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Abstract. We establish some coincidence and common fixed point theorems for mappings satisfying a
generalized (ψ,φ)-weakly contractive condition in complete Hausdorff generalized metric spaces. Our
results generalize very recent results of C. Di Bari and P. Vetro [Common fixed points in generalized metric
spaces, Appl. Math. Comput. 218 (2012), 7322–7325] and extend and generalize many existing results in
the literature.

1. Introduction and preliminaries

It is well known that the contraction mapping principle, formulated and proved in the Ph.D. dissertation
of Banach in 1920, which was published in 1922, is one of the most important theorems in classical functional
analysis. This contraction mapping principle has been generalized in many directions. Recently, a very
interesting generalization was obtained by Branciari in [3] by lessening the structure of a metric space. In
fact, Branciari [3] introduced a concept of generalized metric space by replacing the triangle inequality by
a more general inequality - by the ”rectangular” inequality. So any metric space is a generalized metric
space, but the converse is not true (see for example ref. [3]). He proved the Banach’s fixed point theorem
in such spaces. For more details about fixed-point theory in generalized metric spaces, we refer the reader
to [1], [4]-[14].

In this paper, we prove coincidence and common fixed point theorems for two mappings satisfying
a generalized (ψ,φ)-weakly contractive condition in complete Hausdorff generalized metric spaces. Pre-
sented theorems extend and generalize many existing results in the literature.

2. Definitions and known theorems

Let R+ denote the set of all positive real numbers and N denote the set of all positive integers.

Definition 2.1. Let X be a non-empty set and d : X × X → [0,+∞) be a mapping such that for all x, y ∈ X and for
all distinct points u, v ∈ X each of them different from x and y, one has
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(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x,u) + d(u, v) + d(v, y) (rectangular inequality).

Then (X, d) is called a generalized metric space (or shortly g.m.s.).

Definition 2.2. Let (X, d) be a g.m.s., {xn} be a sequence in X and x ∈ X. We say that

(i) A sequence {xn} is convergent to x if and only if d(xn, x)→ 0 as n→ +∞. We denote this by xn → x.

(ii) A sequence {xn} is a Cauchy sequence if and only if for each ϵ > 0 there exists a natural number n(ϵ) such that
d(xm, xn) < ϵ for all n > m ≥ n(ϵ).

(iii) (X, d) is called complete if every g.m.s. Cauchy sequence is convergent in X.

We denote byΨ the set of functions ψ : [0,+∞)→ [0,+∞) satisfying the following hypotheses:

(ψ1) ψ is continuous and nondecreasing,

(ψ2) ψ(t) = 0 if and only if t = 0.

We denote by Φ the set of functions φ : [0,+∞)→ [0,+∞) satisfying the following hypotheses:

(φ1) φ is lower semi-continuous,

(φ2) φ(t) = 0 if and only if t = 0.

H. Lakzian and B. Samet in [10], established the following fixed point theorem involving a pair of
altering distance functions in a generalized complete metric spaces.

Theorem 2.3. (Lakzian and Samet [10], Theorem 1). Let (X, d) be a Hausdorff and complete g.m.s. and let T : X→ X
be a self- mapping satisfying

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X, where ψ ∈ Ψ and φ : [0,+∞)→ [0,+∞) is continuous and φ(t) = 0 if and only if t = 0. Then T has
a unique fixed point.

Definition 2.4. Let X be a non-empty set and T, f : X→ X.

(i) A point y ∈ X is called a point of coincidence of T and f if there exists a point x ∈ X such that y = Tx = f x.
The point x is called coincidence point of T and f .

(ii) The mappings T, f are said to be weakly compatible if they commute at their coincidence point (that is, T f x = f Tx
whenever Tx = f x).

