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On the Structure of Bidegreed Graphs with Minimal Spectral Radius
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Abstract. A graph is said to be (∆, δ)-bidegreed if vertices all have one of two possible degrees: the
maximum degree ∆ or the minimum degree δ, with ∆ , δ. We show that in the set of connected (∆, 1)-
bidegreed graphs, other than trees, with prescribed degree sequence, the graphs minimizing the adjacency
matrix spectral radius cannot have vertices adjacent to ∆ − 1 vertices of degree 1, that is, there are not any
hanging trees. Further we consider the limit point for the spectral radius of (∆, 1)-bidegreed graphs when
degree ∆ vertices are inserted in each edge between any two degree ∆ vertices.

1. Introduction

Let G be a simple graph (i.e. multi edges and loops are not allowed), and V(G) (E(G)) its vertex (resp.
edge) set; |V(G)| (|E(G)|) is its order (resp. size). The degree sequence (d1, d2, . . . , dn) of a graph is the sequence of
degrees ordered, say, in a non-increasing way (it is a collection of graph invariants). Let ∆ = d1 and δ = dn,
a graph is said to be (∆, δ)-bidegreed ((∆, δ) is omitted if clear from the context) if and only if the vertices
have degree either ∆ or δ (∆ , δ), namely in the degree sequence there are just two different values. From
the degree sequence (d1, d2, . . . , dn) of a graph, it is possible to deduce the order, which is equal to n, and the
size which is equal to 1

2

∑n
i=1 di. In the sequel we will consider only connected simple graphs. A (connected)

graph of order n and size m is said to be k-cyclic if k = m− n + 1; if k = 0 then the graph is a tree, if k = 1 it is
said to be unicyclic, and so on. The number k is often called the cyclomatic number. Some graphs considered
in this paper are the path Pn, the cycle Cn and the double snake Wn. Some other special graphs will be defined
later. Other standard notation and basic results can be found in [7].

The literature contains a large number of papers dealing with the largest eigenvalue of some matrix
associated to (simple) graphs. Most results are about the largest eigenvalue of the adjacency matrix, known
as spectral radius or graph index, and the graphs, under some prescribed constraints (as the order, the size,
the largest degree, and so on), maximizing or minimizing such an eigenvalue. The motivation lies in
the applications, since extremal graphs, w.r.t. the spectral radius, are often related to relevant structural
properties (see, for example, [7]). However, most results are given in terms of graphs maximizing the
spectral radius (say maximizers, for short), and little is known about the graphs minimizing the spectral
radius (minimizers), with some well-known exceptions. A motivation is that most combinatorial tools well
perform when we have to increase the spectral radius, and they are not so efficient when we have to reduce
the largest eigenvalue.
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In the last 5 years, the attention of many researchers has been attracted by the graphs with prescribed
degree sequence, for which the maximizers are identified for trees [5], unicyclic graphs [4], and bicyclic
graphs [11]. Tricyclic graphs are considered in the nice paper [10]. For the minimizers the story is quite
different, even in the set of trees with prescribed degree sequences minimizers seem to have a random
structure [6] and the problem is hard to solve. Hence, it is natural to consider a simpler variant in which
the graphs are just bidegreed. Note that the term semiregular has been used for the meaning of bidegreed,
however we use it to denote bidegreed graphs with δ = ∆−1. Observe that for bidegreed trees and bidegreed
unicyclic graphs, the least degree δ equals 1, while δ ≥ 1 for k-cyclic bidegreed degree sequence with k ≥ 2. In
the case of bidegreed graphs, minimizers for trees have been independently (and with different approaches)
identified in both papers [3] and [6]. However no results are known in the general case, except for some
preliminary results given in [2], where minimizers are identified in the case of unicyclic graphs. Here we
continue to study the connected (∆, 1)-bidegreed graphs with prescribed number of vertices of degree ∆
and given cyclomatic number, and we investigate the structure of those graphs candidate to minimize the
spectral radius. Hence in the sequel, if not otherwise specified, we set δ = 1. Let us denote by Bk(∆,n)
the set of connected (∆, 1)-bidegreed graphs, other than trees, with n vertices of degree ∆ and cyclomatic
number k (so k > 0); the analogous set for trees is denoted byT (∆,n). Note that fixing the number of degree
∆ vertices and the cyclomatic number is equivalent to fix a (bidegreed) degree sequence.

