Bound for Vertex PI Index in Terms of Simple Graph Parameters

Kinkar Ch. Das ${ }^{\text {a }}$, Ivan Gutman ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
${ }^{b}$ Faculty of Science, University of Kragujevac,
P. O. Box 60, 34000 Kragujevac, Serbia

Abstract

The vertex PI index is a distance-based molecular structure descriptor, that recently found numerous chemical applications. In this letter we obtain a lower bound on the vertex PI index of a connected graph in terms of number of vertices, edges, pendent vertices, and clique number, and characterize the extremal graphs.

1. Introduction

In theoretical chemistry molecular-graph based structure descriptors - also called topological indices - are used for modeling physico-chemical, pharmacologic, toxicologic, etc. properties of chemical compounds ([4,12]). There exist several types of such indices, reflecting different aspects of molecular structure. Arguably the best known of these indices is the Wiener index $W=W(G)$, equal to the sum of distances between all pairs of vertices of the molecular graph $G([4,12])$. The Szeged index is closely related to the Wiener index and coincides with it in the case of trees [3,5,10,12]. In the notation explained below, it is defined as

$$
\begin{equation*}
S z=S z(G)=\sum_{e=v_{i} v_{j} \in E(G)} n_{i}(e \mid G) n_{j}(e \mid G) . \tag{1}
\end{equation*}
$$

In view of the considerable success of the Szeged index (for details see the review [5] and the book [3]), an additive version of it has been put forward, called the vertex PI index [9]:

$$
\begin{equation*}
P I=P I(G)=\sum_{e=v_{i} v_{j} \in E(G)}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] . \tag{2}
\end{equation*}
$$

Its basic mathematical properties were established in a number of recent papers [2, 6, 9, 11, 13]. At this point it is worth noting that in chemical graph theory also an edge PI index has been considered $[3,8]$.

[^0]Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G),|E(G)|=m$. For $v_{i} \in V(G)$, the degree (= number of first neighbors) of the vertex v_{i} is denoted by d_{i}.

For $v_{r}, v_{s} \in V(G)$, the length of the shortest path between the vertices v_{r} and v_{s} is their distance, $d\left(v_{r}, v_{s} \mid G\right)$.
Let $e=v_{i} v_{j}$ be an edge of the graph G, connecting the vertices v_{i} and v_{j}. Define two sets $N_{i}(e \mid G)$ and $N_{j}(e \mid G)$ as

$$
\begin{aligned}
& N_{i}(e \mid G)=\left\{v_{k} \in V(G) \mid d\left(v_{k}, v_{i} \mid G\right)<d\left(v_{k}, v_{j} \mid G\right)\right\} \\
& N_{j}(e \mid G)=\left\{v_{k} \in V(G) \mid d\left(v_{k}, v_{j} \mid G\right)<d\left(v_{k}, v_{i} \mid G\right)\right\} .
\end{aligned}
$$

The number of elements of $N_{i}(e \mid G)$ and $N_{j}(e \mid G)$ are denoted by $n_{i}(e \mid G)$ and $n_{j}(e \mid G)$, respectively. Thus, $n_{i}(e \mid G)$ counts the vertices of G lying closer to the vertex v_{i} than to the vertex v_{j}. The meaning of $n_{j}(e \mid G)$ is analogous. Vertices equidistant from both ends of the edge $v_{i} v_{j}$ belong neither to $N_{i}(e \mid G)$ nor to $N_{j}(e \mid G)$. Note that for any edge $e=v_{i} v_{j}$ of $G, n_{i}(e \mid G) \geq 1$ and $n_{j}(e \mid G) \geq 1$, because $v_{i} \in N_{i}(e \mid G)$ and $v_{j} \in N_{j}(e \mid G)$. The Szeged and the vertex PI indices are then defined via Eqs. (1) and (2).

For any n-vertex tree T as well as for the complete graph K_{n},

$$
P I(T)=P I\left(K_{n}\right)=n(n-1) .
$$

Denote by $H(n, \omega), \omega \leq n-1$, is the graph on n vertices consisting of a clique on ω vertices and randomly connect $n-\omega$ pendent to arbitrary vertices of K_{ω}. It is easily verified that $\operatorname{PI}(H(n, \omega))=n(n-1)$.

In this paper we obtain a lower bound on the vertex PI index of a connected graph G in terms of the number of vertices (n), edges (m), pendent vertices (p), and clique number (ω), and characterize the extremal graphs.

