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Generalized Quasi Power Increasing Sequences
and Their Some New Applications

Hüseyin Bora

aP. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, we generalize a known theorem by using a general class of power increasing
sequences instead of a quasi-δ-power increasing sequence. This theorem also includes some known and
new results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exist a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). A positive sequence
X = (Xn) is said to be a quasi-f-power increasing sequence, if there exists a constant K = K(X, f ) ≥ 1 such
that K fnXn ≥ fmXm for all n ≥ m ≥ 1, where f = ( fn) = {nδ(log n)γ, γ ≥ 0, 0 < δ < 1} (see [13]). If we take
γ=0, then we get a quasi-δ-power increasing sequence. It should be noted that every almost increasing
sequence is quasi-δ-power increasing sequence for any nonnegative δ, but the converse need not be true
as can be seen by taking an example, say Xn = n−δ for δ > 0 (see [10]). We write BVO = BV ∩ CO, where
CO = {x = (xk) ∈ Ω : limk |xk| = 0}, BV = {

x = (xk) ∈ Ω :
∑

k |xk − xk+1| < ∞
}

and Ω being the space of all
real or complex- valued sequences. Let

∑
an be a given infinite series with the sequence of partial sums

(sn). By uαn and tαn we denote the nth Cesàro means of order α, with α > −1, of the sequences (sn) and (nan),
respectively, that is

uαn =
1

Aαn

n∑
v=0

Aα−1
n−vsv, (1)

tαn =
1

Aαn

n∑
v=1

Aα−1
n−vvav, (2)

where

Aαn =
(

n + α
n

)
=

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα−n = 0 f or n > 0. (3)
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The series
∑

an is said to be summable | C, α |k, k ≥ 1, if (see [8])
∞∑

n=1

nk−1 | uαn − uαn−1 |k=
∞∑

n=1

1
n
| tαn |k< ∞. (4)

Let (pn) be a sequence of constants, real or complex, and let us write

Pn = p0 + p1 + p2 + ... + pn , 0, (n ≥ 0). (5)

The sequence-to-sequence transformation

Vn =
1

Pn

n∑
v=0

pn−vsv (6)

defines the sequence (Vn) of the Nörlund mean of the sequence (sn), generated by the sequence of coefficients
(pn). The series

∑
an is said to be summable | N, pn |k, k ≥ 1, if (see [6])

∞∑
n=1

nk−1 | Vn − Vn−1 |k < ∞. (7)

In the special case when

pn =
Γ(n + α)
Γ(α)Γ(n + 1)

, α ≥ 0 (8)

the Nörlund mean reduces to the (C, α) mean and | N, pn |k summability becomes | C, α |k summability. Also,
if we take k=1, then we get | N, pn | summability. If we take pn = 1 for all values of n, then we get the (C, 1)
mean and in this case | N, pn |k summability becomes | C, 1 |k summability. For any sequence (λn), we write
∆λn = λn − λn+1.

2. Known result

The following general theorem is known dealing with absolute Nörlund summabiliy factors.
Theorem 2.1 [4] Let p0 > 0, pn ≥ 0, (pn) be a non-increasing sequence and (λn) ∈ BVO. Let (Xn) be a
quasi-δ-power increasing sequence for some δ (0 < δ < 1) and let there be sequences (λn) and (βn) such that

| λn | Xn = O(1), (9)

| ∆λn |≤ βn, (10)

βn → 0, (11)

∑
nXn | ∆βn |< ∞. (12)

If the sequence (wαn) defined by (see [12])

wαn =


∣∣∣tαn ∣∣∣ , α = 1,

max
1≤v≤n

∣∣∣tαv ∣∣∣ , 0 < α < 1 (13)

satisfies the condition

m∑
n=1

(wαn)k

n
= O(Xm) as m→∞, (14)
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then the series
∑

anPnλn(n + 1)−1 is summable | N, pn |k, k ≥ 1 and 0 < α ≤ 1.

Remark 2. 2 We can take (λn) ∈ BV instead of (λn) ∈ BVO and it is sufficient to prove Theorem 2.1.

3. The Main Result

The aim of this paper is to generalize Theorem 2.1 by using a quasi-f-power increasing sequence instead
of a quasi-δ-power increasing sequence. Now, we shall prove the following theorems.

Theorem 3.1 Let (λn) ∈ BV and let (Xn) be a quasi-f-power increasing sequence. If the conditions (9)-(12)
and (14) of Theorem 2.1 are satisfied, then the series

∑
anλn is summable | C, α |k, k ≥ 1 and 0 < α ≤ 1.

