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Abstract. Spiro hexagonal chains are a subclass of spiro compounds which are an important subclass of
Cycloalkynes in Organic Chemistry. This paper addresses general spiro hexagonal chains in which every
hexagon represents a benzene ring, and establishes the formulae for computing the Hosoya polynomials
of general spiro hexagonal chains.

1. Introduction

For a graph G = (V,E), let dG(u, v) be the distance between vertices u and v in G. Then Hosoya poly-
nomial (or Wiener polynomial) of G, which is introduced by Haruo Hosoya [6] in 1988, is defined as
H(G)=

∑
{u,v}⊆V(G)

xdG(u,v). Its chemical applications and elementary properties are studied in [4, 9]. The main

property of H(G), which makes it interesting in chemistry, follows directly from its definition: its first
derivative at x = 1 is equal to a well-known Wiener index W(G) of G [10], namely W(G) = dH(G)

dx |x=1.
Hosoya polynomial contains more information about distance in a graph than any of the hitherto proposed
distance-based topological indices; cf. [5]. Abundant literatures appeared on this topic for the theoret-
ical considerations and computations. The Hosoya polynomials of (catacondensed) benzenoid graphs,
hexagonal chains, polyphenyl chains, polygonal chains and two-dimensional (2D) hexagonal patterns were
determined in [5, 8, 12, 13, 15]. Also, the explicit analytical expressions for Hosoya polynomials of some
kinds of nanotubes, such as zigzag polyhex, armchair open-ended and TUC4C8(S) nanotubes, were derived
in [7, 11, 14].

In Organic Chemistry, spiro hexagonal chains are an significant subclass of spiro compounds. A spiro
hexagonal chain is a kind of graph consisting of n hexagons B1,B2, ...,Bn with the properties that (i) for any
1 ≤ i < j ≤ n, Bi and B j are linked by a spiro union (two hexagons have only one common vertex, this
linkage is called spiro union, the common vertex is designated as spiro vertex ) if and only if j = i+ 1, and (ii)
the spiro vertex should be the vertex with degree four in the spiro hexagonal chain (or six-membered ring
spiro chain [1, 16], or chain hexagonal cactus [3]).

Recently, for spiro hexagonal chains, the Wiener index, numbers of the matching and independence
sets, extremal Merrifield-Simmons and Hosoya indices and extremal energies were determined in [1–3, 16].
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Motivated by prior investigations, in this paper we compute the formulae for Hosoya polynomials of spiro
ortho-, meta- and para-hexagonal chains (to be defined more precisely later) respectively, and then we
establish the formulae for computing the Hosoya polynomials of general spiro hexagonal chains.

2. Main results

The number of hexagons in a spiro hexagonal chain is called its length. Denote by G(n) the set of all
spiro hexagonal chain of length n. Let Gn = B1B2 · · ·Bn ∈ G(n) where Bk is the k-th hexagon of Gn, and let ck
be the spiro vertex of Bk and Bk+1, k = 1, 2, · · · ,n − 1. Then the sequence (c1, c2, · · · , cn−1) of length n − 1 is
called the spiro vertex sequence of Gn. Gn is called spiro ortho-, meta- and para-hexagonal chain if d(ci, ci+1) = 1, 2
and 3, respectively, for all i = 1, 2, · · · ,n − 1. In what follows, we will denote by On, Mn and Pn the spiro
ortho-, meta- and para-hexagonal chain of length n (see Fig. 1), respectively.
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Fig. 1

Note that H(O1) = H(M1) = H(P1) = 6 + 6x + 6x2 + 3x3. In the following we give the formulae for
calculating the Hosoya polynomials of On, Mn and Pn (n > 2).

Theorem 2.1. If n > 2 then

H(On) = 6 + 6x + 6x2 + 3x3 +
(n − 1)(2x + 2x2 + x3)(3 − x + 2x2 + x3)

1 − x
− (2 + 2x + x2)2(1 − xn−1)x3

(1 − x)2 ,

H(Mn) = 6 + 6x + 6x2 + 3x3 +
(n − 1)(2x + 2x2 + x3)(3 + 2x − x2 + x3)

1 − x2 − (2 + 2x + x2)2(1 − x2(n−1))x4

(1 − x2)2 ,

H(Pn) = 6 + 6x + 6x2 + 3x3 +
(n − 1)(2x + 2x2 + x3)(3 + 2x + 2x2 − 2x3)

1 − x3 − (2 + 2x + x2)2(1 − x3(n−1))x5

(1 − x3)2 .