We now introduce some additional notation. The graph matrix considered here is the well-known
adjacency matrix A = (ai, j), whose entry ai, j is equal to 1 when the corresponding vertices i and j are
adjacent, otherwise it is 0. The characteristic polynomial of a graph G is φ(G, x) = det(xI − A(G)), where A(G)
is its adjacency matrix. The roots of φ(G, x) are the eigenvalues of G, and they form, together with their
multiplicities, the spectrum of G. Note, all these eigenvalues are real since A(G) is symmetric, and, since
adjacency matrices on the same graph are similar, they do not depend on the particular adjacency matrix
chosen.

The largest eigenvalue of A(G), namely the spectral radius or index of G, will be denoted by ρ(= ρ(G)). If
G is a connected graph on n vertices, there exists a positive eigenvector corresponding to the spectral radius,
usually denoted by x = (x1, . . . , xn)T; it is called the principal eigenvector, or Perron eigenvector, however many
authors use to call it simply Perron vector (see, for example, Chapter 8 in [12]). The following equation,

ρxi =
∑
i∼ j

x j (i = 1, 2, . . . ,n) (1)

is called the eigenvalue equation (with respect to ρ) for a vertex i of G; xi is usually interpreted as the weight
of the vertex i (with respect to x), while ∼ denotes that the corresponding vertices are adjacent.

Recall that in this paper we deal with (∆, 1)-bidegreed graphs. Any such a graph has only two kinds
of vertices: vertices of degree ∆ and vertices of degree 1. In view of the latter fact, we can represent a
(∆, 1)-bidegreed graph just by looking at the vertices of degree ∆. We denote the graph induced by the
vertices of degree ∆ as the skeleton of G, and denote it by S(G). Clearly, if in S(G) we decorate the vertices
of degree k with ∆ − k pendant vertices, then we get again the original graph G.

We call bouquet the subgraph consisting of a vertex of degree ∆, adjacent to at least ∆−2 pendant vertices,
together with its pendant vertices; in particular a bouquet with ∆ − 1 vertices of degree 1 is said to be a
pendant bouquet; v will be called the root of the bouquet. So we can also say that the skeleton is the graph
induced by the roots of the bouquets. Let P(∆,n) (resp. U(∆,n) be the (∆, 1)-bidegreed tree (resp. unicyclic
graph) such that its skeleton is the path Pn (resp. cycle Cn). In Fig. 1 we depict a bidegreed tree and its
skeleton.
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Fig. 1: A bidegreed tree and its skeleton.

S(T)

In Section 2, we give a counter-example in T (∆,n) to a conjecture expressed in [2]. Still we give a
new conjecture whose aim is to extend to (∆, 1)-bidegreed graphs the well-known Hoffman-Smith graph
perturbation for internal paths. Further, we will show that inBk(∆,n), minimizers do not have any pendant
bouquet, which means that in the skeleton there are not vertices of degree 1. In Section 3 we consider the
limit point for the spectral radius of (∆, 1)-bidegreed graphs when in each edge between degree ∆ vertices
we insert an infinite number of bouquets.

Note that some results contained in this paper have been outlined in the (non-peer reviewed) note [1].
The latter note contains the extended abstract of a contributed talk on the arguments of this paper given at
the Congress “Combinatorics 2012”, held in Perugia (Italy) from 9 to 15 September 2012.

2. The skeleton of minimizers

In the literature there are several results about perturbations of graph structure and corresponding
spectral radius variations, which go in the so called algebraic theory of graph perturbations (see Chapter
6 in [8]). As already observed, most of such results are about increasing the spectral radius and just a few
of them are useful when looking at minimizers. One of the most important result surely is the well-known
Hoffmann-Smith subdivision of an edge, by inserting a vertex of degree 2, in the internal paths. An internal
path is a sequence of vertices v0, v1, . . . , vk such that vi is of degree 2 and both v0 and vk are of degree at least
3; an internal path is of Type (a) if v0 = vk, otherwise the internal path is of Type (b).

