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Abstract. In this paper we prove that each subspace of an Alexandroff T0-space is semi-T 1
2
. In particular,

any subspace of the folder Xn, where n is a positive integer and X is either the Khalimsky line (Z, τK),
the Marcus-Wyse plane (Z2, τMW) or any partially ordered set with the upper topology is semi-T 1

2
. Then

we study the basic properties of spaces possessing the axiom semi-T 1
2

such as finite productiveness and
monotonicity.

1. Introduction

Recall ([15]) that a set A of a topological space X is called semi-open if there is an open set O such that
O ⊂ A ⊂ Cl(O). The semi-closed sets are defined as the complements to the semi-open sets. The separation
axioms semi-Ti, where i = 0, 1

2 etc (see [18], [3]), are obtained from the definitions of the usual separation
axioms Ti by the replacing of open sets by semi-open ones. For example, a space X satisfies the separation
axiom T 1

2
([8]) if for each point p of X the set {p} is either open or closed, i.e. for each point p of X at least

one of the sets {p}, X \ {p} is open. Hence, a space X satisfies the separation axiom semi-T 1
2

if for each point
p of X at least one of the sets {p}, X \ {p} is semi-open, i.e. for each point p of X the set {p} is either semi-open
or semi-closed ([5]). Note that the original definition of the T 1

2
separation axiom was given in [16] via the

condition: every set is λ-closed, and the original definition of the semi-T 1
2

separation axiom was given in [3]
via the condition: every semi-generalized closed set is semi-closed. As a rule (cf. [5]) the axiom Ti implies
the axiom semi-Ti but the converse does not hold. Moreover, if i < j then the axiom semi-T j implies the
axiom semi-Ti and the converse is not valid.

Recall ([12]) that a topological space X is called Alexandroff if for each point x ∈ X there is the minimal
open set V(x) containing x (hereafter, we will use this notation). In particular, every locally finite space
(where each point has an open nbd which is finite) is Alexandroff. It is easy to see that for each point
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y ∈ V(x) we have V(y) ⊂ V(x). This implies that if X is a T0-space and x, y ∈ X then V(x) = V(y) iff x = y.
Alexandroff spaces appear by a natural way in studies of topological models of digital images. They are
quotient spaces of the Euclidean spaces Rn defined by special decompositions (see [17]). Some studies of
Alexandroff spaces from the general topology point of view can be found for example in [1].

In digital topology simple examples of locally finite T 1
2
-spaces (not T1) are the Khalimsky line (Z, τK)

([13]) and the Marcus-Wyse plane (Z2, τMW) ([22], see for the definitions the part 4 of the paper). It is
clear that the products X × Y, where X,Y are either (Z, τK) or (Z2, τMW), are not T 1

2
(even not T 1

4
, see [2]

for the definition). But they are evidently T0-spaces as well as their subspaces. Since the products X × Y
are also semi-regular (i.e. points and closed sets can be separated by semi-open sets [19]), as well as the
spaces (Z, τK) and (Z2, τMW), the products X × Y are semi-T2 ([19]). However, each of the spaces (Z, τK)
and (Z2, τMW) (and so the product X×Y as well) contains subsets homeomorphic to the space (D, τ), where
D = {0, 1} and τ = {∅,D, {1}}, which is evidently not semi-T1. It is natural to ask if there is a “semi” separation
axiom (different from semi-T0 of course) such that each subspace of the spaces (Z, τK), (Z2, τMW) and X ×Y
satisfies the separation axiom.

In this paper we prove that each Alexandroff T0-space is semi-T 1
2
. Since Alexandroffness is monotone

with respect to any subspace and it is also finitely productive, we get that any subspace of the product
X1 × X2, where X1,X2 are Alexandroff T0-spaces, is semi-T 1

2
. Note (see the examples in the part 2 of the

paper) that in general the axioms T0 and semi-T 1
2

are independent, and there is even a space of cardinality
3 such that it is semi-T 1

2
but not T0 [11]. Then we study the basic properties of spaces possessing the axiom

semi-T 1
2

such as finite productiveness and monotonicity.
One can refer for the topological notions and notations to [20].

2. The axiom semi-T 1
2

and Alexandroff spaces.

Theorem 2.1. Let X be an Alexandroff T0-space. Then X is semi-T 1
2
.

