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New Bounds for the Companion of
Ostrowski’s Inequality and Applications

Wenjun Liu?

?College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract. In this paper we establish some new bounds for the companion of Ostrowski’s inequality for
the case when f’ € L[a,b], f” € L*[a,b] and f’ € L?[a, ], respectively. We point out that the results in the
first and third cases are sharp and that some of these new estimations can be better than the known results.
Some applications to composite quadrature rules, and to probability density functions are also given.

1. Introduction

An extensive literature deals with inequalities between an integral ;- fa ! f(t)dt and its various approx-
imations, such as trapezoidal approximation, midpoint approximation, Simpson approximation and so
on. In 1938, Ostrowski established the following interesting integral inequality (see [27]) for differentiable
mappings with bounded derivatives which generalizes the estimate of an integral by the midpoint rule:

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a, b) whose derivative is bounded on (a, b) and

denote ||f'lle = sup|f’(f)| < co. Then for all x € [a,b] we have
te(a,b)

f@———ffmm .

_ atby2
[_+% 2)]w—nvm M

The constant % is sharp in the sense that it can not be replaced by a smaller one.
In [15], Guessab and Schmeisser proved the following companion of Ostrowski’s inequality:

Theorem 1.2. Let f : [a,b] — R be satisfying the Lipschitz condition, i.e., |f(t) — f(s)| < M|t —s|. Then for all

X € |a ,“;b] we have
3a+b
[—+2( = ]l(b a)M. (2)

x)+ fla+b- x)
fe+f . f f(tydt| <
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The constant } is sharp in the sense that it can not be replaced by a smaller one. In (2), the point x = 3L gives the
best estimator and yields the trapezoid type inequality, i.e.,
f 3a+b + f a+3b
( ) 5 f fhdt| < bTM 3)

The constant % in (3) is sharp in the sense mentioned above.
Motivated by [15], Dragomir [9] proved some companions of Ostrowski’s inequality, as follows:

Theorem 1.3. Let f : [a,b] — R be an absolutely continuous mapping on [a, b]. Then the following inequalities

L4255

=) ](b —Dllflle, f € Lab],

1 Y—a q+1 ath _ g+1 q ,
(qil/)ql/'i [ h_ ( ?7 —a ) ] (b _a)l/qu ”p/
yte=1 and f el’[ab],
tE
hold for all x € [a, %£].

{1, f €L, b)
Recently, Alomari [1] studied the companion of Ostrowski inequality (2) for differentiable bounded
mappings.
Theorem 1.4. Let f : [a,b] — R be a differentiable mapping in (a,b). If ' € L'[a,b]land y < f'(x) < T,V x € [a, b],

then for all x € [a, ”Zﬂ’] we have
3a+h
{ [ s ] } (b—a)T —). (4)

f)+ flatb-x) f foi <
2

For other related results, the reader may be refer to [2-6, 8, 10, 12-14, 16-25, 28-34] and the references
therein.

The main aim of this paper is to establish new estimations of the left part of (4) for the case when
f’ € L'a,b], f” € L?*[a,b] and f’ € L?[a, b], respectively. It turns out that some of these new estimations can
be better than the known results and that the results in the first and third cases are sharp. Some applications
to composite quadrature rules, and to probability density functions are also given.

_ b
e

p>1,-+
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2. Main results

2.1. The case when f' € L'[a, b] and is bounded
Theorem 2.1. Let f : [a,b] — R be a differentiable mapping in (a,b). If f € L'[a,bland y < f'(x) <T,¥ x € [a,b],
then for all x € [a, ‘%b] we have

b ' [b— '
Tt B o | ro] < |22 o= 252 s Q
and
b ' [b— '
f(X)+f(;+ x)_biaff(t)dt < b4—”+‘x—3a;b_(r—5), (6)

where S = (f(b) — f(a))/(b —a). If y, T are given l;y

y=, 1nf f(t) I'=sup f'(t),
tela,b)

then the constant i in (5) and (6) is sharp in the sense that it can not be replaced by a smaller one.
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Proof. Define the kernel K(x, t) by

t—a, t € [a,x]
K, t):=4 t—%, te(ra+b-x], (7)
t—b, te(@a+b-xb],

for all x € [a, 22]. Integrating by parts, we obtain (see [9])

b
ﬁ f Koty f (ot = TS (;”b *) f Ftydt. ®)

