Remoteness, proximity and few other distance invariants in graphs

Jelena Sedlar ${ }^{\text {a }}$
${ }^{a}$ University of Split, Faculty of civil engineering, architecture and geodesy, Matice hrvatske 15, HR-21000 Split, Croatia.

Abstract

We establish maximal trees and graphs for the difference of average distance and proximity proving thus the corresponding conjecture posed in M. Aouchiche, P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2) (2011) 95102. We also establish maximal trees for the difference of average eccentricity and remoteness and minimal trees for the difference of remoteness and radius proving thus that the corresponding conjectures posed in M. Aouchiche, P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2) (2011) 95102 hold for trees.

1. Introduction

All graphs G in this paper are simple and connected. A vertex set of graph G will be denoted by V, an edge set by E. A number of vertices in G is denoted by n, a number of edges by m. A path on n vertices will be denoted by P_{n}, while C_{n} will denote a cycle on n vertices. A tree is the graph with no cycles, and a leaf in a tree is any vertex of degree 1 . We say that a tree G is a caterpillar tree if it consists of the path P and the only vertices outside P are leafs neighboring to vertices on P.

The distance $d(u, v)$ between two vertices u and v in G is defined as the length of the shortest path connecting vertices u and v. The average distance between all pairs of vertices in G is denoted by \bar{l}. The eccentricity $e(v)$ of a vertex v in G is the largest distance from v to another vertex of G. The radius r of a graph G is defined as the minimum eccentricity in G, while the diameter D of G is defined as the maximum eccentricity in G. The average eccentricity of G is denoted by ecc. That is

$$
r=\min _{v \in V} e(v), D=\max _{v \in V} e(v), e c c=\frac{1}{n} \sum_{v \in V} e(v) .
$$

The center of a graph is the vertex v of minimum eccentricity. It is well-known that every tree has either only one center or two centers which are adjacent. The diametric path in G is the shortest path from u to v, where $d(u, v)$ is equal to the diameter of G.

The transmission of a vertex v in a graph G is the sum of the distances between v and all other vertices of G. The transmission is said to be normalized if it is divided by $n-1$. Normalized transmission of a vertex

[^0]v will be denoted by $\pi(v)$. The remoteness ρ is defined as the maximum normalized transmission, while the proximity π is defined as the minimum normalized transmission. That is
$$
\pi=\min _{v \in V} \pi(v), \rho=\max _{v \in V} \pi(v) .
$$

In other words, the proximity π is the minimum average distance from a vertex of G to all others, while the remoteness ρ of a graph G is the maximum average distance from a vertex of G to all others. These two invariants were introduced in [1], [2]. A vertex $v \in V$ is centroidal if $\pi(v)=\pi(G)$, and the set of all centroidal vertices is the centroid of G.

Recently, these concepts and relations between them have been extensively studied (see [1], [2], [3], [4], [11], [12]). For example, in [3] the authors established the Nordhaus-Gaddum theorem for π and ρ. In [4] upper and lower bounds for π and ρ were obtained expressed in number n of vertices in G. Also, relations of both invariants with some other distance invariants (like diameter, radius, average eccentricity, average distance, etc.) were studied. The authors posed several conjectures (one of which was solved in [11]), among which the following.

Conjecture 1.1. Among all connected graphs G on $n \geq 3$ vertices with average distance \bar{l} and proximity π, the difference $\bar{l}-\pi$ is maximum for a graph G composed of three paths of almost equal lengths with a common end point.

Conjecture 1.2. Let G be a connected graph on $n \geq 3$ vertices with remoteness ρ and average eccentricity ecc. Then

$$
e c c-\rho \leq \begin{cases}\frac{3 n+1}{4} \frac{n-1}{n}-\frac{n}{2} & \text { if } n \text { is odd } \\ \frac{n-1}{4}-\frac{1}{4 n-4} & \text { if } n \text { is even },\end{cases}
$$

with equality if and only if G is a cycle C_{n}.
Conjecture 1.3. Let G be a connected graph on $n \geq 3$ vertices with remoteness ρ and radius r. Then

$$
\rho-r \geq \begin{cases}\frac{3-n}{4} & \text { if } n \text { is odd } \\ \frac{n^{2}}{4 n-4}-\frac{n}{2} & \text { if } n \text { is even } .\end{cases}
$$

The inequality is best possible as shown by the cycle C_{n} if n is even and by the graph composed by the cycle C_{n} together with two crossed edges on four successive vertices of the cycle.

In this paper we prove Conjecture 1.1, and find the extremal trees for $e c c-\rho$ and $\rho-r$ (maximal and minimal trees respectively) showing thus that Conjectures 1.2 and 1.3 hold for trees.

All these conjectures were obtained with the use of AutoGraphiX, a conjecture-making system in graph theory (see for example [6] and [7]). Some results on center and centroidal vertices will be used which are already known in literature since those concepts were also quite extensively studied (see for example [5], [8], [9], [10]).

2. Preliminaries

Let us introduce some additional notation for trees and state some auxiliary results known in literature. First, we will often use the notion of the diametric path. So, if a tree G of diameter D has diametric path P, we will suppose that vertices on P are denoted by v_{i} so that $P=v_{0} v_{1} \ldots v_{D}$. When deleting edges of P from G, we obtain several connected components which are subtrees rooted in vertices of P. Now, G_{i} will denote the connected component of tree $G \backslash P$ rooted in vertex v_{i} of P and V_{i} will denote the set of vertices of G_{i}.