2. Lower bounds on vertex PI index

For bipartite graph $G(\omega=2), P I(G)=m n$. So it is interesting to find the lower bound on $P I$ index for $\omega \geq 3$:

Theorem 2.1. Let G be a connected graph with n vertices, m edges, p pendent vertices, and clique number $\omega(\omega \geq 3)$. Then

$$
\begin{equation*}
P I(G) \geq 2 m+(n-2) p+(n-\omega)(\omega-1) \tag{3}
\end{equation*}
$$

with equality holding if and only if $G \cong K_{n}$ or $G \cong H(n, \omega)$.
Proof. If G is isomorphic to the complete graph K_{n}, then $m=n(n-1) / 2, \omega=n, p=0$ and hence the equality holds in (3). Therefore we may assume that $G \not \equiv K_{n}$, in which case $\omega \leq n-1$.

For each edge $e=v_{i} v_{j} \in E(G)$,

$$
\begin{equation*}
n_{i}(e \mid G)+n_{j}(e \mid G) \geq 2 \tag{4}
\end{equation*}
$$

If e is a pendent edge, then

$$
\begin{equation*}
n_{i}(e \mid G)+n_{j}(e \mid G)=n . \tag{5}
\end{equation*}
$$

Since G has clique number $\omega(\omega \geq 3)$, the complete graph K_{ω} is contained in G. Suppose that $V\left(K_{\omega}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{\omega}\right\}, \omega \geq 3$ and $\mathbf{S}=V(G) \backslash V\left(K_{\omega}\right)=\left\{v_{\omega+1}, v_{\omega+2}, \ldots, v_{n}\right\}$. Then $|\mathbf{S}|=n-\omega>0$.

Case(i): We first assume that there exist two vertices $v_{s}, v_{t} \in V\left(K_{\omega}\right)$ such that $d\left(v_{i}, v_{s} \mid G\right) \neq d\left(v_{i}, v_{t} \mid G\right)$ for all $v_{i} \in \mathbf{S}$. Let $d(i)=\min \left\{d\left(v_{i}, v_{j} \mid G\right) \mid v_{j} \in V\left(K_{\omega}\right)\right\}$. Suppose that $d(i)$ is the smallest distance between the vertex v_{i} and any vertex in $\mathbf{R}=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \subseteq V\left(K_{\omega}\right)$. Then $d\left(v_{i}, v_{j} \mid G\right)>d(i)$ for any vertex v_{j} in $V\left(K_{\omega}\right) \backslash \mathbf{R}=\left\{v_{r+1}, v_{r+2}, \ldots, v_{\omega}\right\}=\mathbf{R}^{\prime}$. For any edge $e=v_{j} v_{k} \in E\left(K_{\omega}\right), v_{j} \in \mathbf{R}, v_{k} \in \mathbf{R}^{\prime}$. Denote by $N_{j k}(e \mid G)$ the union $N_{j}(e \mid G) \cup N_{k}(e \mid G)$.

Then the vertex $v_{i} \in \mathbf{S}$ belongs to $r(\omega-r)$ sets $N_{j k}(e \mid G), v_{j} \in \mathbf{R}, v_{k} \in \mathbf{R}^{\prime}$, that is, the vertex v_{i} in \mathbf{S} belong to at least $\omega-1$ sets $N_{j k}(e \mid G), v_{j} \in \mathbf{R}, v_{k} \in \mathbf{R}^{\prime}$. Since K_{ω} has $\omega(\omega-1) / 2$ edges and $n-\omega$ is the number of vertices in $G \backslash K_{\omega}(|\mathbf{S}|=n-\omega)$, we have

$$
\begin{align*}
& \sum_{v_{j} v_{k}=e \in E\left(K_{\omega}\right)}\left(n_{j}(e \mid G)+n_{k}(e \mid G)\right) \tag{6}\\
= & \sum_{v_{j} v_{k}=e \in E\left(K_{\omega}\right)}\left(\left|N_{j}(e \mid G)\right|+\left|N_{k}(e \mid G)\right|+\left|N_{j}(e \mid G) \cap N_{k}(e \mid G)\right|\right) \\
& \text { as }\left|N_{j}(e \mid G)\right|=n_{j}(e \mid G),\left|N_{k}(e \mid G)\right|=n_{k}(e \mid G) \text { and }\left|N_{j}(e \mid G) \cap N_{k}(e \mid G)\right|=0 \\
= & \sum_{v_{j} v_{k}=e \in E\left(K_{\omega}\right)}\left|N_{j}(e \mid G) \cup N_{k}(e \mid G)\right|=\sum_{v_{j} v_{k}=e \in E\left(K_{\omega}\right)}\left|N_{j k}(e \mid G)\right| \\
\geq & \omega(\omega-1)+(n-\omega)(\omega-1) . \tag{7}
\end{align*}
$$