We also have

b

7= | Keohdt=0 ©)

and
b
| =50 ro. (10)

From (8)-(10), it follows that

— f K(x, b f/(Hdt — 1 T f K(x, t)dt f F(Bdt

:f(x”f(;”_x)—b_afaf(t)dt. (11)
We denote

Ru(x) = ﬁ fb K(x, t)f'(t)dt — 0= ! b-a f K(x, t)dtf f'(t)dt. (12)

If C € Ris an arbitrary constant, then we have
1 b

R,(x) = f (f'(t)-0) [K(x ) — fl K(x, s)ds] dt, (13)

since , ) ,
fﬂ‘ [K(x, ) — — fa K(x, s)ds] dt = 0.
Furthermore, we have
1 b

R0 < 2 maxik(e, ) ~0f [ 1) - C. (14)
and

trgfﬁl[((x,t)l :max{x—a,a;b —x} = % + ' - SQIb , XE€ |a,a%b}. (15)

We also have (see [33])

b
f () = yldt = (S )b —a) (16)
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and

b
f If'(t) = T|dt = (T — S)(b — a). (17)

Therefore, we obtain (5) and (6) by using (11)-(17) and choosing C = y and C = I in (14), respectively.
For the sharpness of the constant }1 in (5), assume that (5) holds with a constant A > %, ie.,

_ b
[Oe/8rr=9 L [ o

b ](s ). (18)

S[A(b—a)+‘x—

For simplicity we takea =0,b=1,x € [%, %] and choose 0 < ¢ < 1be small. If we choose f : [4,b] — R with

e
= te 0, - & — 2,
5 [0,x —e—¢&7]
[t—(x—e—-e?)]P &2 )
g2 Y tex—e—e,x—¢],
f)=3t-(x-e), te(x—ex—¢%,
. 2
(2‘;) + —%, te(x—ez,x],
2
- = te(x1],
e (6,11
then
0, te[0,x—¢e—¢?],
t— e 2
(x 26 £) telx—e—e2,x—¢],
I3
=11, te(x—ex—¢%,
t_
- zx, te(x—ez,x],
I3
O’ te(xllll

which implies that f is differentiable in (2, b) and y = i[nfb] f'(t) =0,and
tela,l

f&) - f@ _

5= b—a

giving in (5) ex — % < (A +x—1). Therefore we get A >
The sharpness of the constant }I

Corollary 2.2. Under the assumptions of Theorem 2.1 with x = 4

f(3u+b)+f a+3b

fX)+ fla+b-x) e

Sy

2

f(3T)+f a+3b

f F(tdt| <

Sy
|
S}

T -S).

2

f F(bdt| <

B~

=& - —

b
— 1 2
5 57 mﬁ f(t)dt— 25(2+€ ZX),

in (6) can be proved similarly. O

, we have the trapezoid type inequalities

1 when 0 < ¢ < 11is chosen to be small enough.

(19)

(20)
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Corollary 2.3. Under the assumptions of Theorem 2.1 with x = a, we have the trapezoid inequalities

b
f(ﬂ)+f( ) f F(hdt] < T(S y), (21)

G‘

G"

Corollary 2.4. Under the assumptions of Theorem 2.1 with x = %2, we have the midpoint inequalities

b
f(“;b)—g%;l:fGMts

F(452)- 52 [ o] < 5009 on

Remark 2.5. We note that (21)-(22), and (23)-(24) can also be obtained by choosing x = a and x = % in [33,
Theorem 3], respectively. In fact, in [33, Theorem 3], the inequalities

f(x)—(x ”;b)f(b) f@ _ ff(t)dt

<

(23)

S
|

-v), x€]a,b]

Sy

f(x)—( a;b)f(b) f@ _ ff(t)dt

were proved. However, it is obvious that (19) and (20) give a smaller estimator than the above inequalities.

x € [a, b]

A new inequality of Ostrowski’s type may be stated as follows:

