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A p-adic Montel Theorem and Locally Polynomial Functions
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Abstract. We prove a version of Montel’s Theorem for the case of continuous functions defined over the
field Qp of p-adic numbers. In particular, we prove that, if ∆m+1

h0
f (x) = 0 for all x ∈ Qp, and h0 satisfies

|h0|p = p−N0 , then, for all x0 ∈ Qp, the restriction of f over the set x0 + pN0Zp coincides with a polynomial
px0 (x) = a0(x0) + a1(x0)x + · · · + am(x0)xm. Motivated by this result, we compute the general solution of the
functional equation with restrictions given by

∆m+1
h f (x) = 0 (x ∈ X and h ∈ BX(r) = {x ∈ X : ∥x∥ ≤ r}),

whenever f : X → Y, X is an ultrametric normed space over a non-Archimedean valued field (K, | · |) of
characteristic zero, and Y is a Q-vector space. By obvious reasons, we call these functions uniformly locally
polynomial.

1. Motivation

Given a commutative group (G,+), a nonempty set Y, and a function f : G→ Y, we consider the set of
periods of f , P0( f ) = {1 ∈ G : f (w + 1) = f (w) for all w ∈ G}. Obviously, P0( f ) is always a subgroup of G
and, in some special cases, these groups are well known and, indeed, have a nice structure. For example,
a famous result proved by Jacobi in 1834 claims that if f : C → Ĉ is a non constant meromorphic function
defined on the complex numbers, then P0( f ) is a discrete subgroup of (C,+). This reduces the possibilities
to the following three cases: P0( f ) = {0}, or P0( f ) = {nw1 : n ∈ Z} for a certain complex number w1 , 0, or
P0( f ) = {n1w1+n2w2 : (n1,n2) ∈ Z2} for certain complex numbers w1,w2 satisfying w1w2 , 0 and w1/w2 < R.
In particular, these functions cannot have three independent periods and there exist functions f : C → Ĉ
with two independent periods w1,w2 as soon as w1/w2 < R. These functions are called doubly periodic (or
elliptic) and have an important role in complex function theory [8]. Analogously, if the function f : R→ R
is continuous and non constant, it does not admit two Q-linearly independent periods.

These results can be formulated in terms of functional equations since h is a period of f : G→ Y if and
only if f solves the functional equation ∆h f (x) = 0 (x ∈ G). Thus, Jacobi’s theorem can be formulated as a
result which characterizes the constant functions as those meromorphic functions f : C→ Ĉwhich solve a
system of functional equations of the form

∆h1 f (z) = ∆h2 f (z) = ∆h3 f (z) = 0 (z ∈ C) (1)
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for three independent periods {h1, h2, h3} (i.e., h1Z+ h2Z+ h3Z is a dense subset of C). For the real case, the
result states that, if dimQ spanQ{h1, h2} = 2, the continuous function f : R→ R is a constant function if and
only if it solves the system of functional equations

∆h1 f (x) = ∆h2 f (x) = 0 (x ∈ R). (2)

In 1937 Montel [13] proved an interesting nontrivial generalization of Jacobi’s theorem. Concretely, he
substituted in the equations (1), (2) above the first difference operator ∆h by the higher differences operator
∆m+1

h (which is inductively defined by ∆n+1
h f (x) = ∆h(∆n

h f )(x), n = 1, 2, · · · ) and proved that these equations
are appropriate for the characterization of ordinary polynomials. Concretely, he proved the following
result:

Theorem 1.1 (Montel). Assume that f : C → C is an analytic function which solves a system of functional
equations of the form

∆m+1
h1

f (z) = ∆m+1
h2

f (z) = ∆m+1
h3

f (z) = 0 (z ∈ C) (3)

for three independent periods {h1, h2, h3}. Then f (z) = a0 + a1z + · · · + amzm is an ordinary polynomial with complex
coefficients and degree ≤ m. Furthermore, if {h1, h2} ⊂ R satisfy dimQ spanQ{h1, h2} = 2, the continuous function
f : R→ R is an ordinary polynomial with real coefficients and degree ≤ m (i.e., f (x) = a0 + a1x + · · · + amxm) if and
only if it solves the system of functional equations