Furthermore, for a tree G let $e \in E$ be an edge in G and $u \in V$ a vertex in G. With $G_{u}(e)$ we will denote the connected component of $G-e$ containing u. We denote $V_{u}(e)=V\left(G_{u}(e)\right)$ and $n_{u}(e)=\left|V_{u}(e)\right|$. Now the following lemma holds.

Lemma 2.1. The following statements hold for a tree G :

1. a vertex $v \in V(G)$ is a centroidal vertex if and only iffor any edge e incident with v it holds that $n_{v}(e) \geq \frac{n}{2}$,
2. G has at most two centroidal vertices,
3. if there are two centroidal vertices in G, then they are adjacent,
4. G has two centroidal vertices if and only if there is an edge e in G, such that the two components of $G-e$ have the same order. Furthermore, the end vertices of e are the two centroidal vertices of G.

Proof. See [11].
Since we will often use transformation of tree G to G^{\prime}, for the sake of notation simplicity we will write D^{\prime} for $D\left(G^{\prime}\right), \rho^{\prime}$ for $\rho\left(G^{\prime}\right), \pi^{\prime}(v)$ for $\pi(v)$ in G^{\prime}, etc.

3. Average distance and proximity

To prove Conjecture 1.1 for trees, we will use graph transformations which transform tree to either:

1) path P_{n},
2) a tree consisting of four paths of equal length with a common end point,
3) a tree consisting of three paths of almost equal length with a common end point.

So let us first prove that among those graphs the difference $\bar{l}-\pi$ is maximum for the last.
Lemma 3.1. The difference $\bar{l}-\pi$ is greater for a tree G on $n \geq 4$ vertices consisting of three paths of almost equal length with a common end point than for path P_{n}.

Proof. For a path P_{n} we have $\bar{l}\left(P_{n}\right)=\frac{1+n}{3}$, while $\pi\left(P_{n}\right)=\frac{n^{2}}{4(n-1)}$ for n even and $\pi\left(P_{n}\right)=\frac{n+1}{4}$ for n odd. Therefore the difference $\bar{l}\left(P_{n}\right)-\pi\left(P_{n}\right)$ equals $\frac{n^{2}-4}{12(n-1)}$ for n even and $\frac{n+1}{12}$ for n odd. Now, let G be a tree on n vertices consisting of three paths of almost equal length with a common end point. Here we have

$$
\bar{l}(G)-\pi(G)= \begin{cases}\frac{7 n^{2}+13 n-2}{27 n}-\frac{2+n}{6} & \text { for } n=3 k+1 \\ \frac{(7 n-8)(1+n)^{2}}{27(n-1)}-\frac{n(n+1)}{6(n-1)} & \text { for } n=3 k+2 \\ \frac{7 n^{2}+(6 n-9}{27(n-1)}-\frac{n(n+1)}{6(n-1)} & \text { for } n=3 k+3\end{cases}
$$

where $k \in \mathbb{N}$. Now, one has to show that the difference $\bar{l}(G)-\pi(G)$ is greater than $\bar{l}\left(P_{n}\right)-\pi\left(P_{n}\right)$ in each of the six possible cases. For example, if n is even and $n=3 k+1$, then

$$
(\bar{l}(G)-\pi(G))-\left(\bar{l}\left(P_{n}\right)-\pi\left(P_{n}\right)\right)=\frac{(n+2)^{3}}{108 n(n-1)}>0
$$

and the claim holds. In a similar way it can be seen that the claim holds in each of the remaining five cases.

Lemma 3.2. The difference $\bar{l}-\pi$ is greater for the tree G on $n \geq 9$ vertices, where $n=1 \bmod (4)$, consisting of three paths of almost equal length with a common end point than for the tree G^{\prime} on n vertices consisting of four paths of equal length.

Proof. First note that we already established the value of $\bar{l}(G)-\pi(G)$ in the proof of Lemma 3.1. Now, let us establish the value of $\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right)$. Note that $\bar{l}\left(G^{\prime}\right)=\frac{5 n^{2}+14 n-3}{24 n}$, while $\pi\left(G^{\prime}\right)=\frac{n+3}{8}$. Therefore, $\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right)=$ $\frac{2 n^{2}+5 n-3}{24 n}$. Now, one has to show that the difference $\bar{l}(G)-\pi(G)$ is greater than $\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right)$ in each of the three possible cases. For example, if $n=3 k+1$ then

$$
(\bar{l}(G)-\pi(G))-\left(\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right)\right)=\frac{2 n^{2}-13 n+11}{216 n}>0 .
$$

In a similar way it can be seen that the claim holds in each of the remaining two cases.

Lemma 3.3. Let G be a tree on $n \geq 6$ vertices with at least four leafs. Then there is a tree G^{\prime} on n vertices with three leafs for which the difference $\bar{l}-\pi$ is greater or equal than for G.

Proof. Let u be a centroidal vertex of G, let v be the branching vertex furthest from u. We distinguish two cases.