Now we state the Hoffmann-Smith result [9]:

Theorem 2.1. Let G′ be a graph obtained from a connected graph G , Cn,Wn by inserting in an edge e a vertex of
degree two. Then we have:

(i) if e does not lie on an internal path then ρ(G′) > ρ(G);

(ii) if e lies on an internal path then ρ(G′) < ρ(G).

If G = Cn,Wn and G′ = Cn+1,Wn+1 then ρ(G′) = ρ(G) = 2.

In [2] the authors considered a variant of the above result in terms of bouquets in bidegreed graphs. A
bouquet internal path is a sequence of vertices v0, v1, . . . , vk of degree ∆ such that each v1, v2, . . . , vk−1 are roots
of bouquets while both v0 and vk are not roots of bouquets. A bouquet internal path corresponds to a usual
internal path in the skeleton. A bouquet internal path is of Type (a) if v0 = vk, otherwise is of Type (b). In
[2] the two following results are given.

Theorem 2.2. Let G be a connected bidegreed graph with maximum degree ∆. Let G′ be a graph obtained from G by
inserting a bouquet (with ∆ − 2 pendant vertices) in a bouquet-internal path of Type (a). Then ρ(G) > ρ(G′).

Theorem 2.3. Let Um be the graph with minimum spectral radius in B1(∆,n). Then Um = U(∆,n). Further,
ρ(Um) = 1 +

√
∆ − 1.
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The authors of [2] also conjectured that Theorem 2.2 could be extended to bouquet internal paths of
Type (b). The tree of depicted in Fig. 2 contains a bouquet internal path of Type (b), with v0 = u and vk = w,
but the insertion of bouquets in that just increases the spectral radius.
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Fig. 2: The counter example for bouquet internal paths of Type (b).

In view of the above counter-example, we give the following conjecture, which covers the anomaly
coming from it.

Conjecture 2.4. Let G′ be a graph obtained from a (∆, 1)-bidegreed graph G by inserting a bouquet in an edge of a
bouquet internal path. Then

(i) if ρ(G) < 1 +
√

∆ − 1, then ρ(G′) > ρ(G);

(ii) if ρ(G) > 1 +
√

∆ − 1, then ρ(G′) < ρ(G);

(iii) if ρ(G) = 1 +
√

∆ − 1, then ρ(G′) = ρ(G).

We observe that if ρ(G) < 1 +
√

∆ − 1, then G is a tree (see [3]).

In the sequel we will prove a weaker result w.r.t. the one described in the conjecture. The forthcoming
lemmas will be useful for the latter aim.

The following lemma is well-known and it can be found in [7].

Lemma 2.5. Let G be a connected graph and H be a vertex-deleted subgraph of G. Then ρ(H) < ρ(G).

The following lemma will play a crucial role in our proofs. A vector x = (x1, x2, . . . , xn) is said to be
positive (i.e. x > 0), if xi ≥ 0 for i = 1, 2, . . . ,n and x j > 0 for some j = 1, 2, . . . ,n. Let x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) be two positive vectors, then x > y if and only if x − y > 0.

Lemma 2.6. Let y be a positive vector and A an irreducible real symmetric matrix having µ as its largest eigenvalue.
Then

(i) if Ay > ρy then µ > ρ;

(ii) if Ay < ρy then µ < ρ.

