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Abstract. This paper deals with the existence and dimension of the solution set for an anti-periodic
boundary value problem of fractional differential inclusions. Our results rely on Wegrzyk’s fixed point
theorem and a result on the topological dimension of the set of fixed points for multivalued maps.

1. Introduction

In this paper, we consider an anti-periodic boundary value problem of fractional differential inclusions
given by {

cDqx(t) ∈ F(t, x(t)), t ∈ [0,T] (T > 0), 0 < q ≤ 1
x(0) + x(T) = 0, (1.1)

where cDq denote the Caputo fractional derivative of order q, and F : [0,T] × Rn → P(Rn), where P(Rn) is
the family of all nonempty subsets of Rn.

The main objective of the present work is to establish the existence and dimension of the solution set
for an anti-periodic boundary value problem of fractional differential inclusions by employing a method
developed in recent articles ([1]-[3]).

Fractional calculus (differentiation and integration of arbitrary order) is found to be an important math-
ematical tool in the modeling of dynamical systems associated with phenomena such as fractal and chaos.
In fact, the applications of this branch of calculus appear in various disciplines of science and engineering
such as mechanics, electricity, chemistry, biology, economics, control theory, signal and image processing,
polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena, aerodynam-
ics, electro-dynamics of complex medium, viscoelasticity and damping, control theory, wave propagation,
percolation, identification, fitting of experimental data, etc. ([4] - [8]). For some recent works on fractional
differential equations and inclusions, for instance, one can see ([9] - [17]). and the references cited therein.
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2. Preliminaries

Now we recall some basic definitions on multi-valued maps (see [18], [19]).

Let C([0,T],Rn) denote the Banach space of continuous functions from [0,T] into Rn with the norm
∥x∥∞ = supt∈[0,T] ||x(t)||. Let L1([0,T],Rn) be the Banach space of measureable functions x : [0,T]→ Rn which

are Lebesgue integrable and normed by ∥x∥L1 =
∫ T

0 ||x(t)||dt.

For a nonempty subset C of a Banach space X := (X, ∥.∥), let P(C) = {Y ⊆ C : Y , ∅}, Pcl(C) = {Y ∈
P(C) : Y is closed}, Pb(C) = {Y ∈ P(C) : Y is bounded}, Pb,cl(C) = {Y ∈ P(C) : Y is bounded and closed},
Pc,cl(C) = {Y ∈ P(C) : Yis closed
and convex}, Pb,c,cl(C) = {Y ∈ P(C) : Y is bounded, closed and convex}, Pcp(C) = {Y ∈ P(C) : Y is compact},
and Pc,cp(C) = {Y ∈ P(C) : Y is compact and convex}. A multi-valued map F : C → P(X) is convex (resp.
closed) valued if F(x) is convex (resp. closed) for all x ∈ C. The map F is bounded on bounded sets if
F(B) = ∪x∈BF(x) is bounded in X for all B ∈ Pb(C) (i.e. supx∈B{sup{||y|| : y ∈ F(x)}} < ∞). The map F is called
upper semi-continuous (u.s.c.) if {x ∈ C : Fx ⊂ V} is open in C whenever V ⊂ X is open. F is called lower
semi-continuous (l.s.c.) if the set {y ∈ C : F(y)∩V , ∅} is open for any open set V ⊂ X. F is called continuous
if it is both l.s.c. and u.s.c. F is said to be completely continuous if F(B) is relatively compact for every
B ∈ Pb(C). A mapping f : C→ X is called a selection of F : C→ X if f (x) ∈ F(x) for every x ∈ C. We say that
the mapping F has a fixed point if there is x ∈ X such that x ∈ F(x). The fixed points set of the multivalued
operator F will be denoted by Fix(F). A multivalued map F : [0,T]→ Pcl(Rn) is said to be measurable if for
every y ∈ Rn, the function

t 7−→ d(y, F(t)) = inf{||y − z|| : z ∈ F(t)}
is measurable.

