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Abstract. In this paper, we will present some fixed point results for mappings which satisfy cyclic weaker
(ψ ◦ φ)-contractions and cyclic weaker (ψ,φ)-contractions in 0-complete partial metric spaces. Our results
generalize or improve many recent fixed point theorems in the literature. Examples are given to support
the usability of our results.

1. Introduction

The Banach Contraction Principle is a very popular tool in solving existence problems in many branches
of Mathematical Analysis and its applications. It is no surprise that there is a great number of generalizations
of this fundamental theorem. They go in several directions—modifying the basic contractive condition or
changing the ambiental space.

Concerning the first direction we mention so called weakly contractive conditions of Alber and Guerre-
Delabriere [4] and Rhoades [21], altering distance functions used by Khan et al. [15] and Boyd and Wong
[6], as well as Meir and Keeler [18] generalization of contractive condition.

Cyclic representations and cyclic contractions were introduced by Kirk et al. [16] and further used by
several authors to obtain various fixed point results (see, e.g., [8, 9, 13, 20]).

On the other hand, Matthews [17] introduced the notion of a partial metric space as a part of the study
of denotational semantics of dataflow networks. In partial metric spaces, self-distance of an arbitrary point
need not be equal to zero. Several authors obtained many useful fixed point results in these spaces—we
mention just [5, 7, 12, 19, 22, 23].

Some results for cyclic contractions in partial metric spaces were very recently obtained in [1, 3, 10].
In this paper, we will present some new fixed point results for mappings which satisfy cyclic weaker

(ψ ◦ φ)-contractions and cyclic weaker (ψ,φ)-contractions in 0-complete partial metric spaces. Our results
are extensions or refinements of recent fixed point theorems of Abbas et al. [1], Agarwal et al. [3], Di Bari
and Vetro [10], Ming [8] and some other papers. Examples are given to support the usability of the results
and to show that some of these extensions are proper.
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2. Preliminaries

In 2003, Kirk et al. introduced the following notion of cyclic representation.

Definition 2.1. [16] Let X be a nonempty set, m ∈ N and let f : X → X be a self-mapping. Then X =
∪m

i=1 Ai is a
cyclic representation of X with respect to f if

(a) Ai, i = 1, . . . ,m are non-empty subsets of X;
(b) f (A1) ⊂ A2, f (A2) ⊂ A3, . . . , f (Am−1) ⊂ Am, f (Am) ⊂ A1.

They proved the following fixed point result.

Theorem 2.2. [16] Let (X, d) be a complete metric space, f : X→ X and let X =
∪m

i=1 Ai be a cyclic representation
of X with respect to f . Suppose that f satisfies the following condition

d( f x, f y) ≤ ψ(d(x, y)), for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . ,m},

where Am+1 = A1 and ψ : [0, 1) → [0, 1) is a function, upper semi-continuous from the right and 0 ≤ ψ(t) < t for
t > 0. Then, f has a fixed point z ∈ ∩m

i=1 Ai.

In 2010, Păcurar and Rus introduced the following notion of cyclic weaker φ-contraction.

Definition 2.3. [20] Let (X, d) be a metric space, m ∈ N, A1,A2, . . . ,Am be closed nonempty subsets of X and
X =
∪m

i=1 Ai. An operator f : X→ X is called a cyclic weaker φ-contraction if
(1) X =

∪m
i=1 Ai is a cyclic representation of X with respect to f ;

(2) there exists a continuous, non-decreasing function φ : [0, 1)→ [0, 1) with φ(t) > 0 for t ∈ (0, 1) and φ(0) = 0
such that

d( f x, f y) ≤ d(x, y) − φ(d(x, y)),

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1.

They proved the following result.

Theorem 2.4. [20] Suppose that f is a cyclic weaker φ-contraction on a complete metric space (X, d). Then, f has a
fixed point z ∈ ∩m

i=1 Ai.

Recently, Ming [8] introduced two new versions of cyclic weaker contractions and proved fixed point
theorems in complete metric spaces.

The following definitions and details can be seen, e.g., in [5, 7, 12, 17, 19, 22, 23].