In order to prove the results of Theorem 2.1, we define a number of some useful terminologies and convenient notations.
A vertex v of Bk in Gn is called ortho-, meta- and para-vertex of Bk if the distance between v and ck−1 is 1, 2 and
3, denoted by ok−1, mk−1 and pk−1, respectively. Specially, we denote the ortho-vertex on−1 of Bn in On by cn (see Fig.
1). Analogously, we also denote the meta-vertex mn−1 and para-vertex pn−1 of Bn in Mn and Pn by cn (see Fig. 1)
respectively.

If u be a vertex of Gn, then we set H(Gn, u) :=
∑

v∈V(Gn) xdGn (u,v). Next we give the following important lemma.

Lemma 2.2. If n > 1 then

H(On, cn) =
(1 + x + 2x2 + x3) − (2 + 2x + x2)xn+1

1 − x
,

H(Mn, cn) =
(1 + 2x + x2 + x3) − (2 + 2x + x2)x2n+1

1 − x2 ,

H(Pn, cn) =
(1 + 2x + 2x2) − (2 + 2x + x2)x3n+1

1 − x3 .
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Proof. If n = 1, the assertions are clearly.
If n > 2, by inspection of the graph On, we have

H(On, cn) = H(On, on−1) =
∑

v∈V(On−1)

xd(v,on−1) +
∑

v∈V(Bn\on−1)

xd(v,on−1)

= xH(On−1, cn−1) + (1 + x + 2x2 + x3).

Analogously, we easily obtain

H(Mn, cn) = x2H(Mn−1, cn−1) + (1 + 2x + x2 + x3),

H(Pn, cn) = x3H(Pn−1, cn−1) + (1 + 2x + 2x2).

Using the above recurrence, we have

H(On, cn) = xn−1H(O1, c1) + (1 + x + · · · + xn−2)(1 + x + 2x2 + x3),

H(Mn, cn) = x2(n−1)H(M1, c1) + (1 + x2 + x4 + x6 + · · · + x2(n−2))(1 + 2x + x2 + x3),

H(Pn, cn) = x3(n−1)H(P1, c1) + (1 + x3 + x6 + · · · + x3(n−2))(1 + 2x + 2x2).

Note that H(O1, c1) = H(M1, c1) = H(P1, c1) = 1 + 2x + 2x2 + x3. Thus, substituting these identities in above
identities, we obtain the assertions. �

Proof of Theorem 2.1. By inspection of the graph On, we have

H(On) = H(On−1) +
∑

u∈V(On−1),v∈V(Bn)\cn−1

xd(u,v) +
∑

{u,v}⊆V(Bn)\cn−1

xd(u,v)

= H(On−1) +
∑

u∈V(On−1)

(2xd(u,cn−1)+1 + 2xd(u,cn−1)+2 + xd(u,cn−1)+3) +
∑

{u,v}⊆V(Bn)\cn−1

xd(u,v)

= H(On−1) +H(On−1, cn−1)(2x + 2x2 + x3) + (4x + 4x2 + 2x3).

Using the recurrence, we have

H(On) = H(O1) +
n∑

k=2

H(Ok−1, ck−1)(2x + 2x2 + x3) + (n − 1)(4x + 4x2 + 2x3).