Definition 2.1. Let (X, d) be a metric space. Consider H : P(X) × P(X)→ R ∪ {∞} given by

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

where d(a,B) = infb∈B d(a, b). H is the (generalized) Pompeiu-Hausdorff functional. It is known that
(Pb,cl(X),H) is a metric space and (Pcl(X),H) is a generalized metric space (see [18]).

Definition 2.2.([20, 21]) A function l : R+ → R+ is said to be a strict comparison function if it is continuous,
strictly increasing and

∑∞
n=1 ln(t) < ∞, for each t > 0.

Definition 2.3. A multivalued operator F : X→ Pcl(X) is called

(a) γ−Lipschitz if there exists γ > 0 such that

H(F(x), F(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ−Lipschitz with γ < 1;

(c) a generalized contraction if and only if there is a strict comparison function l : R+ → R+ such that

H(F(x),F(y)) ≤ l(d(x, y)) for each x, y ∈ X.

It is known that F : X → Pcp(X) is continuous on X if and only if F is continuous on X with respect to
Hausdorff metric. Also, if F : X → Pb,cl(X) is k-Lipschitz, then F is continuous with respect to Hausdorff
metric.
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Definition 2.4. [22] Let X be a normed space and C a nonempty subset of X. The closure, the convex hull
and the closed convex hull of C in X are denoted by C, co C and coC. LetΨ be a collection of subsets of coC
with the property that for any M ∈ Ψ, the sets M, coM, M ∪ {u} (u ∈ C) and every subset of M belong toΨ.
Let A be a partially ordered set with the partial ordering ≤, and φ : A→ A a function. A function γ : Ψ→ A
is said to be a φ-measure of noncompactness on C if the following conditions are satisfied for any M ∈ Ψ:
(i) γ(M) = γ(M);
(ii) if u ∈ C, then γ(M ∪ {u}) = γ(M);
(iii) if N ⊂M, then γ(N) ≤ γ(M);
(iv) γ(coM) ≤ φ(γ(M)).
γ is called a measure of noncompactness if instead of (iv), we have the following
(iv)* γ(coM) ≤ γ(M).

Let γ be a φ-measure of noncompactness on C. A map F : C→ Pc,cl(X) is said to be (γ, φ)-condensing if for
every S ⊂ C, the inequality γ(S) ≤ φ(γ(F(S))) implies that F(S) is relatively compact. In particular, if φ is the
identity map, then F is called γ-condensing.

Lemma 2.5. (Wegrzyk’s fixed point theorem [20, 21]). Let (X, d) be a complete metric space. If F : X→ Pcl(X)
is a generalized contraction, then Fix(F) , ∅.

Lemma 2.6. ([1]). Let C be a nonempty closed convex subset of a Banach space X. Suppose that γ is
a φ-measure of noncompactness on C and F : C → Pb,c,cl(C) is a continuous (γ, φ)-condensing map. If
dimF(x) ≥ n for each x ∈ C, then dimFix(F) ≥ n.

Let us recall some definitions on fractional calculus [4–6].

Definition 2.7. The Riemann-Liouville fractional integral of order q for a continuous function w is defined
as

Iqw(t) =
1
Γ(q)

∫ t

0

w(s)
(t − s)1−q ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).

Definition 2.8. For at least (n − 1)−times continuously differentiable function w : [0,∞) → R, the Caputo
derivative of fractional order q is defined as

cDqw(t) =
1

Γ(n − q)

∫ t

0
(t − s)n−q−1w(n)(s)ds, n − 1 < q < n,n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma function.

To define the solution of (1.1), we consider the following lemma.

Lemma 2.9. For a given σ ∈ C([0,T],Rn), the unique solution of the problem{
cDqx(t) = σ(t), t ∈ [0,T] (T > 0), 0 < q ≤ 1

x(0) + x(T) = 0, (2.2)

is given by

x(t) = x0 − 1(x) +
∫ t

0

(t − s)q−1

Γ(q)
σ(s)ds. (2.3)
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Definition 2.10. A function x ∈ C([0,T],Rn) is a solution of the problem (1.1) if there exists a function
f ∈ L1([0,T],Rn) such that f (t) ∈ F(t, x(t)) a.e. on [0,T] and

x(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds.