Proof. First, let us observe that a singleton S in a space is semi-open iff the set S is open in the space.
Assume that X is not semi-T 1

2
. So there is a point x of X such that the set {x} is neither open nor semi-

closed. Since the set {x} is not open, |V(x)| > 1. Put U(x) = ∪{V(z) : x < V(z), z ∈ X}. Since the space
X is T0, for each y ∈ V(x) \ {x} we have V(y) ⊂ V(x) and x < V(y). Hence, U(x) ⊃ V(x) \ {x}. Moreover,
x ∈ Cl(V(x) \ {x}) ⊂ Cl(U(x)). Note that Cl(U(x)) = X. In fact, if V = X \Cl(U(x)) , ∅, then there is p ∈ V such
that V(p) ⊂ V. Note that x < V(p). Hence, V(p) ⊂ U(x). We have a contradiction with the definition of U(x)
and V. Let us note that the set X \ {x} is semi-open. So the set {x} is semi-closed. �

Let us observe (cf. [1]) that

(a) if a space X is Alexandroff and Y ⊂ X, then the subspace Y of X is also Alexandroff and for each point
y ∈ Y the set V(y) ∩ Y is the minimal open neighborhood of y in Y;

(b) if spaces X and Y are Alexandroff, then the topological product X×Y is also Alexandroff and for each
point (x, y) ∈ X × Y the set V(x) × V(y) is the minimal neighborhood of (x, y) in X × Y.

The following statement is now evident.

Corollary 2.2. (a) Let X be an Alexandroff T0-space and Y ⊂ X. Then Y is a semi-T 1
2

space.
(b) Let X1,X2 be Alexandroff T0-spaces and Z ⊂ X1 × X2. Then Z is semi-T 1

2
. �

Remark 2.3. Recall that a space X is locally finite if for each point p of X there is an open set Op containing p such
that |Op| < ∞. As a rule, spaces considered in digital topology are locally finite. Let us note that there is some interest
for an axiomatization of locally finite spaces considered in the digital topology (cf. [14] and [11]). Since each locally
finite space is Alexandroff, the statements of Theorem 2.1 and Corollary 2.2 are also valid for locally finite spaces.
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Remark 2.4. Recall ([7]) that the infinite product
∏
α∈A Xα of Alexandroff spaces Xα, α ∈ A, endowed with the box

topology is also an Alexandroff space. Hence the statement of Corollary 2.2 (b) can be extended to infinite box products
of Alexandroff T0- spaces.

Example 2.5. Let X1 be the set of all real numbers R and τ1 be the topology on X defined by the base B1 = {[x,∞) :
x ∈ R}. It is easy to see that (X1, τ1) is a connected Alexandroff T0-space which is not locally finite.

Example 2.6. Let (X2, τ2) be the space (D, τ) from the introduction, i.e. X2 = {0, 1} and τ2 = {∅,X2, {1}}. Note that
the space (X2, τ2) is T 1

2
(hence T0) and locally finite but it is not semi-T1. Thus Theorem 2.1 (even its analogue for the

locally finite spaces) cannot be strengthened to the axiom semi-T1.

Example 2.7. Let X3 = {0, 1, 2} and τ3 = {∅,X3, {2}}. Note that the space (X3, τ3) is semi-T 1
2

(the sets {0}, {1} are
semi-closed and the set {2} is open) and locally finite but it is not T0 (the axiom fails for the pair 0, 1). Thus the axiom
semi-T 1

2
does not imply the axiom T0 in the realm of locally finite spaces (and in the realm of Alexandroff spaces as

well). Thus the axioms T0 and semi-T 1
2

are not equivalent in the realm of locally finite spaces (and in the realm of
Alexandroff spaces as well).

Example 2.8. Let X4 be the set of all real numbers and τ4 = {∅,X4, (a,∞) : a ∈ R}. It is evident that (X4, τ4) is a
T0-space. Moreover, each singleton of (X4, τ4) is semi-closed. So the space (X4, τ4) is semi-T1 (hence semi-T 1

2
) but it

is not semi-T2 (there are no two disjoint non-empty open sets in the space). Consider the subspaces Y1 = (−∞, 1] and

Y2 = {1} ∪
∞∪

i=1

{
i−1

i

}
of the space (X4, τ4). Let us note that Y1 and Y2 are T0-spaces but they are not semi-T 1

2
. In fact,

the singleton {1} in both spaces is neither open nor semi-closed. Moreover, the point 1 in the space Y1 is the only point
which does not have the minimal open neighborhood. Hence, the condition of Alexandroffness cannot be omitted in
Theorem 2.1. Let us note that the first example of a T0-space which is not semi-T 1

2
was suggested in [6].