Corollary 2.6. Let f be as in Theorem 2.1. Additionally, if f is symmetric about the line x = “£, i.e., f(a+b—x) =
f(x), then for all x € [a, 2] we have

[b—a ‘ 3a+b
+|x—

b
-5 [ s < |s=» 25)

b
-5 [ s <

Remark 2.7. Under the assumptions of Corollary 2.6 with x = a, we have

b—a+‘x_3a+b
4

7 ] (T - S). (26)

@‘

1
ra- s [ o <56, @)

S8
|
S

b
fo- 5 [ sow < Sha-s) 8)

N ‘
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2.2. The case when f” € L?[a, b]

Theorem 2.8. Let f : [a,b] — R be a twice continuously differentiable mapping in (a,b) with f” € L*[a,b]. Then
forall x € [a, %] we have

_ b
f(x)+f(;+b X)—biaff(t)dt <

(29)

o e 2q1/2
(b 7:1) {(b%a) +(x_3”;b)] 1F” -

Proof. Let R, (x) be defined by (12). From (11), we get

_ b
Ry = TSl x)_biaff(t)dt'

If we choose C = f’((a + b)/2) in (13) and use the Cauchy inequality, then we get

1 1 ("
IR, ()] Smf HK( ) — afﬂ K(x, s)ds| dt

b b 2 /2
(f,(t)_ff(”%b)) dt] f(K(x,t)—blTaf K(x,s)ds) dt} . (30)

We can use the Diaz-Metcalf inequality (see [26, p. 83] or [33, p. 424]) to get

f(f(t f(”zb)) ar< Dy

2

b b
f(K(x,t)—ﬁf K(x,s)ds) dt

b 2
- f K(x, b2dt = [(b ;8”)2 + (x _ 3“; b) ](b —a). 31)

Therefore, using the above relations, we obtain (29). O

We also have

Corollary 2.9. Under the assumptions of Theorem 2.8 with x = 3L, we have the trapezoid type inequality

3a+b a+3b b _N\3/2
‘f( 2% )‘biafﬂf(t)dt St

44371

Corollary 2.10. Under the assumptions of Theorem 2.8 with x = a, we have the trapezoid inequality

. 1f 1 (32)

f@+f0) 1 fh b-a? .,
‘ T 5 ), SO < S (33)
Corollary 2.11. Under the assumptions of Theorem 2.8 with x = %2, we have the midpoint inequalities
a+ b f a)%/?
- (Ddt| < ——=—IIf"llo- (34)
‘f ! 2 \/’ /
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Remark 2.12. We note that (33) and (34) can also be obtained by choosing x = a and x = “”’ in [33, Theorem 4],
respectively. In fact, in [33, Theorem 4], the inequality

b) — b
fuy—@—“gb)ﬂ;_ZW)—bial:ﬂﬂm

was proved. However, it is obvious that (32) gives a smaller estimator than the above inequality.

(b-ap?
< ——If", x€lab]
24371 Sl

The other new inequality of Ostrowski’s type may be stated as follows:

Corollary 2.13. Let f be as in Theorem 2.8. Additionally, if f is symmetric about the line x = ”+b Jie, fla+b—x) =
f(x), then for all x € [a, 2] we have

b 2
‘f(x)— b—iaf f(tydt| < G _7?)1/2 [(b_“)z +(x— 3”+b) ]

48 4
Remark 2.14. Under the assumptions of Corollary 2.13 with x = a, we have

Mm fﬂm

2.3. The case when f' € L*[a, b]
Theorem 2.15. Let f : [a,b] — R be an absolutely continuous mapping in (a,b) with f' € L%[a,b]. Then for all
x € [a, 4E] we have

f@)+ fa+b-x) 1 [°
-5 | fom

1/2

11l (35)

7’

(36)

2
2q1/2
< (b-a)y"? [(b ;801)2 N (x ~ 3a2— b) ] (), 37)
where o(f") is defined by
b 2
o(f) = IfIE - Ql—élﬁ-nfm S*(b - a)

and S is defined in Theorem 2.1. Inequality (37) is sharp in the sense that the constant g5 of the right-hand side cannot
be replaced by a smaller one.