CASE I: $u \neq v$. Let G_{v} be the subtree of G rooted in v consisting of all vertices w such that path from u to w leads through v. Since v is a branching vertex furthest from u, tree G_{v} consists of paths with common end v. Let P_{1} and P_{2} be two such paths. For $i=1,2$ let x_{i} be a vertex in P_{i} adjacent to v and let y_{i} be a leaf in P_{i}. Let G^{\prime} be the tree obtained from G by deleting edge $v x_{2}$ and adding edge $x_{2} y_{1}$. This transformation is illustrated in Figure 1. Note that G^{\prime} has one leaf less than G. We want to prove that the difference $\bar{l}-\pi$ is greater for G^{\prime} then for G. For that purpose let us denote $d_{1}=d\left(v, y_{1}\right)$ and $d_{2}=d\left(v, y_{2}\right)$. Note that

$$
\pi\left(G^{\prime}\right) \leq \pi^{\prime}(u)=\pi(u)+\frac{d_{1} d_{2}}{n-1}=\pi(G)+\frac{d_{1} d_{2}}{n-1}
$$

and

$$
\bar{l}\left(G^{\prime}\right)=\bar{l}(G)+\frac{2}{n(n-1)} \cdot d_{2}\left(n-d_{1}-d_{2}-1\right) d_{1}
$$

From here we obtain

$$
\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right) \geq \bar{l}(G)-\pi(G)+\frac{d_{1} d_{2}}{n-1}\left(\frac{2\left(n-d_{1}-d_{2}-1\right)}{n}-1\right)
$$

By Lemma 2.1 we have $n-d_{1}-d_{2}-1 \geq \frac{n}{2}$, therefore $\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right) \geq \bar{l}(G)-\pi(G)$.
CASE II: $u=v$. Obviously, v is the only branching vertex in G. Therefore G consists of paths with common end point v. Let P_{1} and P_{2} be two shortest such path. If $V \backslash\left(P_{1} \cup P_{2} \cup\{v\}\right)$ contains at least $\frac{n}{2}$ vertices, then we make the same argument as in case I. Otherwise G is a tree consisting of four paths of equal length with a common end point and the claim follows by Lemma 3.2.

Applying the transformations from cases I and II repeatedly, one obtains the claim.

Figure 1: Tree transformation in the proof of Lemma 3.3.

Lemma 3.4. Among trees with three leafs, the difference $\bar{l}-\pi$ is maximal for the tree G on n vertices consisting of three paths of almost equal length with a common end vertex.

Proof. Let G be a tree with three leafs. That implies G consists of three paths with a common end vertex. Let u be centroidal vertex of G, let v be the branching vertex furthest from u. If $u \neq v$, then by the same argument as in the case I of the proof of Lemma 3.3 we obtain that the difference $\bar{l}-\pi$ is greater or equal for path P_{n} than for G. Now the claimed follows from Lemma 3.1. Else if $u=v$, then all three paths graph G consists of have less than $\frac{n}{2}$ vertices. Let v_{1} be the leaf furthest from u and v_{2} the leaf closest to u. Let G^{\prime}
be a tree obtained from G by deleting the edge incident to v_{1} and adding the edge $v_{1} v_{2}$. We want to prove that the difference $\bar{l}-\pi$ is greater or equal for G^{\prime} than for G. Let $d_{1}=d\left(u, v_{1}\right)$ and $d_{2}=d\left(u, v_{2}\right)$. We have

$$
\pi^{\prime}(u)=\pi(u)-\frac{d_{1}-d_{2}-1}{n-1}
$$

and

$$
\bar{l}\left(G^{\prime}\right)=\bar{l}\left(G^{\prime}\right)-\frac{2}{n(n-1)}\left(n-d_{1}-d_{2}-1\right)\left(d_{1}-d_{2}-1\right)
$$

From here we obtain

$$
\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right) \geq \bar{l}(G)-\pi(G)+\frac{d_{1}-d_{2}-1}{n-1}\left(1-\frac{2}{n}\left(n-d_{1}-d_{2}-1\right)\right) .
$$

Since all three paths of G have less then $\frac{n}{2}$ vertices, we can conclude that $n-d_{1}-d_{2}-1 \leq \frac{n}{2}$ from which follows $\bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right) \geq \bar{l}(G)-\pi(G)$. By repeating this tree transformation we obtain the claim.

We can summarize the results of Lemmas 3.1, 3.2, 3.3 and 3.4 into following theorem.
Theorem 3.5. Among all trees on $n \geq 4(n \neq 5)$ vertices with average distance \bar{l} and proximity π, the difference $\bar{l}-\pi$ is maximal for a tree G composed of three paths of almost equal lengths with a common end vertex.

Therefore, we have proved Conjecture 1.1 for trees on $n \geq 4(n \neq 5)$ vertices. Note that for $n=3$ there is only one tree with n vertices and that is P_{3}. For $n=5$ the claim does not hold since for a star S_{5} (i.e. a graph consisting of one vertex of degree 4 and 4 vertices of degree 1) holds

$$
\bar{l}\left(S_{5}\right)-\pi\left(S_{5}\right)=\frac{16}{10}-\frac{4}{4}=\frac{3}{5}
$$

while for a tree G on $n=5$ vertices composed of three paths of almost equal lengths with a common end vertex holds

$$
\bar{l}(G)-\pi(G)=\frac{18}{10}-\frac{5}{4}=\frac{11}{20} .
$$

Therefore obviously $\bar{l}\left(S_{5}\right)-\pi\left(S_{5}\right)>\bar{l}(G)-\pi(G)$.
Now we want to prove Conjecture 1.1 for general graphs. If for every graph we find a tree for which difference $\bar{l}-\pi$ is greater or equal, the Conjecture 1.1 for general graphs will follow from Theorem 3.5.

Theorem 3.6. Among all connected graphs G on $n \geq 4(n \neq 5)$ vertices with average distance \bar{l} and proximity π, the difference $\bar{l}-\pi$ is maximal for a graph G composed of three paths of almost equal lengths with a common end vertex.

