_{k}$,
(VI) $\lim _{n} \sum_{k} \frac{\left|\mu_{n} b_{n k}-L_{k}\right|}{\lambda_{k}}=0$.

Lemma 4.3. A matrix $B=\left(b_{n k}\right) \in\left(n^{\lambda}, n^{\mu}\right)$ if and only if $B e^{k} \in n^{\mu}$ and condition (IV) is satisfied.
Lemma 4.4. A matrix $B=\left(b_{n k}\right) \in\left(m_{0}^{\lambda}, n^{\mu}\right)$ if and only if
(VII) $\lim _{n} \mu_{n} \sum_{k} \frac{\left|b_{n k}\right|}{\lambda_{k}}=0$.

Using Lemmas 4.1 and 4.2, from Theorem 3.6 we immediately get
Corollary 4.5. A matrix $B=\left(b_{n k}\right) \in\left(z-s t_{A}^{\lambda} \cap m_{0}^{\lambda}, z^{\mu}\right)$ if and only if $B e^{k} \in z^{\mu}, B \lambda^{-1} \in z^{\mu}$, condition (IV) holds and there exists an index set K with $\delta_{A}(K)=0$ so that
(VIII) $\lim _{n} \sum_{k \in K} \frac{\left|\mu_{n} b_{n k}-L_{k}\right|}{\lambda_{k}}=0$.

Using Lemmas 4.3 and 4.4, from Theorem 3.7 we immediately get
Corollary 4.6. A matrix $B=\left(b_{n k}\right) \in\left(n-s t_{A}^{\lambda} \bigcap m_{0}^{\lambda}, n^{\mu}\right)$ if and only if $B e^{k} \in n^{\mu}$, condition (IV) holds and there exists an index set K with $\delta_{A}(K)=0$ so that

$$
\text { (IX) } \lim _{n} \mu_{n} \sum_{k \in K} \frac{\left|b_{n k}\right|}{\lambda_{k}}=0
$$

References

[1] J.S. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis 8 (1988) 47-63.
[2] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
[3] O. Duman, M.K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003) 689-699.
[4] O. Duman, C. Orhan, Rates of A-statistical convergence of positive linear operators, Appl. Math. Letters 18 (2005) $1339-1344$.
[5] O. Duman, C. Orhan, Rates of A-statistical convergence of operators in the space of locally integrable functions, Appl. Math. Letters 21 (2008) 431-435.
[6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[7] A.P. Freedman, J.J. Sember, Densities and summability, Paeific J. Math. 95 (1981) 293-305.
[8] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[9] J.A. Fridy, H.I. Miller, C. Orhan, Statistical rates of convergence, Acta Sci. Math. (Szeged) 69 (2003) 147-157.
[10] G. H. Hardy, Divergent series, Oxford Univ. Press, U.K., 1949.
[11] G. Kangro, On the summability factors of the Bohr-Hardy type for a given speed I., Proc. Estonian Acad. Sci. Phys. Math. 18 (1969) 137-146 (in Russian).
[12] G. Kangro, Summability factors for the series λ-bounded by the methods of Riesz and Cesàro, Acta Comment. Univ. Tartuensis 277 (1971) 136-154 (in Russian).
[13] M.K. Khan, C. Orhan, Characterizations of strong and statistical convergences, Publ. Math. 76 (2010) 77-88.
[14] E. Kolk, The statistical convergence in normed spaces, in: Methods of algebra and analysis (Abstr. Conf., Tartu, 1988), Univ. of Tartu Press, Tartu, 1988, pp. 63-66 (in Russian).
[15] E. Kolk, Statistically convergent sequences in Banach spaces, Acta Comment. Univ. Tartuensis 928 (1991) 41-52.
[16] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993) 77-83.
[17] M. Mursaleen, A. Alotaibi, Statistical summability and approximation by de la Valle-Poussin mean, Appl. Math. Letters 24 (2011) 320-324.
[18] E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Letters 24 (2011) 826-830.
[19] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) $361-375$.
[20] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.

[^0]: 2010 Mathematics Subject Classification. Primary 40A35; Secondary 40G15, 40C05
 Keywords. Statistical convergence, A-density, A-statistical convergence with speed, convergence with speed, matrix transformations, regular matrices

 Received: 18 March 2013; Revised 15 May 2013; Accepted: 16 May 2013
 Communicated by Eberhard Malkowsky
 Research supported by Estonian Science Foundation grant 8627
 Email address: ants.aasma@ttu.ee (Ants Aasma)