Definition 2.5. A partial metric on a nonempty set X is a function p : X × X→ R+ such that for all x, y, z ∈ X:

(p1) x = y⇐⇒ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

The pair (X, p) is called a partial metric space.
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It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y. But if x = y, p(x, y) may not be 0.
Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open p-balls

{Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.
A sequence {xn} in (X, p) converges to a point x ∈ X (in the sense of τp) if limn→∞ p(x, xn) = p(x, x). This

will be denoted as xn → x (n→∞) or limn→∞ xn = x. Clearly, a limit of a sequence in a partial metric space
need not be unique. Moreover, the function p(·, ·) need not be continuous in the sense that xn → x and
yn → y imply p(xn, yn)→ p(x, y).

If p is a partial metric on X, then the function ps : X × X→ R+ given by

ps(x, y) = 2p(x, y) − p(x, x) − p(y, y) (1)

is a metric on X. It is called the associated metric with the partial metric p.

Example 2.6. (1) A paradigmatic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+. The associated metric is

ps(x, y) = 2 max{x, y} − x − y = |x − y|.

(2) If (X, d) is a metric space and c ≥ 0 is arbitrary, then p(x, y) = d(x, y) + c defines a partial metric on X
and the corresponding metric is ps(x, y) = 2d(x, y).

Other examples of partial metric spaces which are interesting from the computational point of view may
be found in [11, 17].

Definition 2.7. Let (X, p) be a partial metric space. Then:

1. A sequence {xn} in (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists (and is finite). The space
(X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τp, to a point x ∈ X
such that p(x, x) = limn,m→∞ p(xn, xm).

2. [22] A sequence {xn} in (X, p) is called 0-Cauchy if limn,m→∞ p(xn, xm) = 0. The space (X, p) is said to be
0-complete if every 0-Cauchy sequence in X converges (in τp) to a point x ∈ X such that p(x, x) = 0.

Lemma 2.8. Let (X, p) be a partial metric space.
(a) [2, 14] If p(xn, z)→ p(z, z) = 0 as n→∞, then p(xn, y)→ p(z, y) as n→∞ for each y ∈ X.
(b) [22] If (X, p) is complete, then it is 0-complete.

The converse assertion of (b) does not hold as the following easy example shows.

Example 2.9. [22] The space X = [0,+∞)∩Qwith the partial metric p(x, y) = max{x, y} is 0-complete, but is
not complete. Moreover, the sequence {xn} with xn = 1 for each n ∈N is a Cauchy sequence in (X, p), but it
is not a 0-Cauchy sequence.

It is easy to see that every closed subset of a 0-complete partial metric space is 0-complete.

3. Fixed point theory for cyclic weaker (ψ ◦ φ)-contractions in partial metric spaces

We will prove some fixed point theorems for self-mappings defined on a 0-complete partial metric space
and satisfying certain cyclic weaker Meir-Keeler conditions. To achieve our goal, we recall the notion of a
Meir-Keeler function (see [18]).

A function ψ : [0,+∞)→ [0,+∞) is said to be a Meir-Keeler function if for each η > 0, there exists δ > 0
such that for t ∈ [0,+∞) with η ≤ t < η + δ, we have ψ(t) < η. We now introduce the notion of weaker
Meir-Keeler function as follows:

Definition 3.1. [8, 9] We call ψ : [0,+∞) → [0,+∞) a weaker Meir-Keeler function if for each η > 0, there exists
δ > 0 such that for t ∈ [0,+∞) with η ≤ t < η + δ, there exists n0 ∈N such that ψn0 (t) < η.
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As in [8], we assume in this section the following conditions for a weaker Meir-Keeler function ψ :
[0,+∞)→ [0,+∞):

(ψ1) ψ(t) > 0 for t > 0 and ψ(0) = 0;
(ψ2) for all t ∈ [0,∞), {ψn(t)}n∈N is decreasing;
(ψ3) for tn ∈ [0,∞), we have that

(a) if lim
n→∞

tn = γ > 0, then lim
n→∞

ψ(tn) < γ, and
(b) if lim

n→∞
tn = 0, then lim

n→∞
ψ(tn) = 0.

Also suppose that φ : [0,+∞)→ [0,+∞) is a non-decreasing and continuous function satisfying:

(φ1) φ(t) > 0 for t > 0 and φ(0) = 0;
(φ2) φ is subadditive, that is, for every µ1, µ2 ∈ [0,+∞), φ(µ1 + µ2) ≤ φ(µ1) + φ(µ2);
(φ3) for all t ∈ (0,∞), lim

n→∞
tn = 0 if and only if lim

n→∞
φ(tn) = 0.

Similarly as in [8] (in the case of a metric space), we need the notion of a cyclic weaker (ψ◦φ)-contraction
in a partial metric space.