Proof. Let R, (x) be defined by (12). From (11), we get
_f+fa+b-x) 1 (7
R(x) = -5 | o

2

If we choose C = ﬁ fu ’ f'(s)ds in (13) and use the Cauchy inequality and (31), then we get

)——f f'(s)ds| |K(x, t)—Lf K(x,s)ds|d

1 b 1 (P 21w L 2 12
SbTa [ju‘ (f/(t)_mfu f'(S)ds) dtl ﬁ(K(x,t)—ml K(x,s)ds) dt}

w mz sa+ bV,
<\olF) +@_ 4) (b—a)y 1. (38)

IRn(x)]

1
b
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The sharpness of the constant Z in (37) can be obtained in a particular case for x = a or x = %2 which

has been proved in [20, Theorem 3 and Remark 2] and [12, Propositions 2.3 and 2.6]. [J

Corollary 2.16. Under the assumptions of Theorem 2.8 with x = 3%, we have the trapezoid type inequality
f Batb) f a+3b 12
%) - i [ s < 0 o 9)

Corollary 2.17. Under the assumptions of Theorem 2.8 with x = a, we have the sharp trapezoid inequality

f@+f®b 1 ! (b—a)' -
R f F(h)dt| < W o(F). (40)

+

Corollary 2.18. Under the assumptions of Theorem 2.8 with x = 2, we have the sharp midpoint inequalities

‘f ‘”b - f bt Nt} (41)

Remark 2.19. We note that (40) and (41) are also given in [12, Propositions 2.3 and 2.6] and [20, Remark 2].
Howewver, it is obvious that (39) gives a smaller estimator, and can neither be obtained from [33, Theorem 3 and
Remark 2] for any special case, nor from [12, Propositions 2.3 and 2.6].

( - )”2

Another inequality of Ostrowski’s type may be stated as follows:

Corollary 2.20. Let f beas in Theorem 2.15. Additionally, if f is symmetric about the linex = %2, i.e., f(a+b—x) =
f(x), then for all x € [a, b1 we have

1 (Y b —a)> 3a+b\]"
fo -5 | o< 0-02 [(4—8”) ' (x - =5 ) ] o). (#2)
Remark 2.21. Under the assumptions of Corollary 2.20 with x = a, we have
1 (" b-a)'? —
‘f(a) - m‘fa‘ fhdt < W Vo(f'). (43)

3. Application to Composite Quadrature Rules

Letl, :a =x) <x3 <+ < xy-1 <X, = Db be a partition of the interval [4,b0] and I = x4 — x;
(i=0,1,2,---,n —1). Consider the general quadrature formula

n-1

0= L

i=0

Theorem 3.1. Let f : [a,b] — R be a differentiable mapping in (a,b). If f € L'[a,b]land y < f'(x) <T,V¥ x € [a, b],
then we have

b
f fx)dx = 5(f,1,) + R(f, L)

and the remainder R(f, 1,,) satisfies the estimates

AN

n-1
IR(F L) < 7 Y (Si=y)i2 (45)
i=0
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and

NI,

n-1
IRCF, L) < 5 ) (T = S, (46)
i=0

where S; = (f(xix1) = f(x))/hi,i=0,1,2,---,n—1.

Proof. Applying (19) to the interval [x;, x;1], then we get

Bl (2 [ o

fori=0,1,2,---,n — 1. Now summing over i from 0 to n — 1 and using the triangle inequality, we get (45).
In a similar way, we get (46). [

h?
< Z(Si -v)

Remark 3.2. It is obvious that the estimations obtained in Theorem 3.1 are better than those of [33, Theorem 7] due
to a smaller error.