Let ST([0, α]) denote the set of all solutions of (1.1) on the interval [0, α], where 0 < α ≤ T.

3. Fractional Differential Inclusion with anti-periodic condition

Lemma 3.1. Assume that

(K1) F : [0,T] ×Rn → Pc,cp(Rn) is such that F(., x) : [0,T]→ Pc,cp(Rn) is measurable for each x ∈ Rn;

(K2) H(F(t, x),F(t, x̄)) ≤ κ1(t)l(∥x − x̄∥) for almost all t ∈ [0, 1] and x, x̄ ∈ Rn with κ1 ∈ L1([0, 1],R+) and
d(0,F(t, 0)) ≤ κ1(t) for almost all t ∈ [0, 1], where l : R+ → R+ is strictly increasing.

Then the problem (1.1) has at least one solution on [0,T] if γl : R+ → R+ is a strict comparison function,

where γ =
3Tq−1

2Γ(q)
||κ1||L1 .

Proof. For each y ∈ C([0,T],Rn), define the set of selections of F by

SF,y := {v ∈ L1([0,T],Rn) : v(t) ∈ F(t, y(t)) for a.e. t ∈ [0,T]}.

Suppose that γl : R+ → R+ is a strict comparison function. Observe that by the assumptions (K1) and (K2),
F(., x(.)) is measurable and has a measureable selection v(.) (see Theorem III.6 [23]). Also κ1 ∈ L1([0, 1],R+)
and

||v(t)|| ≤ d(0,F(t, 0)) +H(F(t, 0),F(t, x(t))) ≤ κ1(t) + κ1(t)l(||x(t)||)
≤ (1 + l(||x||∞))κ1(t).

Thus the set SF,x is nonempty for each x ∈ C([0,T],Rn). Define an operator Ω as

Ω(x) =
{

h ∈ C([0,T],Rn) : h(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds, f ∈ SF,x

}
.

Now we show that the operator Ω satisfies the assumptions of Lemma 2.3. To show that Ω(x) ∈
Pcl(C([0,T],Rn)) for each x ∈ C([0, 1],Rn), let {un}n≥0 ∈ Ω(x) be such that un → u (n → ∞) in C([0,T],Rn).
Then u ∈ C([0,T],Rn) and there exists vn ∈ SF,x such that, for each t ∈ [0,T],

un(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
vn(s)ds +

∫ t

0

(t − s)q−1

Γ(q)
vn(s)ds.

As F has compact values, we pass to a subsequence to obtain that vn converges to v in L1([0,T],Rn). Thus,
v ∈ SF,x and for each t ∈ [0,T],

un(t)→ u(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
v(s)ds +

∫ t

0

(t − s)q−1

Γ(q)
v(s)ds.

Hence u ∈ Ω(x).
Next we show that

H(Ω(x),Ω(x̄)) ≤ γl(∥x − x̄∥∞) for each x, x̄ ∈ C([0,T],Rn).

Let x, x̄ ∈ C([0,T],Rn) and h1 ∈ Ω(x). Then there exists v1(t) ∈ SF,x such that, for each t ∈ [0,T],

h1(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
v1(s)ds +

∫ t

0

(t − s)q−1

Γ(q)
v1(s)ds..
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By (K2), we have
H(F(t, x),F(t, x̄)) ≤ κ1(t)l(||x(t) − x̄(t)||).

So, there exists w ∈ F(t, x̄(t)) such that

||v1(t) − w|| ≤ κ1(t)l(∥x(t) − x̄(t)∥), t ∈ [0,T].

Define V : [0,T]→ P(Rn) by

V(t) = {w ∈ Rn : ∥v1(t) − w∥ ≤ κ1(t)l(∥x(t) − x̄(t)∥)}.