Lemma 2.7. Let G ∈ Bk(∆,n) be a graph with no pendant bouquets. If G , U(∆,n), then there exists an edge e in G
such that the graph G′ obtained from G by inserting in e a bouquet has a smaller spectral radius. If G = U(∆,n) and
G′ = U(∆,n′), then ρ(G) = ρ(G′) = 1 +

√
∆ − 1.
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Proof. Let vm be the vertex of degree ∆ with minimum weight in G. Without loss of generality we assume
that vm is adjacent to (∆ − k) vertices of degree 1 and k vertices of degree ∆ labelled u1,u2, . . . ,uk, with
k = 2, 3, . . . ,∆. Let us denote by x the Perron vector of G, with xm being the weight of vm and x1, x2, . . . , xk
being the weights of u1,u2, . . . ,uk, respectively. From (1) each pendant vertex at vm, if any, will have weight
equal to xm/ρ,

Assume that we insert a bouquet of root v∗ in the edge vmu1 (see Fig. 3), and let G′ be the graph so
obtained. Let G′ be labelled in the same way of G, with the addition of entries corresponding to v∗ and
its ∆ − 2 pendant vertices (labelled v∗1, v

∗

2, . . . , v
∗

∆−2). Let y be the (positive) vector defined according to the
vertices of G′ in the following way:

yv = xv, if v is a vertex coming from G;
yv∗ = xm,

yv∗i =
xm

ρ
, i = 1, 2, . . . ,∆ − 2.

Let A′ be the adjacency matrix of G′, and let y′ = A′y. According to Lemma 2.6, if we show that y′ < ρy,
with ρ = ρ(G), then we are done. Recall that G′ is built from G, and y is built from the Perron vector x of G,
hence A′y|v = ρxv = ρyv, for each vertex v not involved in the perturbation described in this lemma, namely
for each vertex v ∈ G′ coming from G such that v < {vm,u1}. So we have just to evaluate the vector y′ = A′y
restricted to the components related to the vertices vm,u1, v∗, v∗1, v

∗

2, . . . , v
∗

∆−2 of G′. Note that the vertices
vm and u1 were adjacent in G while in G′ they are not anymore adjacent, while they share v∗ as common
neighbor. Also we observe that, since G does not have pendant bouquets, vm has at least two neighbors of
degree ∆, namely u1 and u2.
By simple computations we have:
for the vertex u1 ∈ G′

y′1 =
∑

w∼u1, w,v∗
yw + yv∗ =

∑
w∼u1, w,v∗

xw + xm = ρx1 = ρy1;

for the vertex vm ∈ G′

y′m =
∑

w∼vm, w,v∗
yw + yv∗ =

∑
w∼vm, w,v∗

xw + xm ≤
∑

w∼vm,w,v∗
xw + x1 = ρxm = ρym;

for the vertex v∗ ∈ G′

y′v∗ = y1 + ym + (∆ − 2)
ym

ρ
= x1 + xm + (∆ − 2)

xm

ρ

= x1 + xm + (k − 2)
xm

ρ
+ (∆ − k)

xm

ρ

≤ x1 + x2 +

k∑
i=3

xi + (∆ − k)
xm

ρ
= ρxm = ρyv∗ ,

by observing that xm ≤ x2 (by minimality) and, from (1) computed at vertex ui, we have ρxi = xm +
∑

v∼ui,v,vm

xv,

which implies ρxi > xm and xi >
xm

ρ
, i = 3, 4, . . . , k.

Finally, for each pendant vertex v∗p at v∗ (p = 1, 2, . . . ,∆ − 2),

y′v∗p = ym = xm = ρyv∗p .

Hence we proved that A′y ≤ ρy and by Lemma 2.6(ii) that ρ(G′) ≤ ρ(G).
Assume now that A′y = ρy, hence all the above inequalities are equalities and, consequently, ρ(G′) =

ρ(G). In particular, we deduce that xm = x1, k = 2 and x2 = xm as well. If so, we can compute ρ = ρ(G′) = ρ(G)
just by the eigenvalue equation computed at v∗ of G′. Hence we get ρxm = 2xm + (∆ − 2) xm

ρ , whose largest
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solution is ρ = 1 +
√

∆ − 1. If G properly contains U(∆,n) then ρ(G) > ρ(∆,n) = 1 +
√

∆ − 1. The latter
implies that G = U(∆,n) and G = U(∆,n′).

This completes the proof.
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Fig. 3: The perturbation described in Lemma 2.7.