∆m+1
h1

f (x) = ∆m+1
h2

f (x) = 0 (x ∈ R). (4)

The functional equation ∆m+1
h f (x) = 0 had already been introduced in the literature by M. Fréchet in

1909 as a particular case of the functional equation

∆h1h2···hm+1 f (x) = 0 (x, h1, h2, . . . , hm+1 ∈ R), (5)

where f : R→ R and ∆h1h2···hs f (x) = ∆h1

(
∆h2···hs f

)
(x), s = 2, 3, · · · . In particular, after Fréchet’s seminal paper

[3], the solutions of (5) are named “polynomials” by the Functional Equations community, since it is known
that, under very mild regularity conditions on f , if f : R→ R satisfies (5), then f (x) = a0 + a1x+ · · · am−1xm−1

for all x ∈ R and certain constants ai ∈ R. For example, in order to have this property, it is enough for f
being locally bounded [3], [1], but there are stronger results [4], [11], [12]. The equation (5) can be studied
for functions f : X→ Y whenever X,Y are twoQ-vector spaces and the variables x, h1, · · · , hm+1 are assumed
to be elements of X:

∆h1h2···hm+1 f (x) = 0 (x, h1, h2, . . . , hm+1 ∈ X). (6)

In this context, the general solutions of (6) are characterized as functions of the form f (x) = A0 + A1(x) +
· · · + Am(x), where A0 is a constant and Ak(x) = Ak(x, x, · · · , x) for a certain k-additive symmetric function
Ak : Xk → Y (we say that Ak is the diagonalization of Ak). In particular, if x ∈ X and r ∈ Q, then
f (rx) = A0 + rA1(x) + · · · + rmAm(x). Furthermore, it is known that f : X → Y satisfies (6) if and only if it
satisfies

∆m+1
h f (x) :=

m+1∑
k=0

(
m + 1

k

)
(−1)m+1−k f (x + kh) = 0 (x, h ∈ X). (7)

A proof of this fact follows directly from Djoković’s Theorem [2] (see also [7, Theorem 7.5, page 160], [10,
Theorem 15.1.2., page 418]), which states that the operators ∆h1h2···hs satisfy the equation

∆h1···hs f (x) =
1∑

ϵ1,...,ϵs=0

(−1)ϵ1+···+ϵs∆s
α(ϵ1 ,...,ϵs )(h1,··· ,hs)

f (x + β(ϵ1,...,ϵs)(h1, · · · , hs)), (8)
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where

α(ϵ1,...,ϵs)(h1, · · · , hs) = (−1)
s∑

r=1

ϵrhr

r

and

β(ϵ1,...,ϵs)(h1, · · · , hs) =
s∑

r=1

ϵrhr.

In section 2 of this paper we prove a version of both Jacobi’s and Montel’s Theorems for the case of
continuous functions defined over the field Qp of p-adic numbers. In particular, we prove that, if

∆m+1
h0

f (x) = 0 for all x ∈ Qp,

and |h0|p = p−N0 then, for all x0 ∈ Qp, the restriction of f over the set x0 + pN0Zp coincides with a polynomial
px0 (x) = a0(x0) + a1(x0)x + · · · + am(x0)xm. Motivated by this result, we compute, in the last section of this
paper, the general solution of the functional equation with restrictions given by

∆m+1
h f (x) = 0 (x ∈ X and h ∈ BX(r) = {x ∈ X : ∥x∥ ≤ r}), (9)

whenever f : X → Y, X is an ultrametric normed space over a non-Archimedean valued field (K, | · |) of
characteristic zero (so that, it contains a copy of Q), and Y is a Q-vector space. By obvious reasons, we call
these functions uniformly locally polynomial.

The definition and basic properties ofQp and ultrametric normed spaces over non-Archimedean valued
fields can be found, for example, in [6], [14] and [15]. In any case, we would like to stand up the fact that, if
X is an ultrametric normed space over a non-Archimedean valued field (K, | · |) and x, y ∈ X satisfy ∥x∥ > ∥y∥,
then ∥x + y∥ = ∥x∥ (see, e.g., [14, page 22]).