Theorem 3.2 Let (λn) ∈ BV and let (pn) be as in Theorem 2.1. Let (Xn) be a quasi-f-power increasing
sequence. If the conditions (9)-(12) and (14) of Theorem 2.1 are satisfied, then the series

∑
anPnλn(n + 1)−1

is summable | N, pn |k, k ≥ 1 and 0 < α ≤ 1.

We need the following lemmas for the proof of our theorem.

Lemma 3.3 [5] Except for the condition (λn) ∈ BV, under the conditions on (Xn), (βn) and (λn) as as
expressed in the statement of Theorem 2.1, we have the following

∞∑
n=1

βnXn < ∞, (15)

nXnβn = O(1). (16)

Lemma 3.4 [7] If 0 < α ≤ 1 and 1 ≤ v ≤ n, then∣∣∣∣∣∣∣∣
v∑

p=0

Aα−1
n−pap

∣∣∣∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣∣∣∣
m∑

p=0

Aα−1
m−pap

∣∣∣∣∣∣∣∣ . (17)

Lemma 3.5 [11] If −1 < α ≤ σ, k > 1 and the series
∑

an is summable | C, α |k, then it is also summable
| C, σ |k. The case k =1 of Lemma 3.5 is due to Kogbetliantz (see [9]). The case k > 1 is a special case of the
theorem of Flett (see [8], Theorem 1 ).

Lemma 3.6 [14] Let p0 > 0, pn ≥ 0 and (pn) be a non-increasing sequence. If
∑

an is summable | C, 1 |k, then
the series

∑
anPn(n + 1)−1 is summable | N, pn |k, k ≥ 1.

4. Proof of Theorem 3.1 Let (Tαn ) be the nth (C, α), with 0 < α ≤ 1, mean of the sequence (nanλn). Then, by
(2), we find that

Tαn =
1

Aαn

n∑
v=1

Aα−1
n−vvavλv. (18)

Thus, by first applying Abel’s transformation and then using Lemma 3.4, we have that

Tαn =
1

Aαn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn

Aαn

n∑
v=1

Aα−1
n−vvav,
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| Tαn | ≤
1

Aαn

n−1∑
v=1

| ∆λv |

∣∣∣∣∣∣∣∣
v∑

p=1

Aα−1
n−ppap

∣∣∣∣∣∣∣∣ + | λn |
Aαn

∣∣∣∣∣∣∣
n∑

v=1

Aα−1
n−vvav

∣∣∣∣∣∣∣
≤ 1

Aαn

n−1∑
v=1

Aαv wαv | ∆λv | + | λn | wαn

= Tαn,1 + Tαn,2.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

n−1 | Tn,r
α |k< ∞ f or r = 1, 2.

Whenever k > 1, we can apply Hölder’s inequality with indices k and k′, where
1
k
+

1
k′
= 1, we get that

m+1∑
n=2

n−1 | Tαn,1 |k ≤
m+1∑
n=2

n−1(Aαn)−k

n−1∑
v=1

Aαv wαv | ∆λv |


k

≤
m+1∑
n=2

n−1n−αk

n−1∑
v=1

vαk(wαv )k | ∆λv |
 ×

n−1∑
v=1

| ∆λv |


k−1

= O(1)
m∑

v=1

vαk(wαv )kβv

m+1∑
n=v+1

1
nαk+1

= O(1)
m∑

v=1

vαk(wαv )kβv

∫ ∞

v

dx
xαk+1

= O(1)
m∑

v=1

vβv
(wαv )k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

(wαr )k

r

+ O(1)mβm

m∑
v=1

(wαv )k

v

= O(1)
m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,
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by virtue of the hypotheses of the theorem and Lemma 3.3. Again, we have that

m∑
n=1

n−1 |Tαn,2 |k = O(1)
m∑

n=1

| λn |
(wαn)k

n

= O(1)
m−1∑
n=1

∆ | λn |
n∑

v=1

(wαv )k

v
+O(1) | λm |

m∑
n=1

(wαn)k

n

= O(1)
m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)
m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m→∞,

by virtue of the hypotheses of the theorem and Lemma 3.3. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2 In order to prove Theorem 3.2, we need consider only the special case in which (N, pn)
is (C, α). Therefore, Theorem 3.2 will then follow by means of Theorem 3.1, Lemma 3.5 ( for σ = 1) and
Lemma 3.6. If we take γ=0, then we get Theorem 2.1. Also if take γ=0 and α = 1, then we obtain a known
result which was proved in [2]. If we take γ=0, α = 1 and k=1, then we obtain another result concerning
the | N, pn | summability (see [3]). Finally, if we take k=1, then we get a new result dealing with absolute
Nörlud summability factors of infinite series.
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