Definition 3.2. Let (X, p) be a partial metric space, m ∈ N, A1,A2, . . . ,Am be nonempty subsets of X and X =∪m
i=1 Ai. An operator f : X→ X is called a cyclic weaker (ψ ◦ φ)-contraction if

(1) X =
∪m

i=1 Ai is a cyclic representation of X with respect to f ;
(2) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m

φ(p( f x, f y)) ≤ ψ(φ(p(x, y))), (2)

where Am+1 = A1.

The main result of this section is the following:

Theorem 3.3. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1, A2, . . . , Am be nonempty closed subsets
of (X, p) and Y =

∪m
i=1 Ai. Suppose that f : Y→ Y is a cyclic weaker (ψ ◦φ)-contraction. Then, f has a unique fixed

point z ∈ Y. Moreover, z ∈ ∩m
i=1 Ai.

Proof. Let x0 be an arbitrary point of Y. Then there exists some i0 such that x0 ∈ Ai0 . Now x1 = f x0 ∈ Ai0+1.
Similarly, xn := f xn−1 ∈ Ai0+n for n ∈ N, where Am+k = Ak. In the case xn0 = xn0+1 for some n0 = 0, 1, 2, . . ., it
is clear that xn0 is a fixed point of f . Now assume that xn , xn+1 for all n. Since f : Y→ Y is a cyclic weaker
(ψ ◦ φ)-contraction, we have that for all n ∈N

φ(p(xn, xn+1)) = φ(p( f xn−1, f xn)) ≤ ψ(φ(p(xn−1, xn))),

and so

φ(p(xn, xn+1)) ≤ ψ(φ(p(xn−1, xn)))
≤ ψ(ψ(φ(p(xn−2, xn−1))))

= ψ2(φ(p(xn−2, xn−1))
≤
...

≤ ψn(φ(p(x0, x1))).

Since {ψn(φ(p(x0, x1)))}n∈N is decreasing, it must converge to some η ≥ 0. We claim that η = 0. Assume, to
the contrary, that η > 0. Then by the definition of weaker Meir-Keeler function ψ, there exists δ > 0 such
that for x0, x1 ∈ Y with η ≤ φ(p(x0, x1)) < δ + η, there exists n0 ∈ N such that ψn0 (φ(p(x0, x1))) < η. Since
limn→∞ ψn(φ(p(x0, x1))) = η, there exists r0 ∈N such that η , ψr(φ(p(x0, x1))) < δ + η, for all r ≥ r0. Thus, we
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conclude that ψr0+n0 (φ(p(x0, x1))) < η. So we get a contradiction. Therefore limn→∞ ψn(φ(p(x0, x1))) = 0, and
hence also

lim
n→∞

ψn(φ(p(xn, xn+1))) = 0.

Next, we claim that {xn} is a Cauchy sequence. We first prove the following
Claim: for each ϵ > 0, there is n0(ϵ) ∈N such that for all r, q ≥ n0(ϵ),

φ(p(xr, xq)) < ϵ (3)

holds.
We shall prove (3) by contradiction. Suppose that (3) is false. Then there exists some ϵ > 0 such that for

all n ∈N, there are rn, qn ∈N with rn > qn ≥ n satisfying:
(i) φ(p(xrn , xqn )) ≥ ϵ, and
(ii) rn is the smallest number greater than qn such that condition (i) holds.
Since by (p4)

ϵ ≤ φ(p(xrn , xqn ))
≤ φ(p(xrn , xrn−1) + p(xrn−1, xqn ) − p(xrn−1, xrn−1))
≤ φ(p(xrn , xrn−1) + p(xrn−1, xqn ))
≤ φ(p(xrn , xrn−1)) + φ(p(xrn−1, xqn ))
≤ φ(p(xrn , xrn−1)) + ϵ,

we conclude that lim
p→∞

φ(p(xrn , xqn )) = ϵ. Since φ is subadditive and nondecreasing, we conclude by (p4)

φ(p(xrn , xqn )) ≤ φ(p(xrn , xrn+1) + p(xrn+1, xqn ) − p(xrn+1, xrn+1))
≤ φ(p(xrn , xrn+1) + p(xrn+1, xqn ))
≤ φ(p(xrn , xrn+1)) + φ(p(xrn+1, xqn )),

and so again by (p4)

φ(p(xrn , xqn )) − φ(p(xrn , xrn+1)) ≤ φ(p(xrn+1, xqn ))
≤ φ(p(xrn , xrn+1) + p(xrn , xqn ) − p(xrn , xrn ))
≤ φ(p(xrn , xrn+1) + p(xrn , xqn ))
≤ φ(p(xrn , xrn+1)) + φ(p(xrn , xqn )).