2. p-adic Montel’s Theorem

Theorem 2.1. Let Y be a topological space with infinitely many points, and let N ∈ Z. Then there are continuous
functions f : Qp → Y such that

∆h f (x) = 0⇔ h ∈ pNZp.

These functions are obviously non-constant.

Proof. We know that pNZp is an additive subgroup of Qp. Moreover, the quotient group Qp/pNZp is
isomorphic to the well known Prüfer group Cp(∞) =

∪∞
k=0 Cpk (here, Cpk denotes the cyclic group of order pk).

In particular, there exists an infinite countable set SN ⊂ Qp such that
{
s + pNZp

}
s∈SN

defines a partition of Qp

in clopen sets. If λ : SN → Y is any inyective map, the function f : Qp → Y defined by f (x) = λ(s) if and
only if x ∈ s + pNZp, s ∈ SN, satisfies our requirements. �

Lemma 2.2. Let (Y, d) be a metric space. If f : Qp → Y is continuous and h ∈ P0( f ), |h|p = p−N, then pNZp ⊆ P0( f ).
In particular, P0( f ) is a clopen additive subgroup of Qp.

Proof. The continuity of f implies that P0( f ) is closed. Let us include, for the sake of completeness, the
proof of this fact. Let {hk} ⊂ P0( f ), limk→∞ hk = h. Then

0 ≤ d( f (x + h), f (x)) ≤ d( f (x + h), f (x + hk)) + d( f (x + hk), f (x))
= d( f (x + h), f (x + hk))→ 0 ( for k→∞),

Hence f (x + h) = f (x) for all x ∈ Qp. Thus h ∈ P0( f ).

Take h ∈ P0( f ), |h|p = p−N. Then {kh}∞k=1

Qp
= pNZp ⊂ P0( f ). This ends the proof. �
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Corollary 2.3 (p-adic version of Jacobi’s Theorem). Let (Y, d) be a metric space. If f : Qp → Y is continuous
and non-constant, then P0( f ) = {0} or P0( f ) = pNZp for a certain N ∈ Z. In particular, the continuous function
f : Qp → Y is a constant if and only if it contains an unbounded sequence of periods.

Proof. It is well known (and easy to prove) that every proper nontrivial closed additive subgroup of Qp is
of the form pNZp for a certain N ∈ Z (see, e.g., [16, p. 283, Proposition 52.3]). �

Theorem 2.4 (p-adic version of Montel’s Theorem). Let (K, | · |K) be a valued field such that Qp ⊆ K and the
inclusion Qp ↪→ K is continuous. Let us assume that f : Qp → K is continuous, and define

Pm( f ) = {h ∈ Qp : ∆m+1
h f = 0}.

Then either Pm( f ) = {0}, Pm( f ) = Qp, or Pm( f ) = pNZp for a certain N ∈ Z. Furthermore, all these cases are
effectively attained by some appropriate instances of the function f . Finally, for all a ∈ Qp there exists constants
a0, a1, · · · , am ∈ K such that f (x) = a0 + · · · + amxm for all x ∈ a +Pm( f ). In particular, f is a polynomial of degree
≤ m if and only if Pm( f ) contains an unbounded sequence.

Proof. Assume Pm( f ) , {0}. Let h0 ∈ Pm( f ), h0 , 0. Then ∆m+1
h0

f (x) = 0 for all x ∈ Qp. Let x0 ∈ Qp and let
p0(t) ∈ K[t] be the polynomial of degree ≤ m such that f (x0 + kh0) = p0(x0 + kh0) for all k ∈ {0, 1, · · · ,m} (this
polynomial exists and it is unique, thanks to Lagrange’s interpolation formula). Then

0 = ∆m+1
h0

f (x0) =
m∑

k=0

(
m + 1

k

)
(−1)m+1−k f (x0 + kh0) + f (x0 + (m + 1)h0)

=

m∑
k=0

(
m + 1

k

)
(−1)m+1−kp0(x0 + kh0) + f (x0 + (m + 1)h0)

= −p0(x0 + (m + 1)h0) + f (x0 + (m + 1)h0),

since 0 = ∆m+1
h0

p(x0) =
∑m+1

k=0
(m+1

k
)
(−1)m+1−kp0(x0 + kh0). This means that f (x0 + (m+ 1)h0) = p0(x0 + (m+ 1)h0).