Proof. Let G be a connected graph on $n \geq 3$ vertices and let $u \in V(G)$ be a vertex in G such that $\pi(u)=\pi(G)$. Let G^{\prime} be a breadth-first search tree of G rooted at u. Obviously, $\pi(G)=\pi(u)=\pi^{\prime}(u) \geq \pi\left(G^{\prime}\right)$. As for \bar{l}, by deleting edges from G distances between vertices can only increase, therefore $\bar{l}(G) \leq \bar{l}\left(G^{\prime}\right)$. Now we have $\bar{l}(G)-\pi(G) \leq \bar{l}\left(G^{\prime}\right)-\pi\left(G^{\prime}\right)$ and the claim follows from Theorem 3.5.

4. Average eccentricity and remoteness

Now, let us find maximal trees for ecc - ρ, proving thus that the Conjecture 1.2 holds for trees.
Lemma 4.1. Let G be a tree on n vertices with diameter D and let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G. If there is $j \leq D / 2$ such that the degree of v_{k} is at most 2 for $k \geq j+1$, then the difference ecc $-\rho$ is greater or equal for the path P_{n} than for G.

Proof. Let w be a leaf in G distinct from v_{0} and v_{D}. Let G^{\prime} be a tree obtained from G by deleting the edge incident to w and adding the edge $v_{D} w$. Note that the diameter of G^{\prime} equals $D+1$. We want to prove that difference ecc- ρ did not decrease by this transformation. First note that eccentricity increased by 1 for at least $n-\frac{D+1}{2}$ vertices. Therefore, ecc' $\geq e c c+\frac{2 n-D-1}{2 n}$. As for remoteness, first note that $\rho(G)=\pi\left(v_{D}\right)$ and $\rho\left(G^{\prime}\right)=\pi^{\prime}(w)$. Now, let d_{w} be the distance between vertices w and v_{D} in G, i.e. $d_{w}=d\left(w, v_{D}\right)$. Obviously $d_{w} \geq \frac{D+2}{2}$. Now, we have

$$
\pi^{\prime}(w)=\pi\left(v_{D}\right)+\frac{n-d_{w}-1}{n-1} \leq \pi\left(v_{D}\right)+\frac{2 n-D-4}{2(n-1)} .
$$

Therefore,

$$
e c c^{\prime}-\rho^{\prime} \geq e c c-\rho+\frac{2 n-D-1}{2 n}-\frac{2 n-D-4}{2(n-1)} \geq e c c-\rho .
$$

We obtain the claim by repeating this transformation.
Theorem 4.2. Among trees on $n \geq 3$ vertices, the difference ecc $-\rho$ is maximal for path P_{n}.
Proof. Let G be a tree on n vertices and with diameter D. Let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G. Let G_{i} be the tree that is connected component of $G \backslash P$ rooted in v_{i} and let V_{i} be the vertex set of G_{i}. If there is $j \leq D / 2$ such that the degree of v_{k} is at most 2 for $k \geq j+1$, then the claim follows from Lemma 4.1. Else, let v_{j} and v_{k} be vertices on P of degree at least 3 such that $j \leq \frac{D}{2}<k$ and $k-j$ is minimum possible. Let w_{j} be a vertex outside of P adjacent to v_{j} and let w_{k} be a vertex outside of P adjacent to v_{k}. Let G^{\prime} be a tree obtained from G so that:

1) for every vertex w adjacent to v_{j}, except $w=w_{j}$ and $w=v_{j+1}$, edge $w v_{j}$ is deleted and edge $w w_{j}$ aded,
2) for every vertex w adjacent to v_{k}, except $w=w_{k}$ and $w=v_{k-1}$, edge $w v_{k}$ is deleted and edge $w w_{k}$ aded. This transformation is illustrated in Figure 2. Note that diameter of G^{\prime} equals $D+2$. We want to prove that $e c c^{\prime}-\rho^{\prime} \geq e c c-\rho$. For that purpose, let us denote

$$
\begin{aligned}
V_{j}^{\prime} & =\left\{v \in V_{j}: d\left(v, w_{j}\right)<d\left(v, v_{j}\right)\right\} \\
V_{k}^{\prime} & =\left\{v \in V_{k}: d\left(v, w_{k}\right)<d\left(v, v_{k}\right)\right\}
\end{aligned}
$$

Now, let us introduce following partition of set of vertices V

$$
\begin{aligned}
& X_{1}=V_{0} \cup \ldots \cup V_{j-1} \cup\left(V_{j} \backslash\left(V_{j}^{\prime} \cup\left\{v_{j}\right\}\right)\right) \\
& X_{2}=V_{j}^{\prime} \\
& X_{3}=\left\{v_{j}\right\} \cup V_{j+1} \cup \ldots \cup V_{k-1} \cup\left\{v_{k}\right\}, \\
& X_{4}=V_{k^{\prime}}^{\prime} \\
& X_{5}=\left(V_{k} \backslash\left(V_{k}^{\prime} \cup\left\{v_{k}\right\}\right)\right) \cup V_{k+1} \cup \ldots \cup V_{D}
\end{aligned}
$$

Let $x_{i}=\left|X_{i}\right|$. Now, let us compare $e^{\prime}(v)$ and $e(v)$ for every vertex $v \in V$. Note that for $v \in X_{2} \cup X_{3} \cup X_{4}$ it holds that $e^{\prime}(v)=e(v)+1$, while for $v \in X_{1} \cup X_{5}$ it holds that $e^{\prime}(v)=e(v)+2$. Therefore,

$$
e c c^{\prime}=e c c+\frac{2 x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}}{n}=e c c+\Delta_{1} .
$$

Now, we want to compare $\pi^{\prime}(v)$ and $\pi(v)$ for every $v \in V$. We distinguish several cases depending whether $v \in X_{1}, v \in X_{2}, v \in X_{3}, v \in X_{4}$ or $v \in X_{5}$. It is sufficient to consider cases $v \in X_{1}, v \in X_{2}$ and $v \in X_{3}$, since $v \in X_{4}$ is analogous to $v \in X_{2}$ and $v \in X_{5}$ is analogous to $v \in X_{1}$.