Passing to the limit as n→∞, we also have limn→∞ φ(p(xrn+1, xqn )) = ϵ. Thus, there exists i, 0 ≤ i ≤ m − 1
such that rn − qn + i = 1 (mod m) for infinitely many n. If i = 0, then we have that for such n,

ϵ ≤ φ(p(xrn , xqn ))
≤ φ(p(xrn , xrn+1) + p(xrn+1, xqn+1) + p(xqn+1, xqn ) − p(xrn+1, xrn+1) − p(xrn+1, xqn+1))
≤ φ(p(xrn , xrn+1) + p(xrn+1, xqn+1) + p(xqn+1, xqn ))
≤ φ(p(xrn , xrn+1)) + φ(p(xrn+1, xqn+1)) + φ(p(xqn+1, xqn ))
= φ(p(xrn , xrn+1)) + φ(p( f xrn , f xqn )) + φ(p(xqn+1, xqn ))
≤ φ(p(xrn , xrn+1)) + ψ(φ(p(xrn , xqn ))) + φ(p(xqn+1, xqn )).

Passing to the limit as n→∞, we have

ϵ ≤ 0 + lim
n→∞

ψ(φ(p(xrn , xqn ))) + 0 < ϵ,
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a contradiction. Therefore limn→∞ φ(p(xrn , xqn )) = 0. By the condition (φ3), we also have limn→∞ p(xrn , xqn ) =
0. The case i , 0 is similar. Thus, {xn} is a 0-Cauchy sequence in (Y, p).

Since Y is closed in (X, p), then (Y, p) is also 0-complete and there exists z ∈ Y =
∪m

i=1 Ai such that
limn→∞ xn = z in (Y, p); equivalently

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0. (4)

Notice that the iterative sequence {xn} has an infinite number of terms in Ai for each i = 1, . . . ,m. Hence,
in each Ai, i = 1, . . . ,m, we can construct a subsequence of {xn} that converges to z. Using that each Ai,
i = 1, . . . ,m, is closed, we conclude that z ∈ ∩m

i=1 Ai and thus
∩m

i=1 Ai , ∅.
Since

φ(p(z, f z)) = lim
n→∞

φ(p( f xmn , f z))

≤ lim
n→∞

ψ(φ(p( f xmn−1, z))) = 0,

we have that φ(p(z, f z)) = 0, that is, p(z, f z) = 0, and z is a fixed point of f .
Finally, to prove the uniqueness of the fixed point, let u be another fixed point of f . By the cyclic

character of f , we have u, z ∈ ∩m
i=1 Ai. Since f is a cyclic weaker (ψ ◦ φ)-contraction, we have

φ(p(z,u)) = φ(p(z, f u)) = lim
n→∞

φ(p( f xmn , f u))

≤ lim
n→∞

ψ(φ(p( f xmn−1,u)))

< φ(p(z,u)),

and this is a contradiction unless φ(p(z, u)) = 0, that is, z = u. Thus z is a unique fixed point of f .

We illustrate Theorem 3.3 by an example which is obtained by modifying the one from [1].

Example 3.4. Let X = [0, 1] and a partial metric p : X × X→ R+ be given by

p(x, y) =

|x − y|, if x, y ∈ [0, 1),
1, if x = 1 or y = 1.

If a mapping f : X→ X is given by

f x =

1/2, if x ∈ [0, 1),
0, if x = 1,

and A1 = [0, 1
2 ], A2 = [ 1

2 , 1], then A1 ∪ A2 = X is a cyclic representation of X with respect to f . Moreover,
mapping f is a cyclic weaker (ψ ◦ φ)-contraction, where φ(t) = t and ψ(t) = 3

4 t. Indeed, consider the
following cases:

1◦ x ∈ [0, 1
2 ], y ∈ [ 1

2 , 1) or y ∈ [0, 1
2 ], x ∈ [ 1

2 , 1). Then p( f x, f y) = p( 1
2 ,

1
2 ) = 0 and relation (2) is trivially

satisfied.
2◦ x ∈ [0, 1

2 ], y = 1 or y ∈ [0, 1
2 ], x = 1. Then p( f x, f y) = p( 1

2 , 0) = 1
2 and p(x, y) = 1. Relation (2) holds as it

reduces to 1
2 <

3
4 .