Claim 1.

$$
\begin{equation*}
\sum_{\substack{v_{i} i_{j}=e \in E\left(G \mid K_{\omega}\right) \\ d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \geq 2\left(m-\frac{1}{2} \omega(\omega-1)-p\right) \tag{8}
\end{equation*}
$$

with equality holding if and only if $m=\omega(\omega-1) / 2+p$.
Proof of Claim 1. Since G is connected and $n>\omega$, the number of non-pendent edges in $G \backslash K_{\omega}$ is equal to $m-\omega(\omega-1) / 2-p$, that is, $m \geq \omega(\omega-1) / 2+p$. By (4), we get the result (8). If $m>\omega(\omega-1) / 2+p$, then at least one non-pendent edge belongs to $G \backslash K_{\omega}$. Thus there is a non-pendent edge $e=v_{j} v_{k}$ such that $v_{j} \in V\left(K_{\omega}\right)$ and $v_{k} \in V\left(G \backslash K_{\omega}\right)$, and v_{k} is not adjacent to all vertices in the set $\left\{v_{1}, v_{2}, \ldots, v_{\omega}\right\}$. Thus, $n_{j}(e \mid G)+n_{k}(e \mid G) \geq 3$ and hence

$$
\sum_{\substack{v_{i} v_{j}=e \in \in\left(G \mid K_{\omega}\right) \\ d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]>2\left(m-\frac{1}{2} \omega(\omega-1)-p\right) .
$$

This implies that equality in (8) holds if and only if $m=\omega(\omega-1) / 2+p$.
Now,

$$
\begin{aligned}
\operatorname{PI}(G) & =\sum_{\substack{v_{i} v_{j}=e \in E(G)}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \\
& =\sum_{\substack{v_{i} v_{j}=e \in E(G) \\
d_{i} \text { or } d_{j}=1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]+\sum_{\substack{v_{i} v_{j} j=e \in E(G) \\
d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \\
& =n p+\sum_{v_{i} v_{j}=e \in E\left(K_{\omega}\right)}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]+\sum_{\substack{v_{i} v_{j}=e \in E\left(G \mid K_{\omega}\right) \\
d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]
\end{aligned}
$$

by (5)
$\geq n p+\omega(\omega-1)+(n-\omega)(\omega-1)+2\left(m-\frac{1}{2} \omega(\omega-1)-p\right)$
by (7) and (8).
From above we get the required result (3).

Case(ii): We consider the subset \mathbf{S}^{\prime} of the, set $\mathbf{S} \quad\left(\left|\mathbf{S}^{\prime}\right|=h>0\right)$, whose elements v_{i} have the property $d\left(v_{i}, v_{j} \mid G\right)=d\left(v_{i}, v_{k} \mid G\right)=d$ for any two vertices $v_{j}, v_{k} \in V\left(K_{\omega}\right)$. Further, let the shortest paths from the vertex v_{i} to the clique K_{ω} be

$$
v_{i} v_{i_{0}^{(1)}} v_{i_{1}^{(1)}} \ldots v_{i_{d-2}^{(1)}} v_{1}, v_{i} v_{i_{0}^{(2)}} v_{i_{1}^{(2)}} \ldots v_{i_{d-2}^{(2)}} v_{2}, \ldots, v_{i} v_{i_{0}^{(\omega)}} v_{i_{1}^{(\omega)}} \ldots v_{i_{d-2}^{(\omega)}} v_{\omega} .
$$

It may be that the $v_{i_{j}^{(r)}}$ and $v_{i_{j}^{(s)}}$ are the same, $r \neq s$.
Thus we have $v_{j} \in N_{i i_{0}^{(i)}}(e \mid G)=N_{i}(e \mid G) \cup N_{i_{0}^{(j)}}(e \mid G), j=1,2, \ldots, \omega$, and hence

$$
\sum_{\substack{v_{i} \nu_{j}=e \in \in\left(G \mid K_{\omega}\right) \\ d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]>h(\omega-1)+2\left(m-\frac{1}{2} \omega(\omega-1)-p\right)
$$

as $\left|\mathbf{S}^{\prime}\right|=h$.
There exist two vertices v_{j} and $v_{k} \in V\left(K_{\omega}\right)$ such that $d\left(v_{i}, v_{j} \mid G\right) \neq d\left(v_{i}, v_{k} \mid G\right)$ for any vertex v_{i} in $\mathbf{S} \backslash \mathbf{S}^{\prime}$ $\left(|\mathbf{S}|-\left|\mathbf{S}^{\prime}\right|=n-h-\omega\right)$. In addition, since K_{ω} has $\omega(\omega-1) / 2$ edges, similarly as in Case (i), we have

$$
\sum_{v_{i} v_{j}=e \in E\left(K_{\omega}\right)}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \geq \omega(\omega-1)+(n-h-\omega)(\omega-1) .
$$