If $v \in X_{1}$, then the difference $d^{\prime}(v, u)-d(v, u)$ equals 0 for $u \in X_{1}$, equals -1 for $u \in X_{2}$, equals 1 for $u \in X_{3} \cup X_{4}$ and equals 2 for $u \in X_{5}$. Therefore,

$$
\pi^{\prime}(v)=\pi(v)+\frac{-x_{2}+x_{3}+x_{4}+2 x_{5}}{n-1}=\pi(v)+\Delta_{2}
$$

If $v \in X_{2}$, then the difference $d^{\prime}(v, u)-d(v, u)$ equals -1 for $u \in X_{1}$, equals 0 for $u \in X_{2} \cup X_{3} \cup X_{4}$ and equals 1 for $u \in X_{5}$. Therefore,

$$
\pi^{\prime}(v)=\pi(v)+\frac{-x_{1}+x_{5}}{n-1}=\pi(v)+\Delta_{3}
$$

If $v \in X_{3}$, then the difference $d^{\prime}(v, u)-d(v, u)$ equals 1 for $u \in X_{1} \cup X_{5}$ and equals 0 for $u \in X_{2} \cup X_{3} \cup X_{4}$. Therefore,

$$
\pi^{\prime}(v)=\pi(v)+\frac{x_{1}+x_{5}}{n-1}=\pi(v)+\Delta_{4} .
$$

It is easily verified that $\Delta_{1}-\Delta_{2} \geq 0, \Delta_{1}-\Delta_{3} \geq 0$ and $\Delta_{1}-\Delta_{4} \geq 0$, so for every $v \in V$ we obtain ecc $-\pi^{\prime}(v) \geq$ $e c c-\pi(v)$.

Now, let $u \in V$ be a vertex for which $\pi^{\prime}(u)=\rho\left(G^{\prime}\right)$. We have

$$
\begin{aligned}
\operatorname{ecc}\left(G^{\prime}\right)-\rho\left(G^{\prime}\right) & =\operatorname{ecc}\left(G^{\prime}\right)-\pi^{\prime}(u) \geq \operatorname{ecc}(G)-\pi(u) \geq \\
& \geq \operatorname{ecc}(G)-\max \{\pi(v): v \in V\}=\operatorname{ecc}(G)-\rho(G)
\end{aligned}
$$

Figure 2: Tree transformation in the proof of Theorem 4.2.
Therefore, we have proved that P_{n} is the tree which maximizes the difference $e c c-\rho$. Now, from

$$
\operatorname{ecc}\left(P_{n}\right)-\rho\left(P_{n}\right)= \begin{cases}\frac{n-2}{4} & \text { for even } n \\ \frac{n}{4}-\frac{2 n+1}{4 n} & \text { for odd } n\end{cases}
$$

easily follows that Conjecture 1.2 holds for trees.

5. Remoteness and radius

First, we want to find minimal trees for $\rho-r$. For that purpose, the first step is to reduce the problem to caterpillar trees.

Lemma 5.1. Let G be a tree on n vertices. There is a caterpillar tree G^{\prime} on n vertices for which the difference $\rho-r$ is less or equal than for G.

Proof. Let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G. Let G_{i} be the tree that is connected component of $G \backslash P$ rooted in v_{i} and let V_{i} be the vertex set of G_{i}. Let G^{\prime} be the caterpillar tree obtained from G in a following manner. In a tree G_{i} let v be the non-leaf vertex furthest from v_{i}, let w_{1}, \ldots, w_{k} be all leafs adjacent to v, and let u be the only remaining vertex adjacent to v. Now, for every $j=1, \ldots, k$ edge $w_{j} v$ is deleted and edge $w_{j} u$ is added. This transformation is illustrated in Figure 3.The procedure is done repeatedly in every G_{i}
($2 \leq i \leq D-2$) until the caterpillar tree G^{\prime} is obtained. Note that G^{\prime} has the same diameter (and therefore radius) as G. What remains to be proved is that remoteness in G^{\prime} is less or equal than in G. It is sufficient to prove that the described transformation does not increase remoteness. Obviously, $\pi^{\prime}(u) \leq \pi(u)$ for every $u \in V \backslash\{v\}$. Number $\pi^{\prime}(v)$ can be greater than $\pi(v)$, but note that $\pi^{\prime}(v)=\pi^{\prime}\left(w_{i}\right) \leq \pi\left(w_{i}\right) \leq \rho$. Therefore $\rho^{\prime} \leq \rho$.

Figure 3: Tree transformation in the proof of Lemma 5.1.
Now that we reduced the problem to the caterpillar trees, let us prove some auxiliary results for such trees. First note that because of Lemma 2.1, a leaf in a tree can not be centroidal vertex. Therefore, in a caterpillar tree a centroidal vertex must be on diametric path P.

Lemma 5.2. Let $G \neq P_{n}$ be a caterpillar tree on n vertices with diameter D, remoteness ρ and only one centroidal vertex. Let $P=v_{0} v_{1} \ldots v_{D}$ be the diametric path in G such that $v_{j} \in P$ is the only centroidal vertex in G and every of the vertices v_{j+1}, \ldots, v_{D} is of the degree at most 2 . Then there is a caterpillar tree G^{\prime} on n vertices of the diameter $D+1$ and the remoteness at most $\rho+\frac{1}{2}$.