Recently C. Di Bari and P. Vetro [8] extended the fixed point Theorem 2.3 of Lakzian and Samet to the
following common fixed point theorem for mappings satisfying a (ψ,φ)-weakly contractive condition in
generalized metric spaces.
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Theorem 2.5. (Di Bari and Vetro [8], Theorem 1). Let (X, d) be a Hausdorff g.m.s. and let T and f be self-mappings
on X such that TX ⊆ f X. Assume that ( f X, d) is a complete g.m.s. and that the following condition holds:

ψ(d(Tx,Ty)) ≤ ψ(d( f x, f y)) − φ(d( f x, f y))

for all x, y ∈ X, where ψ ∈ Ψ and φ : [0,+∞)→ [0,+∞) is lower semi-continuous and φ(t) = 0 if and only if t = 0.
Then T and f have a unique point of coincidence in X. Moreover, if T and f are weakly compatible, then T and f have
a unique common fixed point.

In this paper, we prove some coincidence and common fixed point theorems involving (ψ,φ)-weak
contractive conditions for two self-mappings on X in complete generalized metric (X, d) spaces by assuming
that these are Hausdorff spaces. Our theorems are real generalizations of Theorems 2.3 and 2.5.

3. Main results

In this section, we prove some common fixed point results for two self-mappings satisfying a generalized
(ψ,φ)-weakly contractive condition, where a function φ satisfies a less restrictive condition then in the
theorems of Lakzian and Samet [10], as well as in theorems of Di Bari, P. Vetro [8].

We denote by Φ∗ the set of functions φ : [0,+∞)→ [0,+∞) satisfying the following hypotheses:

(φ1) lim inft→r+ φ(t) > 0 for all r > 0,

(φ2) φ(t) = 0 if and only if t = 0.

Theorem 3.1. Let (X, d) be a Hausdorff g.m.s. and let T and f be self-mappings on X such thatTX ⊆ f X. Assume
that ( f X, d) is a complete g.m.s. and that the following condition holds:

ψ(d(Tx,Ty)) ≤ ψ(max{d( f x, f y),
1
2

[d( f x,Tx) + d( f y,Ty)], d( f y,Tx)}) (1)

−φ(d( f x, f y))

for all x, y ∈ X, where ψ ∈ Ψ and φ ∈ Φ∗. Then T and f have a unique point of coincidence in X. Moreover, if T and
f are weakly compatible, then T and f have a unique common fixed point.

Proof. Let x0 ∈ X. Define sequences {xn} and {yn} in X by

yn = f xn+1 = Txn ; n ∈ {0, 1, 2, · · ·}. (2)

This can be done, since TX ⊆ f X. If we assume that yn = yn−1 for some n ≥ 1, then by (2) we have
yn = Txn = yn−1 = f xn. Hence Txn = f xn. Thus in this case one can directly proved that T and f have a
coincidence point xn in X.

Now we shall suppose that yn , yn−1 for all n ≥ 1. From (1) with x = xn and y = xn+1 we have

ψ(d(yn , yn+1 )) = ψ(d(Txn ,Txn+1 ))

≤ ψ(max{d( f xn , f xn+1 ),
1
2

[d( f xn ,Txn ) + d( f xn+1 ,Txn+1 )],

d( f xn+1 ,Txn )}) − φ(d( f xn , f xn+1 ))

= ψ(max{d(yn−1 , yn ),
1
2

[d(yn−1 , yn) + d(yn , yn+1 )], d(yn , yn )})
−φ(d(yn−1 , yn )).