The main result of this section reads:

Theorem 2.8. Let Gm be a bidegreed graph in Bk(∆,n) with minimal spectral radius. Then Gm does not have any
pendant bouquet or, equivalently, S(Gm) does not have vertices of degree 1.

Proof. We will show that for any graph G ∈ Bk(∆,n) with pendant bouquets, there exists a graph Ḡ ∈ Bk(∆,n)
with ρ(Ḡ) < ρ(G).

If a bidegreed graph has a pendant bouquet at v, then we can delete all vertices of degree 1 pendant
at v, so that v becomes a vertex of degree 1. The graph so obtained is still bidegreed with cyclomatic
number k and, according to Lemma 2.5, its spectral radius has strictly decreased. Since G has pendant
bouquets, by using the latter procedure we can remove all of them, say after t steps, until we arrive at a
graph G̃ ∈ Bk(∆, ñ), with ñ < n such that G̃ does not have any pendant bouquet. Clearly ρ(G̃) < ρ(G). Now
the graph G̃ verifies the hypothesis of Lemma 2.7, so there exists a graph Ḡ obtained from G̃ by inserting t
bouquets is some edges. The graph Ḡ will have the same order of G and a smaller spectral radius.

This completes the proof.

It is worth to observe that Theorem 2.1 plays an important role in the identification of minimizers
since it gives a rule for decreasing the spectral radius. We were not able to prove an analogous result to
Theorem 2.1 due to the counter-example, which is given in T (∆,n), but we provide a conjecture which
adapts to (∆, 1)-bidegreed graphs. Still, we are able to exclude hanging trees in minimizers for Bk(∆,n) as a
consequence of Theorem 2.8.

3. Limit points for the spectral radius

In this section we consider the limit point for the spectral radius, when we insert infinitely many
bouquets in the edges coming from the skeleton of a given (∆, 1)-bidegreed graph. Hoffmann and Smith in
[9] proved that by subdividing the edges, namely a vertex of degree 2 is inserted in each edge, of a given
graph infinitely many times, then the spectral radius tends to the value ∆

√
∆−1

, where ∆ is the largest vertex
degree. Here we will consider an analogous result in which, instead of inserting vertices of degree 2, we
insert bouquets between degree ∆ vertices. In other words, by looking to the skeleton, we insert vertices of
degree 2 in all edges of the skeleton.

In [3] the authors identified the minimizers in T (∆,n) and they proved that the minimizer is indeed
P(∆,n), the bidegreed caterpillar graph (S(P(∆,n)) = Pn). The following result is Theorem 3.3 in [3].

Lemma 3.1. Let P(∆,n) be the minimizer in T (∆,n). Then ρ(P(∆,n)) < 1 +
√

∆ − 1 and lim
n→∞

ρ(P(∆,n)) =

1 +
√

∆ − 1.

We next consider graphs whose skeleton has maximum degree at least 3. Let us consider the following
lemma.
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Lemma 3.2. Let G be a (∆, 1)-bidegreed graph with spectral radius ρ(G) > 1 +
√

∆ − 1, and let R = ρ −
∆ − 2
ρ

.

Then R > 2.

Proof. Since ρ > 1 +
√

∆ − 1, then

R = ρ −
∆ − 2
ρ

> 1 +
√

∆ − 1 −
∆ − 2

1 +
√

∆ − 1
=

2 + 2
√

∆ − 1

1 +
√

∆ − 1
= 2,

as claimed.

Let Ti, j,k be the tree consisting of 3 vertex-disjoint paths Pi+1, P j+1 and Pk+1 having one end vertex
identified. Let T(∆, i) be the (∆, 1)-bidegreed tree whose skeleton is Ti,i,i. We now show that, for large
enough i, ρ(T(∆, i)) > 1 +

√
∆ − 1.

Lemma 3.3. Let T(∆, i) be the (∆, 1)-bidegreed tree whose skeleton is Ti,i,i. If i ≥ 4 then ρ(T(∆, i)) > 1 +
√

∆ − 1.