Proof. If v_{j} is of degree 2, then by Lemma 2.1 follows that $j \leq \frac{D}{2}$, so $\rho=\pi\left(v_{D}\right)$. Let w be any leaf in G distinct from v_{0} and v_{D}. Let G^{\prime} be a graph obtained from G by first deleting edge incident to w, then deleting edge $v_{j-1} v_{j}$ and adding path $v_{j-1} w v_{j}$ instead. This transformation is illustrated in Figure 4. Note that the diameter of G^{\prime} is $D+1$, while the remoteness is still obtained for v_{D}. Note that the distance from v_{D} has increased by 1 for at most $\frac{n}{2}-1$ vertices. Therefore, $\pi^{\prime}\left(v_{D}\right) \leq \pi\left(v_{D}\right)+\frac{n-2}{2(n-1)}$ from which follows $\rho^{\prime} \leq \rho+\frac{1}{2}$ and the claim is proved in this case.

If the degree of v_{j} is greater than 2 , then v_{j} must have at least one neighbor that is a leaf. Let us denote that leaf neighboring to v_{j} by w. Let $V_{L}=V_{1} \cup \ldots \cup V_{j-1}$ and $V_{R}=V_{j+1} \cup \ldots \cup V_{D}$. Since v_{j} is a centroidal vertex, from Lemma 2.1 follows that V_{L} and V_{R} have at most $\frac{n}{2}$ vertices. If any of them had exactly $\frac{n}{2}$ vertices, then G would have two centroidal vertices by Lemma 2.1 , which would be contradiction with v_{j} being the only centroidal vertex. Therefore, we conclude $\left|V_{L}\right| \leq \frac{n-1}{2}$ and $\left|V_{R}\right| \leq \frac{n-1}{2}$. Now it is possible to divide the set of vertices $V_{j} \backslash\left\{v_{j}\right\}$ into two subsets V_{j}^{\prime} and $V_{j}^{\prime \prime}$ such that $\left|V_{L} \cup V_{j}^{\prime}\right| \leq \frac{n-1}{2}$ and $\left|V_{R} \cup V_{j}^{\prime \prime}\right| \leq \frac{n-1}{2}$. Let G^{\prime} be a graph obtained from G by first deleting the edge incident to w, then deleting the edge $v_{j} v_{j+1}$ and adding a path $v_{j} w v_{j+1}$ instead, and finally for every vertex $v \in V_{j}^{\prime \prime}$ the edge $v v_{j}$ is deleted and the edge $v w$ added. This transformation is illustrated in Figure 4. Note that the diameter of G^{\prime} is $D+1$. Now, if $v \in V_{L} \cup V_{j}^{\prime} \cup\left\{v_{j}, w\right\}$ the distance $d(v, u)$ has increased by 1 only if $u \in V_{R} \cup V_{j}^{\prime \prime}$, therefore $\pi^{\prime}(v) \leq \pi(v)+\frac{1}{2}$. If $v \in V_{R} \cup V_{j}^{\prime \prime}$ the distance $d(v, u)$ has increased by 1 only if $u \in V_{L} \cup V_{j}^{\prime}$, therefore $\pi^{\prime}(v) \leq \pi(v)+\frac{1}{2}$. We conclude $\rho^{\prime} \leq \rho+\frac{1}{2}$, and the claim is proved in this case too.
a)

b)

Figure 4: Tree transformations in the proof of Lemma 5.2: a) v_{j} is of degree 2, b) v_{j} is of degree at least 3 .

Lemma 5.3. Let $G \neq P_{n}$ be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal vertices. Let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G such that $v_{j}, v_{j+1} \in P$ are centroidal vertices and every of the vertices v_{j+1}, \ldots, v_{D} is of degree at most 2 . Then there is a caterpillar tree G^{\prime} on n vertices of the diameter $D+1$ and the remoteness at most $\rho+\frac{1}{2}$.

Proof. Since v_{j+1} is centroidal vertex, from Lemma 2.1 follows that $j \leq \frac{D}{2}$, so $\rho=\pi\left(v_{D}\right)$. Let w be any leaf in G distinct from v_{0} and v_{D}. Let G^{\prime} be a graph obtained from G by first deleting the edge incident to w, then deleting the edge $v_{j} v_{j+1}$ and adding the path $v_{j} w v_{j+1}$ instead. The diameter of G^{\prime} is $D+1$ and the remoteness is still obtained for v_{D}. Note that distances from v_{D} increased by 1 for at most $\frac{n}{2}-1$ vertices, so $\pi^{\prime}\left(v_{D}\right) \leq \pi\left(v_{D}\right)+\frac{n-2}{2(n-1)}$. Therefore, $\rho^{\prime} \leq \rho+\frac{1}{2}$.
Lemma 5.4. Let $G \neq P_{n}$ be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal vertices of different degrees. Let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G such that $v_{j}, v_{j+1} \in P$ are centroidal vertices and every of the vertices $v_{0}, \ldots, v_{j-1}, v_{j+2}, \ldots, v_{D}$ is of degree at most 2 . Then there is a caterpillar tree G^{\prime} on n vertices of the diameter $D+1$ and the remoteness at most $\rho+\frac{1}{2}$.
Proof. Let $d_{1}=d\left(v_{0}, v_{j}\right)$ and $d_{2}=d\left(v_{j+1}, v_{D}\right)$. Without loss of generality we may assume that $d_{1} \leq d_{2}$. Since the degrees of v_{j} and v_{j+1} differ, from Lemma 2.1 we conclude $d_{1} \neq d_{2}$. Therefore, $d_{1}<d_{2}$. From this follows $j+1 \leq \frac{D}{2}$, so $\rho=\pi\left(v_{D}\right)$. Let G^{\prime} be a graph obtained from G so that for every leaf w incident to v_{j} (distinct from v_{0}) we delete the edge $w v_{j}$ and add the edge $w v_{j+1}$. The diameter of G^{\prime} is still D, while the remoteness ρ^{\prime} is less or equal than ρ. Note that G^{\prime} has diametric path $P=v_{0} v_{1} \ldots v_{D}$ and only one centroidal vertex which is v_{j+1}. All other vertices on P are of degree at most 2 . Therefore, we can apply Lemma 5.2 on G^{\prime} and the claim follows.