By Lemma 2.2, we obtain H(Ok−1, ck−1) = (1+x+2x2+x3)−(2+2x+x2)xk

1−x . Substituting the identity in above identity
and doing some manipulations, we obtain the assertion of H(On). Analogously, we can obtain the assertions
of H(Mn) and H(Pn). �

In order to describe general spiro hexagonal chains we give some additional terminologies and notations.
An spiro ortho-segment of a spiro hexagonal chain is a subgraph that is a spiro ortho-hexagonal chain and is
maximal with respect to this property. The spiro meta-segment and spiro para-segment can be analogously
defined respectively. A segment is a terminal segment if it contains a terminal hexagon, and internal segment
otherwise. Suppose that S1, S2, . . . , Sm are all segments of a spiro hexagonal chain Gn = B1B2 · · ·Bn and
that Si and Si+1 is connected by spiro vertex c′i (1 6 i 6 m − 1). Clearly, c′i ∈ {c1, c2, . . . , cn−1}. Then we use
S1S2 · · ·Sm instead of Gn to denote such a spiro hexagonal chain (see Fig. 2).
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Fig. 2 A spiro hexagonal chain G11 = S1S2S3S4S5 consisting of the set of segments S1,S2,S3,S4,S5 with
lengths 2, 3, 2, 1, 3 respectively and the spiro vertex c′i (1 6 i 6 4).

If S1 · · · Si is a partial chain of Gn, then we let 1̂ = î + 1 = 0, and for 2 6 j 6 i set

ĵ :=


1, if S j is a spiro ortho-segment;
2, if S j is a spiro meta-segment;
3, if S j is a spiro para-segment.

Theorem 2.3. Let Gn = S1S2 · · ·Sm be a spiro hexagonal chain of length n. Then we have

H(Gn) =
m∑

r=3

r−1∑
k=2

x
∑r−1

i=k îli1(lk−1)1(lr) + 1(l1)1(l2) +
m∑

r=1

H(Sr) −
m∑

r=2

1(lr),

where li is the length of the segment Si (1 6 i 6 m),

1(li) :=



(1 + x + 2x2 + x3) − (2 + 2x + x2)xli+1

1 − x
, if Si is a spiro ortho-segment;

(1 + 2x + x2 + x3) − (2 + 2x + x2)x2li+1

1 − x2 , if Si is a spiro meta-segment;

(1 + 2x + 2x2) − (2 + 2x + x2)x3li+1

1 − x3 , if Si is a spiro para-segment.

Proof. By inspection of the graph Gn = S1S2 · · ·Sm, we have

H(Gn) = H(S1S2 · · ·Sm−1) +H(S1S2 · · · Sm−1, c′m−1)H(Sm, c′m−1) + (H(Sm) −H(Sm, c′m−1)).

Using the definition of 1̂ = î + 1 = 0 and ĵ (2 6 j 6 i) in the partial chain S1 · · ·Si of Gn = S1S2 · · · Sn, we
further have

H(Gn) = H(S1S2 · · ·Sm−1) + (x̂2l2+̂3l3+···+m̂−1lm−1 H(S1, c′1) + x̂3l3+̂4l4+···+m̂−1lm−1 H(S2, c′2)

+ · · · + xm̂−1lm−1 H(Sm−2, c′m−2))H(Sm, c′m−1) + (H(Sm) −H(Sm, c′m−1))

= H(S1S2 · · ·Sm−1) +
m−1∑
k=2

x
∑m−1

i=k îli H(Sk−1, c′k−1)H(Sm, c′m−1) + (H(Sm) −H(Sm, c′m−1)).

Note that c′k−1 is an ortho-, meta- and para-vertex on the terminal hexagon of Sk−1 if Sk−1 is a spiro ortho-,
meta- and para-segment respectively (2 6 k 6 m − 1), and that c′m−1 has similar properties on the terminal
hexagon of Sm. Therefore, combining the results of Lemma 2.2 with the definition of 1(li), we obtain

H(Gn) = H(S1S2 · · ·Sm−1) +
m−1∑
k=2

x
∑m−1

i=k îli1(lk−1)1(lm) + (H(Sm) − 1(lm)).
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Using the recurrence, we have

H(Gn) = H(S1S2) +
m∑

r=3

r−1∑
k=2

x
∑r−1

i=k îli1(lk−1)1(lr) +
m∑

r=3

(H(Sr) − 1(lr)).

Then we derive the assertion from H(S1S2) = H(S1) + 1(l1)1(l2) + (H(S2) − 1(l2)). �
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