In particular, p0 = q, where q denotes the polynomial of degree ≤ m which interpolates f at the nodes
{x0 + kh0}m+1

k=1 . This argument can be repeated to prove that p0 interpolates f at all the nodes x0 + h0N. On
the other hand, if |h0|p = p−N, then h0N is a dense subset of pNZp. It follows that f|x0+pNZp = (p0)|x0+pNZp ,
since f is continuous. Thus, we have proved that the restrictions of f over the sets of the form x0 + pNZp
are polynomials of degree ≤ m. On the other hand, we have already shown the existence an infinite
countable set SN ⊂ Qp such that {s + pNZp}s∈SN is a partition of Qp in clopen sets. Hence there exists a
family of polynomials {ps(t)}s∈SN ⊂ K[t] such that deg ps ≤ m for all s ∈ SN and f (x) = ps(x) if and only if
x ∈ s + pNZp, s ∈ SN. Let h ∈ pNZp. We want to show that h ∈ Pm( f ). Now, given x ∈ Qp, there exists s ∈ SN
such that x + pNZp = s + pNZp. In particular, f|{x,x+h,x+2h,··· ,x+mh,x+(m+1)h} = (ps)|{x,x+h,x+2h,··· ,x+mh,x+(m+1)h}, so that
∆m+1

h f (x) = ∆m+1
h ps(x) = 0. This proves that pNZp ⊆ Pm( f ).

We may summarize the the arguments above by claiming that if h0 ∈ Pm( f ) and |h0|p = p−N, then
pNZp ⊆ Pm( f ) and

f (x) = ps(x)⇔ x ∈ s + pNZp and s ∈ SN, (10)

where {ps(t)}s∈SN is a family of polynomials ps ∈ K[t] verifying deg ps ≤ m for all s ∈ SN, and {s + pNZp}s∈SN

is a partition of Qp. Furthermore, for any function f satisfying (10), we have that pNZp ⊆ Pm( f ).
Thus, there are just two possibilities we may consider:

Case 1: inf{N ∈ Z : pNZp ⊆ Pm( f ) =} − ∞.
In this case Pm( f ) = Qp and f is a polynomial of degree ≤ m.
Case 2: inf{N ∈ Z : pNZp ⊆ Pm( f )} = N0.
In this case Pm( f ) = pN0Zp and f satisfies (10) with N = N0 ∈ Z.

This ends the proof. �
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Definition 2.5. Given f : Qp → K a continuous function, we say that f is locally an ordinary polynomial if for each
x0 ∈ Qp there exist a positive radius r > 0 and constants a0, a1, · · · , am ∈ K such that f (x) = a0 + · · · + amxm for all
x ∈ x0 + BQp (r). We say that f is uniformly locally an ordinary polynomial if, furthermore, the radius r > 0 can be
chosen the same for all x0 ∈ Qp.

Corollary 2.6. If f : Qp → K is continuous, then f is uniformly locally an ordinary polynomial if and only if
Pm( f ) , {0}. There are locally ordinary polynomial functions f : Qp → K such that Pm( f ) = {0}.

Proof. The first claim is an easy consequence of Theorem 2.4. To prove the existence of locally ordinary
polynomials which are not uniformly locally ordinary polynomials it will be enough to construct an
example. With this objective in mind, we define f : Qp → Qp as follows:

f (x) =
{

pnxm, if n ∈N and x ∈ p−n + pnZp
0, if x <

∪∞
n=0(p−n + pnZp) .