Example 2.9. Let X5 = {0, 1, 2} and τ5 = {∅,X5, {1, 2}, {2}}. Note that the space (X5, τ5) is a subspace of the space
(X4, τ4) (the space (X5, τ5) is T0 and locally finite) but it is not T 1

2
(the set {1} is neither open nor closed). Thus

Theorem 2.1 (even its analogue for the locally finite spaces) cannot be strengthened to the axiom T 1
2
. Let us recall

([11]) that for the spaces of cardinality 2 the axioms T0, semi-T 1
2

and T 1
2

coincide. For other examples of T0 and locally
finite spaces which are not T 1

2
see the part 4 of the paper. Let us also note that the space (X5, τ5) is not even T 1

4
.

Example 2.10. Let X6 = {0, 1} and τ6 = {∅,X6}. Observe that the space (X6, τ6) is neither T0 nor semi-T 1
2

but it is
finite and hence it is Alexandroff. So the condition ”to be T0” in Theorem 2.1 cannot be omitted.

3. Basic properties of semi-T 1
2

spaces.

Let us recall (cf. [4]) that a singleton {p} of a space X is semi-closed iff it is nowhere dense (1) or regular
open (2). To say differently, there is an open set U such that Cl(U) = X and p < U for (1) or {p} = X \ Cl(U)
for (2). Thus a space X is semi-T 1

2
iff each singleton of X is either open or nowhere dense (cf. [5]).

Recall ([18]) that the product of two semi-Ti, i = 0, 1, 2, spaces is also a semi-Ti space. Each open subset
of a semi-Ti, i = 0, 1, 2, space is also a semi-Ti space. But in general one cannot omit the openness in the last
statement. Here we will show the same for the semi-T 1

2
spaces.

Proposition 3.1. If X is a semi-T 1
2

space and Y is an open subset of X then the subspace Y of X is semi-T 1
2
.

Proof. Let p ∈ Y. If the set {p} is open in X then it is open in Y. If the set {p} is nowhere dense in X then
it is nowhere dense in Y. Hence, the subspace Y of the space X is semi-T 1

2
. �

Remark 3.2. Note that in general a closed subset of a semi-T 1
2

space is not semi-T 1
2
. In fact, consider the space

(X4, τ4) from Example 2.8 and its subspace Y1. However, one can easily extend Proposition 3.1 to preopen sets ([23])
(recall that a set S is a preopen set if S ⊂ Int(Cl(S)).
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Proposition 3.3. Let X1,X2 be spaces and x2 ∈ X2. Assume that the singleton {x2} is nowhere dense in X2. Then
for each subset Y of X1 we have that the set Y × {x2} is semi-closed in the space X1 × X2.

Proof. Let U2 be an open set of X2 such that Cl(U2) = X2 and x2 < U2. Note that the set U = X1 × U2 is
open in X = X1 × X2 and Cl(U) = X. Since Y × {x2} ⊂ X \U we have that the set Y × {x2} is semi-closed. �

Corollary 3.4. Let X1,X2 be semi-T 1
2

spaces. Then the space X1 × X2 is also semi-T 1
2
.

Proof. Let xi ∈ Xi, i = 1, 2. If the singletons {xi}, i = 1, 2, are open then the singleton {(x1, x2)} is also open.
If one of the sets {xi}, i = 1, 2, is nowhere dense then by Proposition 3.3 we have that the singleton {(x1, x2)}
is semi-closed. Hence, the space X1 × X2 is semi-T 1

2
. �

Remark 3.5. The statement of Corollary 3.4 can be easily extended to infinite box products.

4. The axiom semi-T 1
2

and digital topology.

Let us recall some basic examples of digital topology.
The Khalimsky line ([13]) is the topological space (Z, τK), where Z is the set of all integers and τK is

the topology on Z generated by the base BK = {{2k + 1}, {2k − 1, 2k, 2k + 1} : k ∈ Z}. One of the interesting
properties of the space is the connectedness of (Z, τK). The folders (Z, τK)n, where n ≥ 1, of the Khalimsky
line are called the Khalimsky nD space.