Proof. Assume first that 3 ≤ ∆ ≤ 5, it is routine to check that ρ(T(∆, 4)) > 1 +
√

∆ − 1. So in the remainder let
∆ > 5. Consider T(∆, 3) and let v be the unique vertex of degree 3 in S(T(∆, 3)). It is evident that all vertices
of degree ∆ with the sole exception of v are roots of bouquets. So consider the following equitable partition
of the vertex set of T(∆, 3). We have 8 equivalence classes, where the first one is given by v, the second one
is given by the roots of bouquets at distance 1 from v, the third one is given by the roots at distance 2 from
v, and the fourth one by those roots at distance 3 from v. The remaining four classes consist of the pendant
vertices at each vertex of the same class. So the corresponding divisor matrix has a block form given by

D(T(∆, 3)) =

(
A B
I4 O4

)
,

where

A =


0 3 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 ,
B = diag(∆− 3,∆− 2,∆− 2,∆− 1), I4 is the 4× 4 identity matrix and O4 is the 4× 4 matrix with zero entries.

Recall that the characteristic polynomial φ(D(T(∆, 3)), x) = ϕ(x) divides φ(T(∆, 3), x), and it contains
ρ(T(∆, 3)) as well. After some computation we get

ϕ(x) = x8 + (3 − 4∆)x6 + 2(∆ − 1)(3∆ − 4)x4

+(1 − ∆)(4∆2
− 15∆ + 13)x2 + (∆ − 1)(∆ − 3)(∆ − 2)2.

It is easy to check that for any ∆ > 5 we have

ϕ(0) = (∆ − 1)(∆ − 3)(∆ − 2)2 > 0,

ϕ(−1 +
√

∆ − 1) = −2
√

∆ − 1 − ∆2 + 5∆ − 4 < 0,

ϕ(
√

∆ − 1) = (∆ − 1)(3∆ − 5) > 0,

ϕ(1 +
√

∆ − 1) = 2
√

∆ − 1 − ∆2 + 5∆ − 4 < 0.

Observe that ϕ(x) is biquadratic, so it has just 4 non-negative roots. According to the above inequalities
we deduce that the positive roots of ϕ(x) lie in the real intervals (0, 1 −

√
∆ − 1), (−1 +

√
∆ − 1,

√
∆ − 1),

(
√

∆ − 1, 1 +
√

∆ − 1) and (1 +
√

∆ − 1,+∞). So we can conclude that ρ(T(∆, 3)) > 1 +
√

∆ − 1 for any ∆ > 5,
and the same holds for ρ(T(∆, i)) with i ≥ 4 (note T(∆, 3) is a subgraph of T(∆, i) for i ≥ 4). This completes
the proof.
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We now compute the weights of the roots in paths of bouquets.

Lemma 3.4. Let G be a (∆, 1)-bidegreed graph with ρ = ρ(G) > 1+
√

∆ − 1. Let v0v1 . . . , vn be a sequence of vertices
in G such that v0 and vn are vertices of degree ∆, while vi is the root of a bouquet, for i = 1, 2, . . . ,n − 1. If xi is the
weight of vertex vi (i = 0, 1, . . . ,n), then

xi =
x0 sinh(n − i)t + xn sinh(it)

sinh nt
,

where t =
1
2

ln

R +
√

R2 − 4
2

, and R = ρ −
∆ − 2
ρ

.

Proof. From (1), we have, for each i = 0, 1, . . . ,n − 2, the following relation:

ρxi+1 = xi + xi+2 + (∆ − 2)
xi+1

ρ
,

which can be written as

xi+2 − Rxi+1 + xi = 0. (2)

It is easy to see that (2) is a second order homogeneous linear recurrence equation, with characteristic
equation

λ2
− Rλ + 1 = 0,

whose roots are λ1,2 =
R ±
√

R2 − 4
2

.