Obviously, f (x) is locally an ordinary polynomial of degree ≤ m. On the other hand, if N ≥ 1 is a natural

number, h ∈ Qp, |h| = p−N, then p−N(m+1) + kh <
∞∪

n=0
(p−n + pnZp), k = 1, 2, · · · ,m + 1. Hence

∆m+1
h f (p−N(m+1)) =

m+1∑
k=0

(
m + 1

k

)
(−1)m+1−k f (p−N(m+1) + kh)

= (−1)m+1 f (p−N(m+1)) = pN(m+1)p−Nm(m+1) , 0

and Pm( f ) = {0}.

3. Characterization of uniformly locally polynomial functions

The results of the section above and, in particular, the p-adic Montel’s Theorem and Corollary 2.6,
motivate us to study, for functions f : X → Y (where X is an ultrametric normed space over a non-
Archimedean valued field (K, | · |) of characteristic zero, and Y is a Q-vector space), the functional equation
with restrictions

∆m+1
h f (x) = 0 (x ∈ X, h ∈ BX(r) = {x : ∥x∥ ≤ r}). (11)

Definition 3.1. We say that f : X → Y is an uniformly locally polynomial function if it solves the functional
equation (11) for a certain r > 0.

The best motivation for the concept above should be found in the statement of the following theorem, which
is the main result of this section:

Theorem 3.2 (Characterization of uniformly locally polynomial functions). Assume that f : X → Y satis-
fies (11) and let

ϕ(r,m) = r

m+1∏
k=2

max{|1/t| : t = 1, 2, · · · , k}

−1

. (12)

Then for all x0 ∈ X there exists a constant A0,x0 and k-additive symmetric maps

Ak,x0 : BX(ϕ(r,m)) × · · ·(k times) × BX(ϕ(r,m))→ Y

for k = 1, 2, · · · ,m, such that

f (x0 + z) = A0,x0 +

m∑
k=1

Ak,x0 (z) for all z ∈ BX(ϕ(r,m));

where Ak,x0 (z) = Ak,x0 (z, z, · · · , z) is the diagonalization of Ak,x0 (z1, · · · , zk), k = 1, · · · ,m.
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Lemma 3.3. Assume that f : X → Y satisfies (11) and let ϕ(r,m) be defined by equation (12). Then there exist a
constant A0 and k-additive symmetric maps

Ak : BX(ϕ(r,m)) × · · ·(k times) × BX(ϕ(r,m))→ Y

for k = 1, 2, · · · ,m, such that

f (z) = A0 +

m∑
k=1

Ak(z) for all z ∈ BX(ϕ(r,m));

where Ak(z) = Ak(z, z, · · · , z) is the diagonalization of Ak(z1, · · · , zk), k = 1, · · · ,m.

Proof. Assume that f : X → Y satisfies (11), and consider the function Am(x1, · · · , xm) =
1

m!
∆x1x2···xm f (0).

Then Am is symmetric since the operators ∆xi , ∆x j commute. Furthermore, the identity ∆x+y = ∆x +∆y +∆xy
implies that

Am(x1, · · · , xk−1, x + y, xk+1, · · · , xm) − Am(x1, · · · , xk−1, x, xk+1, · · · , xm) − Am(x1, · · · , xk−1, y, xk+1, · · · , xm)

=
1

m!

(
∆x1···xk−1xk+1···xm (∆x+y − ∆x − ∆y) f (0)

)
=

1
m!

(
∆x1···xk−1xk+1···xmxy f (0)

)
.

If we apply Djoković’s theorem to the operator ∆z1z2···zm+1 , we conclude that, if

z1, · · · , zm+1 ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
,

then

∥α(ϵ1,··· ,ϵm+1)(z1, · · · , zm+1)∥ =
∥∥∥∥∥∥∥(−1)

m+1∑
t=1

ϵt
t

zt

∥∥∥∥∥∥∥ ≤ max
1≤t≤m+1

|1/t| max
1≤t≤m+1

∥zt∥ ≤ r,

so that ∆z1z2···zm+1 f (x) = 0 for all x ∈ X. Hence the application Am is m-additive on BX

(
r/ max

1≤t≤m+1
|1/t|

)
and, consequently, on all its additive subgroups. In particular, it is m-additive on the balls BX(ρ) for all
ρ ≤ r/ max

1≤t≤m+1
|1/t|.