The Marcus-Wyse plane ([22]) is the topological space (Z2, τMW), where τMW is the topology on Z2

generated by the base BMW = {Up : p ∈ Z2}, where for each point p = (x, y) ∈ Z2 the set Up is defined as
follows:

Up =

N4(p) ∪ {p}, if x + y is even
{p}, if x + y is odd

, where N4(p) = {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}.

Here we will discuss the axiomatic properties of the digital topological spaces (Z, τK), (Z2, τMW) and
their products.

It is easy to see that the spaces (Z, τK), (Z2, τMW) are locally finite and T 1
2
. Hence, they are Alexandroff,

T0 and semi-T 1
2
.

Recall that the s-regularity is finitely productive ([21]), and each T0 and s-regular space is semi-T2 ([19]).
This implies the following statement.

Proposition 4.1. Let X1,X2 be T0 and s-regular spaces. Then the product X = X1 × X2 is the same. Moreover, X is
semi-T2.

It is easy to see that the spaces (Z, τK), (Z2, τMW) are also semi-regular. Hence, by Proposition 4.1, we
obtain that any folder F = Xn, where n ≥ 2 and X is (Z, τK) or (Z2, τMW), is an s-regular T0-space. In
particular, F is also semi-T2. Let us note that the fact that the folders (Z, τK)n,n ≥ 2, are semi-T2 was first
observed in [9]. Since the axiom semi-T2 implies the axiom semi-T1, we have that each singleton of F is
semi-closed ([18]). But it is easy to see that the spaces (Z, τK), (Z2, τMW) (and hence the space F) contain
subsets homeomorphic to the space (X2, τ2) from Example 2.6 which is not semi-T1.

Furthermore, due to the locally finiteness of the spaces (Z, τK) and (Z2, τMW) (which implies the Alexan-
droffness) we have that each subset of F is semi-T 1

2
by Corollary 2.2. This is an answer to the question posed

in the Introduction.
Let us note that each subset of a space possessing the axiom T 1

2
is also a T 1

2
-space. Hence, the space F

is not T 1
2

(it contains a subset homeomorphic to the space (X5, τ5) from Example 2.9 which can be found in
the folder (X2, τ2)2). By the same reason the space F is not even T 1

4
.
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5. The axiom semi-T 1
2

and domain theory.

Let us recall [10] that for a poset (X,≤) an upper set is a subset U of X with the property that, if x is in
U and x ≤ y, then y is in U. As a dual notion of an upper set we say that a lower set of the poset (X,≤) is a
subset L with the property that, if x is in L and y ≤ x, then y is in L.

For an arbitrary element z of a poset (X,≤), the smallest upper set containing z is denoted using an up
arrow as ↑ z = {x ∈ X | z ≤ x}. For every z ∈ X take ↑ z. Then, by using the family consisting of X and the
sets ↑ z, as a base, we can uniquely establish a topology on X, denoted by τup. It is well known (cf. [10])
that the the space (X, τup) is an Alexandroff topological space satisfying the axiom T0.

Thus Corollary 2.2 implies also the following statement.

Proposition 5.1. Given a partially ordered set (X,≤), let (X, τup) be the upper topological space induced by the given
poset (X,≤). Then each subspace of the folder (X, τup)n,n ≥ 1, satisfies the semi-T 1

2
separation axiom. �
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the paper.

References

[1] F. G. Arenas, Alexandroff Spaces, Acta Math. Univ. Comenian., (N.S.) 68 (1999), 501-518.
[2] F. G. Arenas, J. Dontchev, M. Ganster, On λ-sets and the duel of generalized continuity, Q & A in General Topology 15 (1997),

3-13.
[3] P. Bhattacharyya, B.K. Lahiri, Semi-generalized closed set in topology, Indian J. Math. 29 (1987) 375-382.
[4] J. Cao, M. Ganster, I. Reilly, M. Steiner, δ-closure, θ-closure and generalized closed sets, Applied Gen. Topology 6 (1) (2005) 79-86.
[5] M.C. Cueva, R.K. Saraf, A research on characterizations of semi-T 1

2
spaces, Divulgaciones Mathemǎticas 8 (1) (2000) 43-50.
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