Using the above results, we get

$$
\begin{align*}
& \operatorname{PI}(G)= \sum_{\substack{v_{i} v_{j}=e \in E(G)}}\left(n_{i}(e \mid G)+n_{j}(e \mid G)\right) \\
&= \sum_{\substack{v_{i} v_{j}=e \in(G) \\
d_{i} \text { or } d_{j}=1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right]+\sum_{\substack{v_{i} v_{j}=e \in E(G) \\
d_{i}, d_{j}>1}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \\
&=n p+\sum_{e \in E\left(K_{\omega}\right)}\left(n_{i}(e \mid G)+n_{j}(e \mid G)\right)+\sum_{\substack{e \in E\left(G \mid K\left(K_{\omega}\right) \\
d_{i}, d_{j}>1\right.}}\left[n_{i}(e \mid G)+n_{j}(e \mid G)\right] \quad \text { by }(5) \\
&> n p+\omega(\omega-1)+(n-h-\omega)(\omega-1)+h(\omega-1) \\
& \quad+2\left(m-\frac{1}{2} \omega(\omega-1)-p\right) \tag{10}
\end{align*}
$$

From above we get the required result (3). Hence the first part of the proof is done.
By direct checking one can easily verify that equality in (3) holds for the complete graph K_{n} and the graph $H(n, \omega)$.

Suppose now that equality holds in (3). Then we must have equality also in (9). Then there exist two vertices $v_{s}, v_{t} \in V\left(K_{\omega}\right)$ such that $d\left(v_{i}, v_{s} \mid G\right) \neq d\left(v_{i}, v_{t} \mid G\right)$ for any vertex v_{i} in $V\left(G \backslash K_{\omega}\right)$. The equality holds also in (7) and (8). From equality in (8), $m=\omega(\omega-1) / 2+p$. Thus all edges in $G \backslash K_{\omega}$ pendent and the number of pendent vertices in G is $n-\omega$. Hence $G \cong H(n, \omega)$.

References

[1] K. C. Das, I. Gutman, Estimating the Szeged index, Applied Math. Lett. 22 (2009) 1680-1684.
[2] K. C. Das, I. Gutman, Estimating the vertex PI index, Z. Naturforsch. 65a (2010) 1-5.
[3] M. V. Diudea, M. S. Florescu, P. V. Khadikar, Molecular Topology and Its Applications, EfiCon Press, Bucharest, 2006.
[4] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[5] I. Gutman, A. A. Dobrynin, The Szeged index - a success story, Graph Theory Notes New York 34 (1998) 37-44.
[6] A. Ilić, On the extremal graphs with respect to the vertex PI index, Appl. Math. Lett. 23 (2010) 1213-1217.
[7] A. Ilić, Note on PI and Szeged indices, Mathematical and Computer Modelling 52 (2010) 1570-1576.
[8] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci. Lett. 23 (2000) 113-118.
[9] M. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product of graphs, Discr. Appl. Math. 156 (2008) 1780-1789.
[10] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (5) (1996) 45-49.
[11] M. J. Nadjafi-Arani, G. H. Fath-Tabar, A. R. Ashrafi, Extremal graphs with respect to the vertex PI index, Appl. Math. Lett. 22 (2009) 1838-1840.
[12] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[13] Ž. K. Vukičević, , D. Stevanović, Bicyclic graphs with extremal values of PI index, Discrete Appl. Math. 161 (2013) 395-403.

[^0]: 2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50
 Keywords. Graph, Vertex PI index, Clique number, Lower bound
 Received: 20 October 2012; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 K. Ch. D. and I. G. thank, respectively, for support by the Faculty research Fund, Sungkyunkwan University, 2012 and National Research Foundation funded by the Korean government with the grant no. 2013R1A1A2009341, and the Serbian Ministry of Science (Grant No. 174033).

 Email addresses: kinkardas2003@googlemail.com (Kinkar Ch. Das), gutman@kg.ac.rs (Ivan Gutman)