We conclude that f has a unique fixed point (which is z = 1
2 ).

Note that, if instead of the given partial metric p its associated metric

ps(x, y) =


2|x − y|, if x, y ∈ [0, 1),
1, if x ∈ [0, 1), y = 1 or x = 1, y ∈ [0, 1),
0, if x = y = 1,



H.K. Nashine, Z. Kadelburg / Filomat 28:1 (2014), 73–83 79

is used, then for x = 1
2 and y = 1 the respective condition (i.e., condition (ii) of Definition 4 from [8]) is not

satisfied since it reduces to

φ
(
ps
(1

2
, 0
))
= 1 <

3
4
= ψ
(
φ
(
ps
(1

2
, 1
)))
.

Similar conclusion is obtained if the standard Euclidean metric is used.
Hence, this example shows that Theorem 3.3 is a proper extension of [8, Theorem 3].

4. Fixed point theory for cyclic weaker (ψ,φ)-contractions in partial metric spaces

In this section we derive a generalized version of results from [8], [10] and [20].
We assume ψ : [0,+∞) → [0,+∞) to be a weaker Meir-Keeler function satisfying conditions (ψ1), (ψ2)

and (ψ3) from Section 3. Also consider φ : [0,+∞) → [0,+∞) to be a non-decreasing and continuous
function satisfying (φ1) ((φ2) and (φ3) are not needed). To complete the results, we need the following
notion of a cyclic weaker (ψ,φ)-contraction, which is the counterpart of the respective notion from [8]:

Definition 4.1. Let (X, p) be a partial metric space, m ∈ N, and let A1,A2, . . . ,Am be nonempty subsets of X such
that X =

∪m
i=1 Ai. An operator f : X→ X is called a cyclic weaker (ψ,φ)-contraction if

(1) X =
∪m

i=1 Ai is a cyclic representation of X with respect to f ;
(2) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m

p( f x, f y) ≤ ψ(p(x, y)) − φ(p(x, y)), (5)

where Am+1 = A1.

Theorem 4.2. Let (X, p) be a 0-complete partial metric space, m ∈N, let A1, A2, . . . , Am be nonempty closed subsets
of (X, p) and Y =

∪m
i=1 Ai. Suppose that f : Y→ Y is a cyclic weaker (ψ,φ)-contraction. Then, f has a unique fixed

point z ∈ Y. Moreover, z ∈ ∩m
i=1 Ai.

Proof. Let x0 be an arbitrary point of Y. Then there exists some i0 such that x0 ∈ Ai0 . Now x1 = f x0 ∈ Ai0+1.
Similarly, xn := f xn−1 ∈ Ai0+n for n ∈ N, where Am+k = Ak. In the case xn0 = xn0+1 for some n0 = 0, 1, 2, . . ., it
is clear that xn0 is a fixed point of f . Now assume that xn , xn+1 for all n. Since f : Y→ Y is a cyclic weaker
(ψ,φ)-contraction, we have that for all n ∈N

p(xn, xn+1) = p( f xn−1, f xn)
≤ ψ(p(xn−1, xn)) − φ(p(xn−1, xn))
≤ ψ(p(xn−1, xn))

and so

p(xn, xn+1) ≤ ψ(p(xn−1, xn))
≤ ψ(ψ(p(xn−2, xn−1)))

= ψ2(p(xn−2, xn−1)
...

≤ ψn(p(x0, x1)).

Since {ψn(p(x0, x1))}n∈N is decreasing, it must converge to some η ≥ 0. We claim that η = 0. On the contrary,
assume that η > 0. Then by the definition of weaker Meir-Keeler function ψ, there exists δ > 0 such
that for x0, x1 ∈ Y with η ≤ φ(p(x0, x1)) < δ + η, there exists n0 ∈ N such that ψn0 (p(x0, x1)) < η. Since
limn→∞ ψn(φ(p(x0, x1))) = η, there exists r0 ∈ N such that η , ψr(p(x0, x1)) < δ + η, for all r ≥ r0. Thus, we
conclude that ψr0+n0 (p(x0, x1)) < η. So we get a contradiction. Therefore limn→∞ ψn(p(x0, x1)) = 0, that is,

lim
n→∞

p(xn, xn+1) = 0.
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Next, we claim that {xn} is a Cauchy sequence. We first prove the following:
Claim: For each ϵ > 0, there is n ∈N such that for all r, q ≥ n with r − q = 1 (mod m),

p(xp, xq) < ϵ, (6)

holds.
We shall prove the claim by contradiction. Suppose that (6) is false. Then there exists some ϵ > 0 such

that for all n ∈N, there are rn, qn ∈Nwith rn > qn ≥ n with rn − qn = 1 (mod m), satisfying:

p(xrn , xqn ) ≥ ϵ.