Hence we get

ψ(d(yn , yn+1 )) ≤ ψ(max{d(yn−1 , yn ), d(yn , yn+1 )}) − φ(d(yn−1 , yn )). (3)
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From (3), using the monotone property of the function ψ, and as φ(d(yn−1 , yn )) > 0, we have

d(yn , yn+1 ) < d(yn−1 , yn ) for all n ≥ 1. (4)

From (4) it follows that the sequence of positive reals {d(yn , yn+1 )} is monotone decreasing and conse-
quently, there exists q ≥ 0 such that limn→∞ d(yn, yn+1) = q. We shall show that q = 0, that is,

lim
n→∞

d(yn, yn+1) = 0. (5)

Suppose, to the contrary, that q > 0. Letting n → ∞ in (3), and using the continuity of ψ and the property
(φ1) of the function φ ∈ Φ∗, we get

ψ(q) ≤ ψ(q) − lim inf
d(yn,yn+1)→q+

φ(q) < ψ(q),

a contradiction. Thus we proved (5).
Now we shall show that yn+2 , yn for all n ≥ 1. Suppose, to the contrary, that yn+2 = yn. Then, using (4),

we have d(yn, yn+1) = d(yn+2, yn+1) < d(y(n+2)−1, y(n+1)−1) = d(yn+1, yn), a contradiction. Therefore, yn+2 , yn
for all n ≥ 1, which implies that

d(yn , yn+2 ) > 0 for all n ∈ {0, 1, 2, · · ·}. (6)

From (1), for any n ∈ N we have

ψ(d(yn+1 , yn+3 )) = ψ(d(Txn+1,Txn+3 ))

≤ ψ(max{d( f xn+1 , f xn+3 ),
1
2

[d( f xn+1,Txn+1 ) + d( f xn+3 ,Txn+3 )],

d( f xn+3 ,Txn+1 )}) − φ(d( f xn+1 , f xn+3 ))

= ψ(max{d(yn , yn+2 ),
1
2

[d(yn , yn+1) + d(yn+2 , yn+3 )], d(yn+2 , yn+1 )})
−φ(d(yn , yn+2)).

Hence, using (4),

ψ(d(yn+1 , yn+3 )) ≤ ψ(max{d(yn , yn+2 ), d(yn , yn+1 )} − φ(d(yn , yn+2)). (7)

Thus, from (7), for each n ∈ N, either

ψ(d(yn+1 , yn+3 )) ≤ ψ(d(yn , yn+2 )) − φ(d(yn , yn+2), (8)

or

ψ(d(yn+1 , yn+3 )) ≤ ψ(d(yn , yn+1 )) − φ(d(yn , yn+1)). (9)

Suppose at first that there is some n0 ∈ N such that (8) holds for all n ≥ n0. Since from (6) we have
φ(d(yn , yn+2) > 0, then from (8) we get ψ(d(yn+1 , yn+3 )) < ψ(d(yn , yn+2 )). This implies, as ψ is nondecreasing,

d(yn+1 , yn+3 ) < d(yn , yn+2 ) for all n ≥ n0.

Hence it follows that the sequence {d(yn , yn+2 )} is monotone decreasing and consequently, there exists p ≥ 0
such that d(yn, yn+2)→ p + . If we suppose that p > 0, then letting n→ ∞ in (7) and using the continuity of
ψ and the property (φ1) of φ, we get

ψ(p) ≤ ψ(p) − lim inf
d(yn,yn+2)→p+

φ(p) < ψ(p),
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a contradiction. Thus

lim
n→∞

d(yn, yn+2) = 0. (10)

Suppose now that (9) holds for some infinite subset {n j} of positive integers. Then from (9) we get
ψ(d(ynj+1 , ynj+3 )) ≤ ψ(d(ynj

, ynj+1 )) for all n j ∈ N. Hence, as ψ is nondecreasing,

d(ynj+1 , ynj+3 ) ≤ d(ynj
, ynj+1 ) for all n j ∈ N.

Letting j→∞ in the above inequality and using (5) we get

lim sup
j→+∞

d(ynj+1 , ynj+3 ) ≤ lim
j→+∞

d(ynj
, ynj+1 ) = 0.

Hence we obtain lim supk→∞ d(ynj+1 , ynj+3 ) = 0. This implies limn→∞ d(yn, yn+2) = 0. Thus we proved that (10)
holds.