Since the nonempty closed valued operator V(t)∩F(t, x̄(t)) is measurable (Proposition III.4 [23]), there exists
a function v2(t) which is a measurable selection for V(t)∩ F(t, x̄(t)). So v2(t) ∈ F(t, x̄(t)) and for each t ∈ [0,T],
we have ∥v1(t) − v2(t)∥ ≤ κ1(t)l(∥x(t) − x̄(t)∥).
For each t ∈ [0,T], let us define

h2(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
v2(s)ds +

∫ t

0

(t − s)q−1

Γ(q)
v2(s)ds..

Thus

∥h1(t) − h2(t)∥ ≤ 1
2

∫ T

0

|T − s|q−1

Γ(q)
||v1(s) − v2(s)||ds +

∫ t

0

|t − s|q−1

Γ(q)
||v1(s) − v2(s)||ds.

Hence

∥h1 − h2∥∞ ≤ 3Tq−1

2Γ(q)
||κ1||L1 l(∥x − x∥∞).

Analogously, interchanging the roles of x and x, we obtain

H(Ω(x),Ω(x̄)) ≤ γl(∥x − x̄∥∞)for each x, x̄ ∈ C([0,T],Rn).

SinceΩ is a contraction, it follows by Lemma 2.5 thatΩ has a fixed point x which is a solution of (1.1). This
completes the proof.

Lemma 3.2. Let F : [0,T] × Rn → Pc,cp(Rn) satisfy (K1) and (K2) and suppose that Ω : C([0,T],Rn) →
P(C([0,T],Rn)) is defined by

Ω(x) =
{

h ∈ C([0,T],Rn) : h(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds, f ∈ SF,x

}
.

Then Ω(x) ∈ Pc,cp(C([0,T],Rn)) for each x ∈ C(([0,T],Rn)).

Proof. First we show thatΩ(x) is convex for each x ∈ C([0,T],Rn). For that, let h1, h2 ∈ Ω(x). Then there exist
f1, f2 ∈ SF,x such that for each t ∈ [0,T],we have

hi(t) = −
1
2

∫ T

0

(T − s)q−1

Γ(q)
fi(s)ds +

∫ t

0

(t − s)q−1

Γ(q)
fi(s)ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ [0,T],we have

[λh1 + (1 − λ)h2](t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
[λ f1(s) + (1 − λ) f2(s)]ds +

∫ t

0

(t − s)q−1

Γ(q)
[λ f1(s) + (1 − λ) f2(s)]ds.

Since SF,x is convex (F has convex values), therefore it follows that λh1 + (1 − λ)h2 ∈ Ω(x).
Next, we show that Ω maps bounded sets into bounded sets in C([0,T],Rn). For a positive number r, let
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Br = {x ∈ C([0,T],Rn) : ∥x∥∞ ≤ r} be a bounded set in C([0,T],Rn). Then, for each h ∈ Ω(x), x ∈ Br, there
exists f ∈ SF,x such that

h(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds

and in view of (H1), we have

||h(t)|| ≤ 1
2

∫ T

0

|T − s|q−1

Γ(q)
|| f (s)||ds +

∫ t

0

|t − s|q−1

Γ(q)
|| f (s)||ds

≤ 3Tq−1

2Γ(q)

∫ T

0
κ1(s)ds.

Thus,

∥h∥∞ ≤ 3Tq−1

2Γ(q)
||κ1||L1 .

Now we show that Ω maps bounded sets into equicontinuous sets in C([0,T],Rn). Let t′, t′′ ∈ [0,T] with
t′ < t′′ and x ∈ Br, where Br is a bounded set in C([0,T],Rn). For each h ∈ Ω(x),we obtain

||h(t′′) − h(t′)|| =
∣∣∣∣∣∣∣∣ ∫ t′′

0

(t′′ − s)q−1

Γ(q)
f (s)ds −

∫ t′

0

(t′ − s)q−1

Γ(q)
f (s)ds

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ∫ t′

0

[(t′′ − s)q−1 − (t′ − s)q−1]
Γ(q)

f (s)ds
∣∣∣∣∣∣∣∣ + ∣∣∣∣∣∣∣∣ ∫ t′′

t′

(t′′ − s)q−1

Γ(q)
f (s)ds

∣∣∣∣∣∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br′ as t′′ − t′ → 0..
By the Arzela-Ascoli Theorem, Ω : C([0,T],Rn)→ P(C([0,T],Rn)) is completely continuous. As in Lemma
3.1, Ω is closed-valued. Consequently, Ω(x) ∈ Pc,cp(C([0,T],Rn)) for each x ∈ C(([0,T],Rn)).