Lemma 5.5. Let $G \neq P_{n}$ be a caterpillar tree on n vertices with diameter D, remoteness ρ and exactly two centroidal vertices of equal degrees. Let $P=v_{0} v_{1} \ldots v_{D}$ be a diametric path in G such that $v_{j}, v_{j+1} \in P$ are centroidal vertices and every of the vertices $v_{0}, \ldots, v_{j-1}, v_{j+2}, \ldots, v_{D}$ is of degree at most 2 . Then the difference $\rho-r$ is less or equal for path P_{n} than for G.
Proof. Let $d_{1}=d\left(v_{0}, v_{j}\right)$ and $d_{2}=d\left(v_{j+1}, v_{D}\right)$. Since v_{j} and v_{j+1} have equal degrees, and every of the vertices $v_{0}, \ldots, v_{j-1}, v_{j+2}, \ldots, v_{D}$ is of degree at most 2 , we conclude that $d_{1}=d_{2}$. Now, we will transform the tree twice which is illustrated in Figure 5. First, since G is not a path, both v_{j} and v_{j+1} must have a pendent leaf. Denote those leafs with w_{1} and w_{2} respectively. Let G^{\prime} be a graph obtained from G by first deleting edges incident to w_{1} and w_{2}, then deleting edge $v_{j} v_{j+1}$ and adding path $v_{j} w_{1} w_{2} v_{j+1}$ instead. Note that $D^{\prime}=D+2$. Therefore, $r^{\prime}=r+1$. Note that remoteness in both G and G^{\prime} is obtained for v_{0} and v_{D}. Since distances from v_{0} have increased by 2 for at most $\frac{n}{2}-1$ vertices, we conclude $\pi^{\prime}\left(v_{0}\right) \leq \pi\left(v_{0}\right)+\frac{2(n-2)}{2(n-1)}$ from which follows $\rho^{\prime} \leq \rho+1$. Thus we obtain $\rho^{\prime}-r^{\prime} \leq \rho-r$. If G^{\prime} is a path, then the claim is proved. Else, we transform G^{\prime} so that for every leaf w in G^{\prime} incident to v_{j} edge $w v_{j}$ is deleted and edge $w w_{1}$ is added. Also, for every leaf w in G^{\prime} incident to v_{j+1} edge $w v_{j+1}$ is deleted and edge $w w_{2}$ is added. Note that this transformation changes neither radius neither remoteness. Thus we obtain the tree on which we can repeat the whole procedure. After repeating procedure finite number of times we obtain the path P_{n} and the claim is proved.

Figure 5: Tree transformations in the proof of Lemma 5.5.
Now that we have established auxiliary results for caterpillar trees, we can find minimal trees for $\rho-r$ among caterpillar trees.

Lemma 5.6. Let G be a caterpillar tree on n vertices. If n is odd, then the difference $\rho-r$ is less or equal for path P_{n} then for G. If n is even, then the difference $\rho-r$ is less or equal for path P_{n-1} with a leaf appended to a central vertex than for G.

Proof. Let D be the diameter in G and let $P=v_{0} v_{1} \ldots v_{D}$ be the diametric path in G. Suppose $D \leq n-3$. That means G has at least two leafs outside P. Let $v_{j} \in P$ be a centroidal vertex in G. If there are two vertices v_{k} and v_{l} on $P(k<j<l)$ with a pendent leaf on them (distinct from v_{0} and $\left.v_{D}\right)$, then the caterpillar tree G^{\prime} obtained from G by deleting a leaf from v_{j} and v_{k} and adding a leaf on v_{j+1} and v_{k-1} has the same radius and the remoteness which is less or equal than in G. By repeating this procedure, we obtain a caterpillar tree G^{\prime} of the same diameter as G with diametric path $P=v_{0} v_{1} \ldots v_{D}$ such that:

1. G^{\prime} has exactly one centroidal vertex $v_{j} \in P$ and every of the vertices v_{j+1}, \ldots, v_{D} is of degree at most 2 ,
2. G^{\prime} has two centroidal vertices $v_{j}, v_{j+1} \in P$ and every of the vertices v_{j+1}, \ldots, v_{D} is of degree at most 2 ,
3. G^{\prime} has two centroidal vertices $v_{j}, v_{j+1} \in P$ and every of the vertices $v_{0}, \ldots, v_{j-1}, v_{j+2}, \ldots, v_{D}$ is of degree at most 2.