Now we shall prove that {yn} is a g.m.s. Cauchy sequence. Suppose, to the contrary, that{yn} is not a
Cauchy sequence. Then there exists ϵ > 0 such that for each k ∈ N we can find subsequences {ymk } and {ynk }
of {yn}with nk > mk ≥ k such that

d(ymk , ynk ) ≥ ϵ. (11)

We can choose nk > mk in such a way that it is the smallest integer for which (11) holds, that is, such that

d(ymk , ynk−1) < ϵ (12)

holds. Now, using the rectangular inequality, (12) and (11) we get, as ymk , ynk , ynk−1, ynk−2 are distinct points,

ϵ ≤ d(ymk , ynk )
≤ d(ymk , ynk−1) + d(ynk−1, ynk−2) + d(ynk−2, ynk )
< ϵ + d(ynk−2, ynk−1) + d(ynk−2, ynk ).

Letting k→ +∞ in the above inequality, using (5) and (10), we obtain

d(ymk , ynk )→ ϵ + . (13)

From (1) with x = xnk and y = xmk , using that nk > mk and (4), we get

ψ(d(ymk+1, ymk+1)) = ψ(d(Txmk+1,Txnk+1))
≤ ψ(max{d( f xmk+1, f xnk+1), d( f xnk+1,Txmk+1),

d( f xmk+1,Txmk+1) + d( f xnk+1,Txnk+1)
2

})
−φ(d( f xmk+1, f xnk+1)).

= ψ(max{d(ymk , ynk ), d(ymk , ymk+1), d(ynk , ymk+1)})
−φ(d(ymk , ynk )).

Hence, using that nk > mk, (4) and (4), we get

ψ(d(ymk+1, ymk+1)) ≤ ψ(max{d(ymk , ynk ), d(ymk , ymk+1), d(ymk+1, ynk )})
−φ(d(ymk , ynk )). (14)

From the rectangular inequality, we have

d(ymk , ynk ) − d(ymk , ymk+1) − d(ynk+1, ynk )
≤ d(ymk+1, ynk+1)
≤ d(ymk+1, ymk ) + d(ymk , ynk ) + d(ynk , ynk+1),
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Letting k→ +∞, using (13) and (5), we obtain

d(ymk+1, ynk+1)→ ϵ. (15)

Similarly, from the rectangular inequality,

d(ymk , ynk ) − d(ymk−1, ymk ) − d(ynk−1, ynk )
≤ d(ymk−1, ynk−1)
≤ d(ymk−1, ymk ) + d(ymk , ynk ) + d(ynk−1, ynk ).

Letting k→ +∞ we obtain

d(ymk−1, ynk−1)→ ϵ. (16)

Again, from the rectangular inequality,

d(ymk−1, ynk−1) − d(ymk−1, ymk+1) − d(ynk−1, ynk ) ≤ d(ymk+1, ynk ),

and

≤ d(ymk+1, ynk ) ≤ d(ymk+1, ymk−1) + d(ymk−1, ynk−1) + d(ynk−1, ynk ).

Letting k→ +∞, using (16), (10) and (5), we obtain

d(ymk+1, ynk )→ ϵ. (17)

Now, letting k → +∞ in (14), using (15), (13), (5), (17) and the continuity of ψ and the property (φ1) of
φ ∈ Φ∗, we obtain

ψ(ϵ) ≤ ψ(ϵ) − lim
d(ymk ,ynk )→ϵ+

φ(d(ymk , ynk )) < ψ(ϵ),

which is a contradiction with ϵ > 0. Hence, {yn} is a Cauchy sequence. Since ( f X, d) is g.m.s. complete,
there exists z ∈ f X such that limn→+∞ yn = z. Let w ∈ X be such that f w = z. Then

lim
n→+∞

yn = f w. (18)

We shall prove that

f w = Tw. (19)