For 0 < α ≤ T, let us consider the operator

Ω(x) =
{

h ∈ C([0, α],Rn) : h(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds, f ∈ SF,x

}
.

It is well-known that Fix(Ω) = Sx0 ([0, α]) and, in view of Lemma 3.1, it is nonempty for each 0 < α ≤ T.

The following lemma due to Dzedzej and Gelman [19] is useful in the sequel.

Lemma 3.3. Let F : [0, α] → Pc,cp(Rn) be a measurable map such that the Lebesgue measure µ of the
set {t : dim F(t) < 1} is zero. Then there are arbitrarily many linearly independent measurable selections
x1(.), x2(.), ..., xm(.) of F.

Theorem 3.4. Let F : [0, α] × Rn → Pc,cp(Rn) satisfy (K1) and (K2) and suppose that the Lebesgue measure
µ of the set{t : dim F(t, x) < 1 for some x ∈ Rn} is zero. Then for each α, 0 < α < T, the set ST([0, α]) of
solutions of (1.1) has an infinite dimension.

Proof. Define the operator Ω by

Ω(x) =
{

h ∈ C([0, α],Rn) : h(t) = −1
2

∫ T

0

(T − s)q−1

Γ(q)
f (s)ds +

∫ t

0

(t − s)q−1

Γ(q)
f (s)ds, f ∈ SF,x

}
.

Then by Lemma 3.2, Ω(x) ∈ Pc,cp(C([0, α],Rn)) for each x ∈ C([0, α],Rn) and it is a generalized contraction
by Lemma 3.1. We shall show that dimΩ(x) ≥ m for any x ∈ C([0, α],Rn) and arbitrary m ∈ N. Consider
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G(t) = F(t, x(t)). By Lemma 3.3, there exist linearly independent measurable selections x1(.), x2(.), ..., xm(.) of
G. Set yi(t) = − 1

2

∫ T

0
(T−s)q−1

Γ(q) xi(s)ds +
∫ t

0
(t−s)q−1

Γ(q) xi(s)ds ∈ Ω(x). Assume that
∑m

i=1 aiyi(t) = 0 a.e. in [0, α]. Taking
Caputo derivatives a.e. in [0, α], we have

∑m
i=1 aixi(t) = 0 a.e. in [0, α] and hence ai = 0 for all i. As a result,

yi(.) are linearly independent. Thus Ω(x) contains an m-dimensional simplex. So dimΩ(x) ≥ m. By Lemma
2.6, Fix(Ω) = ST([0, α]) is infinite dimensional.

A metric space X is an AR-space if, whenever it is nonempty closed subset of another metric space Y, then
there exists a continuous retraction r : Y → X, r(x) = x for x ∈ X. In particular, it is contractible (and hence
connected).

Theorem 3.5. [24] Let C be a nonempty closed convex subset of a Banach space X and F : C → Pc,cp(C) a
contraction. Then Fix(F) is a nonempty AR-space.

Remark 3.6. Under the assumption of Theorem 3.5, Fix(F) is also compact. It follows by the arguments
used in the proof of Theorem 3.9 of reference [1] as Ω is condensing with respect to Hausdorff measure of
noncompactness.

The following result follows from Theorem 3.4 and Theorem 3.5.

Corollary 3.7. Let F : [0, α] × Rn → Pc,cp(Rn) satisfy (K1) and (K2) and suppose that the Lebesgue measure
µ of the set{t : dim F(t, x) < 1 for some x ∈ Rn} is zero. Then for each α, 0 < α < T, the set ST([0, α]) of
solutions of (1.1) is a compact and infinite dimensional AR-space.
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