Now, we let n > 2m. Then corresponding to qn ≥ n, we can choose rn in such a way, that it is the smallest
integer with rn > qn ≥ n satisfying rn − qn = 1 (mod m) and p(xqn , xrn ) ≥ ϵ. Then, from p(xqn , xrn−m) ≤ ϵ and
(p4), we have

ϵ ≤ p(xqn , xrn )

≤ p(xqn , xrn−m ) +
m∑

i=1

p(xrn−i , xrn−i+1 ) −
m∑

i=1

p(xrn−i , xrn−i )

≤ p(xqn , xrn−m ) +
m∑

i=1

p(xrn−i , xrn−i+1 )

< ϵ +
m∑

i=1

p(xrn−i , xrn−i+1 ).

Passing to the limit as n→∞, we obtain that

lim
n→∞

p(xqn , xrn ) = ϵ.

On the other hand, we can conclude that

ϵ ≤ p(xqn , xrn )
≤ p(xqn , xqn+1 ) + p(xqn+1 , xrn+1 ) + p(xrn+1 , xrn ) − [p(xqn+1 , xqn+1 ) + p(xrn+1 , xrn+1 )]
≤ p(xqn , xqn+1 ) + p(xqn+1 , xqn ) + p(xqn , xrn ) + p(xrn , xrn+1 ) + p(xrn+1 , xrn )
− [p(xqn+1 , xqn+1 ) + p(xqn , xqn ) + p(xrn , xrn ) + p(xrn+1 , xrn+1 )]

≤ p(xqn , xqn+1 ) + p(xqn+1 , xqn ) + p(xqn , xrn ) + p(xrn , xrn+1 ) + p(xrn+1 , xrn ).

Passing to the limit as n→∞, we obtain that

lim
n→∞

p(xqn+1 , xrn+1 ) = ϵ.

Since xqn and xrn lie in different adjacently labelled sets Ai and Ai+1 for certain 1 ≤ i ≤ m, by using the fact
that f is a cyclic weaker (ψ,φ)-contraction, we have

p(xqn+1 , xrn+1 ) = p( f xqn , f xrn ) ≤ ψ(p(xqn , xrn )) − φ(p(xqn , xrn )).

Passing to the limit as n→∞, by using the condition (ψ3) of function ψ, we obtain that

ϵ ≤ ϵ − φ(ϵ),

and consequently, φ(ϵ) = 0. By the definition of the function φ, we get ϵ = 0 which is a contradiction.
Therefore, our claim is proved.
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Next, we shall show that {xn} is a Cauchy sequence. Let ϵ > 0 be given. By our claim, there exists n1 ∈N
such that if r, q ≥ n1 with r − q = 1 (mod m), then

p(xr, xq) ≤ ϵ
2
.

Since limn→∞ p(xn, xn+1) = 0, there exists n2 ∈N such that

d(xn, xn+1) ≤ ϵ
2m

,

for any n ≥ n2.
Let p, q ≥ max{n1, n2} and p > q. Then there exists k ∈ {1, 2, . . . ,m} such that p−q = k (mod m). Therefore,

p − q + j = 1 (mod m) for j = m − k + 1, and so we have

p(xq, xr) ≤ p(xq, xr+ j) + p(xr+ j, xr+ j−1) + · · · + p(xr+1, xr) − [p(xr+ j, xr+ j) + · · · + p(xr+1, xr+1)]

≤ ϵ
2
+ j · ϵ

2m
≤ ϵ

2
+m · ϵ

2m
= ϵ.