Suppose, to the contrary, that d( f w,Tw) > 0.Thenφ(d( f w,Tw)) > 0,which implies thatφ(max{d( f w,Tw), d(yn−1 , f w), d(yn−1 , yn )}) >
0. Now, applying the inequality (1) with x = xn and y = w, we obtain

ψ(d(Txn ,Tw)) ≤ ψ(max{d( f xn , f w),
1
2

[d( f xn ,Txn ) + d( f w,Tw)], d( f w,Txn )})
−φ(d( f xn , f w))

≤ ψ(max{d(yn−1 , f w),
1
2

[d(yn−1 , yn ) + d( f w,Tw)], d( f w, yn )}).

Hence, using that ψ is nondecreasing, we have

d(Txn ,Tw) ≤ max{d(yn−1 , f w),
1
2

[d(yn−1 , yn ) + d( f w,Tw)], d( f w, yn )}.
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Letting n→ +∞ in the above inequality, using (18) and (5), we get

lim sup
n→∞

d(Txn ,Tw) ≤ 1
2

d( f w,Tw)). (20)

From the rectangular inequality,

d( f w,Tw)) ≤ d( f w, yn−1) + d(yn−1, yn) + d(yn,Tw).

Letting n→ +∞ in the above inequality, using (18), (20) and (5), we get

d( f w,Tw)) ≤ lim sup
n→∞

d(yn,Tw) ≤ 1
2

d( f w,Tw).

Hence d( f w,Tw)) = 0, which implies f w = Tw. Thus we proved that z = f w = Tw and so z is a point of
coincidence of T and f .

Now we show that z is a unique point of coincidence. Let z1 be another point of coincidence in X, that
is, let z1 = f v = Tv. Suppose that z1 , z. Then f v , f w and so φ(d( f v, f w))) > 0. From (1) we have

ψ(d(Tv,Tw)) ≤ ψ(max{d( f v, f w),
1
2

[d( f v,Tv) + d( f w,Tw)], d( f w,Tv)})
−φ(d( f v, f w)))

≤ ψ(max{d( f v, f w), 0, d( f w,Tv)}) − φ(d( f v, f w)))
< ψ(d(Tv,Tw)),

a contradiction. Therefore, z1 = z. Thus we proved that T and f have a unique point of coincidence.
If T and f are weakly compatible, then from f w = Tw = z we have T f w = f Tw, that is, Tz = f z. Let

v = Tz = f z. Since z is a unique point of coincidence of T and f , then v = z. Therefore, we have z = f z = Tz.
Thus we proved that z is the unique common fixed point of T and f . This complete the proof.

Remark 3.2. Theorem 3.1 is a generalization of Theorem 2.5 of C. Di Bari and P. Vetro [8]..

From Theorem 3.1, if we choose f = IX the identity mapping on X, we obtain the following fixed point
result.

Corollary 3.3. Let (X, d) be a Hausdorff complete g.m.s. space and let T be a self-mapping on X such that the
following condition holds:

ψ(d(Tx,Ty)) ≤ ψ(max{d(x, y),
1
2

[d(x,Tx) + d(y,Ty)], d(y,Tx)}) − φ(d(x, y)) (21)

for all x, y ∈ X, where ψ ∈ Ψ and φ ∈ Φ. Then T has a unique fixed point.

Remark 3.4. Corollary 3.3 is a generalization of Theorem 2.3 of Lakzian and Samet [10].

Remark 3.5. Now, we give a simple example that support the result of our Theorem 3.1.

Example.Let X = {0, 1, 2, 3}. Define d : X × X→ R as follows:

d(x, y) = d(y, x) for all x, y ∈ X and d(x, y) = 0 if and only if y = x. Further, let

d(0, 3) = d(2, 3) = 1; d(0, 2) = d(1, 3) = 2;
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d(0, 1) = 4; d(1, 2) = 5.