Therefore, on the obtained graph G^{\prime} one of the Lemmas $5.2,5.3,5.4$ or 5.5 can be applied. If Lemma 5.5 is applied, the claim is proved. Else if Lemma $5.2,5.3$ or 5.4 is applied, we obtain graph G^{\prime} of diameter $D+1$ and remoteness $\rho+\frac{1}{2}$. Since for $D+1$ it holds that $D+1 \leq n-2$, we can apply the whole procedure with $G=G^{\prime}$ (as the second step) and thus obtain a caterpillar tree G^{\prime} of diameter $D+2$ and remoteness $\rho^{\prime} \leq \rho+1$. Since for thus obtained G^{\prime} it holds that $D^{\prime}=D+2$, we conclude $r^{\prime}=r+1$. Therefore, $\rho^{\prime}-r^{\prime} \leq \rho-r$.

Repeating this double step, we obtain a caterpillar tree G^{\prime} of diameter $D^{\prime}=n-2$ or $D^{\prime}=n-1$ for which the difference $\rho-r$ is less or equal than for G. Now we distinguish several cases with respect to D^{\prime} and parity of n. Suppose first $D^{\prime}=n-1$. Then $G^{\prime}=P_{n}$. If n is odd then the claim is proved. If n is even it is easily verified that the difference $\rho-r$ is less for path P_{n-1} with a leaf appended to a central vertex than for $G^{\prime}=P_{n}$ and the claim is proved in this case too. Suppose now that $D^{\prime}=n-2$. That means G^{\prime} is a path P_{n-1} with a leaf appended to one vertex of P_{n-1}. If n is odd, then deleting the only leaf in G^{\prime} to extend it to P_{n} increases radius by 1 and remoteness by less than 1 , so the claim holds. If n is even, then deleting the leaf in G^{\prime} outside P_{n-1} and appending it to central vertex of P_{n-1} preserves the radius and decreases the remoteness. Therefore, the claim holds in this case too.

We can summarize the results of these lemmas in the following theorem which gives minimal trees for $\rho-r$.

Theorem 5.7. Let G be a tree on n vertices. If n is odd, then the difference $\rho-r$ is less or equal for path P_{n} then for G. If n is even, then the difference $\rho-r$ is less or equal for path P_{n-1} with a leaf appended to a central vertex than for G.

Proof. Follows from Lemmas 5.1 and 5.6.

For a path P_{n} on odd number of vertices n it holds that $\rho-r=\frac{1}{2}$ which, together with Theorem 5.7, obviously implies that trees on odd number of vertices satisfy Conjecture 1.3. Now, let us consider graph G on even number of vertices n consisting of a path P_{n-1} with a leaf appended to a central vertex. For G it holds that $\rho-r=\frac{n}{2(n-1)}$ which implies that trees on even number of vertices satisfy Conjecture 1.3 too.

6. Conclusion

We have established that the maximal tree for $\bar{l}-\pi$ is a tree composed of three paths of almost equal lengths with a common end point. Thus, we proved that Conjecture 1.1 posed in [4] for general graph holds for trees. Using reduction of a graph to a corresponding subtree, this result enabled us to prove Conjecture 1.1 for general graphs too. Furthermore, we established that the maximal tree for $e c c-\rho$ is the path P_{n} and that the minimal tree for $\rho-r$ is the path P_{n} in case of odd n and the path P_{n-1} with a leaf appended to a central vertex in case of even n. Since for these extremal trees Conjectures 1.2 and 1.3 posed in [4] hold, it follows that those conjectures hold for trees.

References

[1] M. Aouchiche, Comparaison Automatisée d'Invariants en Théorie des Graphes. PhD Thesis, École Polytechnique de Montréal, February 2006.
[2] M. Aouchiche, G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 20. Automated Comparison of Graph Invariants MATCH Commun. Math. Comput. Chem. 58 (2007) 365-384.
[3] M. Aouchiche, P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in graphs, Comput. Math. Appl. 59 (2010) 2827-2835.
[4] M. Aouchiche, P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2) (2011) 95-102.
[5] H.J. Bandelt, J.P. Barthelemy, Medians in median graphs, Discrete Appl. Math. 8 (1984) 131-142.
[6] G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. I. The AutoGraphiX System. Discrete Math. 212 (2000) 29-44.
[7] G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs: V. Three Ways to Automate Finding Conjectures. Discrete Math. 276 (2004) 81-94.
[8] G.J. Chang, Centers of chordal graphs, Graph Combin. 7 (1991) 305-313.
[9] G. Chartrand, G.L. Johns, S. Tion, S.J. Winters, Directed distance in digraphs: centers and medians, J. Graph Theory 17 (1993) 509-521.
[10] C. Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869) 185-190.
[11] B. Ma, B. Wu, W. Zhang, Proximity and average eccentricity of a graph, Inf. Process. Lett., Volume 112 (10) (2012) 392-395.
[12] J. Sedlar, D Vukičević, M. Aouchiche, P. Hansen, Variable Neighborhood Search for Extremal Graphs: 25. Products of Connectivity and Distance Measure, Graph Theory Notes of New York 55 (2008) 6-13.

[^0]: 2010 Mathematics Subject Classification. 05C35
 Keywords. Remoteness, Proximity, Distance invariants, Extremal trees
 Received: 14 June 2012; Accepted: 15 October 2012
 Communicated by Dragan Stevanović
 The support of the Ministry of Science, Education and Sport of the Republic of Croatia (grant. no. 083-0831510-1511) and of EUROCORES Programme EUROGIGA (project GReGAS) of the European Science Foundation is gratefully acknowledged.

 Email address: jsedlar@gradst.hr (Jelena Sedlar)