Thus, {xn} is a 0-Cauchy sequence in (Y, p). Since Y is closed in (X, p), then (Y, p) is also 0-complete. Thus,
there exists z ∈ Y such that

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0. (7)

Notice that the iterative sequence {xn} has an infinite number of terms in Ai for each i = 1, . . . ,m. Hence, in
each Ai, i = 1, . . . ,m, we can construct a subsequence of {xn} that converges to z. Regarding that each Ai,
i = 1, . . . ,m, is closed, we conclude that z ∈ ∩m

i=1 Ai and thus
∩m

i=1 Ai , ∅.
Now for all i = 1, 2, . . . ,m, we may take a subsequence {xnk } of {xn} with xnk ∈ Ai−1 and they also all

converge to z. Since

p(xnk+1 , f z) = p( f xnk , f z)
≤ ψ(p(xnk , z)) − φ(p(xnk , z))
≤ ψ(p(xnk , z)),

passing to the limit as k→∞, we have p(z, f z) ≤ 0, and so z = f z.
Finally, to prove the uniqueness of the fixed point, let u be the another fixed point of f . By the cyclic

character of f , we have u, z ∈ ∩m
i=1 Ai. Since f is a cyclic weaker (ψ,φ)-contraction, we have

p(z,u) = p(z, f u)
= lim

n→∞
p(xnk+1 , f u)

= lim
n→∞

p( f xnk , f u)

≤ lim
n→∞

[ψ(p(xnk ,u)) − φ(p(xnk ,u))]

≤ p(z,u) − φ(p(z,u)),

and we can conclude that φ(p(z,u)) = 0. So we have u = z. This completes the proof.

We illustrate the use of Theorem 4.2 by the following

Example 4.3. Let X = [0, 2] = [0, 1] ∪ [1, 2] = A1 ∪ A2 be equipped by the usual partial metric p(x, y) =
max{x, y}. Let f : X → X be given by f x = 2 − x. Then A1 ∪ A2 = X is a cyclic representation of X with
respect to f . If ψ(t) = 4t and φ(t) = 2t, we will prove that f is a cyclic weaker (ψ,φ)-contraction. Indeed let,
e.g., x ∈ [0, 1] and y ∈ [1, 2], Then

p( f x, f y) = max{2 − x, 2 − y} = 2 − x ≤ 2 ≤ 2y = 4y − 2y = ψ(p(x, y)) − φ(p(x, y)),

and condition (5) is fulfilled. All other conditions of Theorem 4.2 are also satisfied and f has a unique fixed
point (z = 1).
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The following example, which is similar to Example 3.4, shows that again the obtained results are
stronger than those from [8].

Example 4.4. Let X = [0, 1] and a partial metric p : X × X→ R+ be given by

p(x, y) =

|x − y|, if x, y ∈ [0, 1),
1, if x = 1 or y = 1.

If a mapping f : X→ X is given by

f x =

1/8, if x ∈ [0, 1),
0, if x = 1,

and A1 = [0, 1
8 ], A2 = [ 1

8 , 1], then A1 ∪ A2 = X is a cyclic representation of X with respect to f . Moreover,
mapping f is a cyclic weaker (ψ,φ)-contraction, where

ψ(t) =
t2

1 + t
and φ(t) =

t2

2 + t
.

Indeed, consider the following cases:
1◦ x ∈ [0, 1

8 ], y ∈ [ 1
8 , 1) or y ∈ [0, 1

8 ], x ∈ [ 1
8 , 1). Then p( f x, f y) = p( 1

8 ,
1
8 ) = 0 and relation (5) is trivially

satisfied.
2◦ x ∈ [0, 1

8 ], y = 1 or y ∈ [0, 1
8 ], x = 1. Then p( f x, f y) = p( 1

8 , 0) = 1
8 and p(x, y) = 1. Relation (5) holds as it

reduces to 1
8 <

1
6 =

1
2 − 1

3 .
We conclude that f has a unique fixed point (which is z = 1

8 ).
Note again that, if instead of the given partial metric p its associated metric ps is used, then for x = 1

2 and
y = 1 the respective condition (i.e., condition (ii) of Definition 5 from [8]) is not satisfied since it reduces to

φ
(
ps
(1

8
, 0
))
=

1
4
<

1
6
=

1
2
− 1

3
= ψ
(
ps
(1

2
, 1
))
− φ
(
ps
(1

2
, 1
))
.

Similar conclusion is obtained if the standard Euclidean metric is used.
Hence, this example shows that Theorem 4.2 is a proper extension of [8, Theorem 4].

Remark 4.5. The results of this paper are obtained under the assumption that the given partial metric space is
0-complete. Taking into account Lemma 2.8 and Example 2.9, it follows that they also hold if the space is complete,
but that our assumption is weaker.
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