Then it is easy to show that (X, d) is a complete generalized metric space, but (X, d) is not a metric space
because the triangle inequality does not hold for all x, y, z ∈ X:

5 = d(0, 1) > d(0, 2) + d(2, 1) = 2 + 1 = 3.

Now define a mappings T, f : X→ X as follows:

Tx = 0, if x ∈ {0, 1, 2}
Tx = 2, if x = 3;
f (0) = 0, f (1) = 2, f (2) = 3, f (3) = 1.

Then, T and f satisfy (1) with ψ(t) = 2t and φ(t) = t/2. Indeed, d(Tx,Ty) > 0 only if x ∈ {0, 1, 2} and y = 3.
We have

4 = ψ(d(T(0),T(3))) ≤ 2 · d( f (0), f (3)) − d( f (0), f (3))
3

= 10 − 4
2
= 8;

4 = ψ(d(T(1),T(3))) ≤ 2 · d( f (1), f (3)) − d( f (1), f (3))
2

= 10 − 5
2
= 7, 5;

4 = ψ(d(T(2),T(3))) ≤ 2 · [d( f (2),T(2)) + d( f (3),T(3))
2

] − d( f (2), f (3))
3

= [1 + 5] − 3
2
.

Therefore, T and f satisfy the inequality (1).Clearly, T(X) ⊂ f (X) and T and f are weakly compatible. So we
can apple our Theorem 3.1 and T and f have a unique fixed point z = 0.

Remark 3.6. Note that for the above example there is not ψ ∈ Ψ and φ ∈ Φ such that

ψ(d(T(x),T(y))) ≤ ψ(d( f (x), f (y))) − φ(d( f (x), f (y)))

for x = 2 and y = 3 we have d(T(x),T(y)) = 2 and d( f (x), f (y)) = 2. Thus,

4 = ψ(2) > ψ(2) − φ(2) = 4 − 1 = 3.

Therefore, Theorem 2.5 of C. Di Bari and P. Vetro [8], as well as Theorem 2.3 of Lakzian and Samet [10], can not be
applied in this example.

From Theorem 3.1, we can derive many interesting fixed point results in generalized metric spaces
involving contractive conditions of integrable type. Denote by L the set of functions ϕ : [0,+∞)→ [0,+∞)
which are Lebesgue integrable on each compact subset of [0,+∞) such that for every ϵ > 0, we have∫ ϵ

0
ϕ(s)ds > 0.

Since the function ψ : [0,+∞) → [0,+∞) defined by ψ(t) =
∫ t

0 ϕ(s)ds belongs to Ψ, we obtain the following
theorem.

Theorem 3.7. Let (X, d) be a Hausdorff g.m.s. and let T and f be self-mappings on X such that TX ⊆ f X. Assume
that ( f X, d) is a complete g.m.s. and that the following condition holds:∫ d(Tx,Ty)

0
ϕ(s)ds ≤

∫ max{d( f x, f y), 1
2 [d( f x,Tx)+d( f y,Ty)],d( f y,Tx)}

0
ϕ(s)ds − φ(d( f x, f y))

for all x, y ∈ X, where ϕ ∈ L and φ ∈ Φ. If T and f are weakly compatible, then T and f have a unique fixed point.
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Taking φ(t) = (1 − k)
∫ s

0 ϕ(s)ds for k ∈ [0, 1) in Theorem 3, we obtain the following result.

Theorem 3.8. Let (X, d) be a Hausdorff g.m.s. and let T and f be self-mappings on X such that TX ⊆ f X. Assume
that ( f X, d) is a complete g.m.s. and that the following condition holds:∫ d(Tx,Ty)

0
ϕ(s)ds = λ

∫ max{d( f x, f y), 1
2 [d( f x,Tx)+d( f y,Ty)],d( f y,Tx)})

0
ϕ(s)ds

for all x, y ∈ X, where λ ∈ [0, 1). If T and f are weakly compatible, then T and f have a unique fixed point.
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