Let us define the function

f1(x) =


f (x) − Am(x), if x ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
0, if x < BX

(
r/ max

1≤t≤m+1
|1/t|

) ,
where Am(x) = Am(x, x, · · · , x) is the diagonalization of Am, and let us compute ∆m

h f1(x) for x ∈ X and

h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
. We divide this computation into two steps:

Step 1: Assume x ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
.

In this case, x + kh ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
for all h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
and all k ∈ N, so that ∆m

h f1(x) =

∆m
h f (x)−∆m

h Am(x). We compute separately each summand of the second member of this identity. Obviously,

0 = ∆hh···hx f (0) = ∆m
h ∆x f (0) = ∆m

h f (x) − ∆m
h f (0),
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since x, h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
. This means that ∆m

h f (x) = ∆m
h f (0) = m!Am(h, · · · , h). On the other hand, a

direct computation shows that ∆m
h Am(x) = m!Am(h, · · · , h), which proves that

∆m
h f1(x) = 0 for all x, h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
.

Step 2: Assume x < BX

(
r/ max

1≤t≤m+1
|1/t|

)
.

Obviously, ∥x∥ > ∥h∥ ≥ ∥kh∥ for all h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
and k ∈ N, so that ∥x + kh∥ = ∥x∥ and {x + kh}mk=0 ⊂

X \ BX

(
r/ max

1≤t≤m+1
|1/t|

)
. Hence ∆m

h f1(x) = 0 also in this case.

Thus, we have proved that

f (x) = f1(x) + Am(x) for all x ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
,

and

∆m
h f1(x) = 0 for all x ∈ X and h ∈ BX

(
r/ max

1≤t≤m+1
|1/t|

)
.

A repetition of the same arguments will show that f1(x) admits a decomposition f1(x) = f2(x) + Am−1(x) on

the ball BX

 r
max

1≤t≤m+1
|1/t|max

1≤t≤m
|1/t|

, with Am−1 the diagonalization of an (m− 1)-additive symmetric function

Am−1 : BX

 r
max

1≤t≤m+1
|1/t|max

1≤t≤m
|1/t|


m−1

→ Y,

and f2 satisfying

∆m
h f2(x) = 0 for all x ∈ X and h ∈ BX

 r
max

1≤t≤m+1
|1/t|max

1≤t≤m
|1/t|

 .
The iteration of this process leads to a decomposition

f (x) = fm(x) + A1(x) + A2(x) + · · · + Am(x), for all x ∈ BX(ϕ(r,m)),

with Ak(z) = Ak(z, z, · · · , z) being the diagonalization of the k-additive symmetric map Ak : BX(ϕ(r,m)) ×
· · ·(k times) × BX(ϕ(r,m)) → Y, k = 1, 2, · · · ,m; and ∆1

h fm(x) = 0 for all x ∈ X and h ∈ BX(ϕ(r,m)). In particular,
this last formula implies that, for x ∈ BX(ϕ(r,m)), fm(x) = fm(0) = A0 is a constant.

Proof of Theorem 3.2: Let us define, for x0 ∈ X, the function 1(x) = f (x0 + x). Then 1 = τx0 ( f ), where
τx0 ( f )(x) = f (x0 + x) is a translation operator. Obviously, the operators τx0 and ∆h commute, so that

∆m+1
h 1(x) = ∆m+1

h τx0 f (x) = τx0∆
m+1
h f (x) = 0 (x ∈ X, h ∈ BX(r) = {x : ∥x∥ ≤ r}).

Hence, we can use Lemma 3.3 with 1 to conclude that there exist a constant A0,x0 and k-additive maps
Ak,x0 : BX(ϕ(r,m)) × · · ·(k times) × BX(ϕ(r,m))→ Y, k = 1, 2, · · · ,m, such that

f (x0 + z) = A0,x0 +

m∑
k=1

Ak,x0 (z) for all z ∈ BX(r);

where Ak,x0 (z) = Ak,x0 (z, z, · · · , z) is the diagonalization of Ak,x0 (z1, · · · , zk), k = 0, 1, · · · ,m.
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