Since ρ(G) > 1 +
√

∆ − 1, by Lemma 3.2, the roots of (2) are distinct real numbers. Note that λ2 = (λ1)−1,

so let λ = λ1 =
R +
√

R2 − 4
2

.
Hence the solution of (2) is given by

xi = aλi
1 + bλi

2 = aλi + bλ−i,

where a and b are constant that can be computed from the boundary conditions. Since R > 2, there exists

t > 0 such that R = 2 cosh t. Hence t = 1
2 ln

(
R+
√

R2−4
2

)
and λ = et. After making the latter substitution, we

obtain

xi = aeit + be−it. (3)

We consider the boundary conditions, that are{
x0 = a + b
xn = aent + be−nt

By solving the above system, we get a =
xn − x0e−nt

ent − e−nt and b =
x0ent

− xn

ent − e−nt .
Finally, from (3) we get

xi =
xn − x0e−nt

ent − e−nt eit +
x0ent

− xn

ent − e−nt e−it

=
xneit

− x0e(i−n)t

ent − e−nt +
x0e(n−i)t

− xne−it

ent − e−nt

=
x0

(
e(n−i)t

− e(i−n)t
)

+ xn

(
eit
− e−it

)
ent − e−nt

=
x0 sinh(n − i)t + xn sinh(it)

sinh nt
,

as claimed. This completes the proof.



F. Belardo / Filomat 28:1 (2014), 1–10 9

Now we see what happens to the spectral radius when we subdivide infinitely many times the edges of
the skeleton, that means, we insert infinitely many bouquets in edges between vertices of degree ∆.

Theorem 3.5. Let G , K1,∆−1 be a (∆, 1)-bidegreed graph, Gn be the graph obtained from G by inserting n bouquets
in each edge between two vertices of degree ∆ and ρ = lim

n→∞
ρ(Gn). If m is the maximum degree in S(G), then

ρ =

√
∆
√

m − 1 + m
√

∆ − 1
4√m − 1

.

In addition, if m = 2 then ρ = 1 +
√

∆ − 1, and if m = ∆ then ρ =
√

2∆.

Proof. Assume first that m = 2. If so, the graph is either the caterpillar P(∆,n) or the unicyclic graph U(∆,n).
Since ρ(U(∆,n)) = lim

n→∞
ρ(P(∆,n)) = 1 +

√
∆ − 1, then we have the assertion. In the remainder of the proof

let m ≥ 3.
Consider the eigenvalue equation for the spectral radius at some vertex v of degree ∆ that is not a

bouquet. If so, v has m(v) ≥ 3 neighbours v j of degree ∆, j = 3, 4, . . . ,m(v). For the graph Gn, between v
and v j we have n bouquets which are a sort of path whose inner vertices are roots of bouquets and whose
extremal vertices are v and v j. For simplicity, take ρn = ρ(Gn). For each j = 3, 4, . . . ,m(v), let vi

j be the i-th
root of bouquet in the j-path and let xi

j be the corresponding weight (i = 1, 2, . . . ,n). If we consider the
eigenvalue equation for the spectral radius ρn at v, we have

ρnxv =

m(v)∑
j=1

x1
j + (∆ −m(v))

xv

ρn
. (4)

Note that, for n ≥ 4, Gn contains T(∆, 4) which implies, in view of Lemma 3.3, that ρ(Gn) > 1 +
√

∆ − 1.
According to Lemma 3.4,

x1
j =

xv sinh(n − 1)t + x j sinh(t)
sinh nt

,

where t is defined according to the latter cited lemma. If n→∞, then

lim
n→∞

x1
j = e−txv =

2xv

R +
√

R2 − 4
, (5)

where R = ρn − (∆ − 2)/ρn. By substituting (5) in (4), we get an equation whose largest solution is given by

ρ(v) =

√
∆

√
m(v) − 1 + m(v)

√
∆ − 1

4
√

m(v) − 1
.

It is not difficult to check that the above quantity is increasing in m(v), so

ρ = lim
n→∞

ρn = max
v∈G

ρ(v).

If m = maxv∈G m(v), then we have the assertion. The additional claims can be easily verified. This completes
the proof.

We conclude by observing that 1 +
√

∆ − 1 is the smallest limit point for the spectral radius of (∆, 1)-
bidegreed graphs.
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