Theorem 3.3. Let hj = xj;y —x; =h =22 (1 =0,1,2,---,n— 1) and let f :[a,b] = R be a twice continuously

differentiable mapping in (a, b) with " € Lz[a, b]. Then we have

b
f fx)dx = 5(f,1,) + R(f, L,)

and the remainder R(f, 1,,) satisfies the estimate

(b_a)5/2 7
R(f, ) £ ———— . 47
ROl < e @7)

Proof. Applying (32) to the interval [x;, xi41], then we get

‘g [f(Sx,- -me ) + f(Xi +:xi+l )] _ [jlﬂ f(tdt| < 4}1\7;1 [£Xi+l(f”(t))2dt]1/2

fori =0,1,2,---,n — 1. Now summing over i from 0 to n — 1, and using the triangle inequality and the
Cauchy inequality, we get

L5t [ o

i=0
B2 B[ e s 1/2 1572 Ul fxm i (b —a)®?
” d 77 2d =— "Il
NIRRT B

Therefore, (47) is obtained. O
Theorem 3.4. Leth; = xj;1 —xi=h = l%” (i=0,1,2,---,n—1)and let f : [a,b] — R be an absolutely continuous
mapping in (a,b) with f’ € L?[a, b]. Then we have

b
f fx)dx = S(f, L) + R(f, I,)

and the remainder R(f, 1,) satisfies the estimate

IR(f, I)| < Ul Vo (). (48)
4 \/571
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Proof. Applying (39) to the interval [x;, x;1], then we get

’g[f(Sxi';xi+l)+f(xi +:xi+1)]_in+l F(byt

R e (fxian) = fO)2 ]

176

fori =0,1,2,---,n — 1. Now summing over i from 0 to n — 1, using the triangle inequality and using the

Cauchy inequality twice, we get

h v 3x; + Xip1 Xi + 3Xi1 b
Ei_o[f( 2 )+f( 2 )]_fﬂf(t)dt
el ol R (fGxin) — FE)P T
v f (r (ypar - LIS ]
1,312 [ , el 1/2
7112 ) _ 2
Sm n L”f “2 - m ;(f(xm) f(xl)) l
B, () - f@)* ]
B - a)3/2 ,
" 43 Volf)-

Therefore, (48) is obtained. O

4. Application to probability density functions

Now, let X be a random variable taking values in the finite interval [a, b], with the probability density

function f : [a,b] — [0, 1] and with the cumulative distribution function

F(x) = Pr(X < x) = f ) F(tydt.

The following results hold:

Theorem 4.1. With the assumptions of Theorem 2.1, we have

1 b—EX)| [b-a 3a+bl||/ 1

2lF 4 Flas b)) - == < | T e S (b_a—y) (49)
and

1 b—EX)| [b-a 3a + bl

AlF@ + Fawb—0] = 5= 2 < |20 - = A(r—b ) (50)

forall x € [a, %b], where E(X) is the expectation of X.

Proof. By (5) and (6) on choosing f = F and taking into account

b b
E(X) = f tdF(t) = b — f F(t)dt,

we obtain (49) and (50). O
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Corollary 4.2. Under the assumptions of Theorem 4.1 with x = 32, we have

1 3a+b a+3b b—-EX)| b-a( 1

‘E[F( 4 )+F( 4 ) R =7 (b—a_y)
and

1 3a+b a+3b b—-EX)| b-a 1

‘E[P( 4 )+F( 4 )  b-a =77 (F_b—a)'

Theorem 4.3. With the assumptions of Theorem 2.8, we have

1 b—EX)|  (b-a)2[(b-a? 3a+ 0\
E[F(x)+F(a+b—x)]— - < - 18 +|x - 1 £l (51)
forall x € [a, %].
Proof. By (29) on choosing f = F and taking into account
b b
E(X) = f tdF(t) =b - f F(t)dt,
we obtain (51). O
Corollary 4.4. Under the assumptions of Theorem 4.3 with x = 32, we have
1(.(3a+b a+3b b-EX)| _ (b-a)?
- — < .
‘2 [F( 4 )+F( 4 )] b-a |~ avar "
Theorem 4.5. With the assumptions of Theorem 2.15, we have
1/2
1 b— E(X) |0 —ap 30+’
E[F(x)+F(a+b—x)]— - <(b—-a) TR G a(f), (52)

for all x € [a, B], where o(f) = |IfII2 — 7.

Proof. By (37) on choosing f = F and taking into account

b b
E(X) = f tdF(t) = b — f F(tdt,

we obtain (52). O

Corollary 4.6. Under the assumptions of Theorem 4.5 with x = %, we have

1[.(3a+0b a+3b b—EX)| (b—a)/?
() o5 - 55

43

a(f)-
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