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α-ψ-Geraghty Contraction Type Mappings
and Some Related Fixed Point Results

Erdal Karapınara

aAtilim University, Department of Mathematics, 06836, İncek, Ankara, Turkey

Abstract. In this paper, we consider a generalization of α-ψ-Geraghty contractions and investigate the
existence and uniqueness of fixed point for the mapping satisfying this condition. We illustrate an example
and an application to support our results. In particular, we extend, improve and generalize some earlier
results in the literature on this topic.

1. Introduction and preliminaries

A fixed-point theory investigate whether a function T, defined on abstract space, have at least one fixed
point (a point x such that Tx = x), under some conditions on T and on abstract space. Furthermore, the
uniqueness of fixed point is examined if existence of fixed point(s) of T is guaranteed. Results of this theory
have been used in many fields and directions. In particular, fixed point theory techniques plays a crucial
role in the solutions of differential equations and hence improvement of fixed point theory develop the
differential equations theory. Banach contraction principle [3] is one of the initial and also fundamental
results in the theory of fixed point: Every contraction on a complete metric space has a unique fixed point.
Regarding the application potential of theory, several authors have studied to generalize, improve and
extend the fixed point theory by defining new contractive conditions and replacing complete metric spaces
with some convenient abstract space (see e.g. [1],[2]-[18].) Among them, we mention one of interesting
results given by Geraghty [8]. In this remarkable report [8], the author extended the Banach contraction
mapping principle in complete metric space. For the sake of completeness, we recall Geraghty’s theorem.
For this purpose, we first remind the class of F all functions β : [0,∞)→ [0, 1) which satisfies the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

Also, the author proved the following result:

Theorem 1.1. (Geraghty [8].) Let (X, d) be a complete metric space and T : X→ X be an operator. If T satisfies the
following inequality:

d(Tx,Ty) ≤ β(d(x, y))d(x, y), for any x, y ∈ X, (1)

where β ∈ F , then T has a unique fixed point.
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The results of Geraghty have attracted a numbers of authors [2, 4–7, 12].
On the other hand, recently, Samet et al. [16] reported interesting fixed point results by introducing the

notion of α-ψ-contractive mappings. Let T : X → X be a map and α : X × X → R be a function. Then, T is
said to be α-admissible [16] if

α(x, y) ≥ 1 implies α(Tx,Ty) ≥ 1.

Very recently, the authors of [13] improved this idea by defining the concept of α-ψ-Meir-Keeler contractive
mappings. An α-admissible map T is said to be triangular α-admissible [13] if

α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1. (2)

For more details and examples of α-admissible maps, see e.g. [13, 14, 16] and also [1, 18].
In this manuscript, the notion of generalized α-ψ-Geraghty contraction type mappings is introduced and

the existence and uniqueness of a fixed point of mappings, under the assumption of α-Geraghty contraction,
is researched in the setting of complete metric spaces.

2. Fixed point theorems

We recollect the following auxiliary result which will be used efficiently in the proof of main results.

Lemma 2.1. [13] Let T : X → X be a triangular α-admissible map. Assume that there exists x1 ∈ X such that
α(x1,Tx1) ≥ 1. Define a sequence {xn} by xn+1 = Txn. Then, we have α(xn, xm) ≥ 1 for all m,n ∈N with n < m.

Now, we define the following class of auxiliary functions which will be used densely in the sequel: Let
Ψ denote the class of the functions ψ : [0,∞)→ [0,∞) which satisfy the following conditions:

(a) ψ is nondecreasing;
(b) ψ is subadditive, that is, ψ(s + t) ≤ ψ(s) + ψ(t);
(c) ψ is continuous;
(d) ψ(t) = 0⇔ t = 0.

We introduce the following contraction.

Definition 2.2. Let (X, d) be a metric space, and let α : X × X→ R be a function. A mapping T : X→ X is said to
be a generalized α-ψ-Geraghty contraction if there exists β ∈ F such that

α(x, y)ψ(d(Tx,Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) for any x, y ∈ X, (3)

where

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)},

and ψ ∈ Ψ.

Notice that if take ψ(t) = t in Definition 2.2, then T is called generalized α-Geraghty contraction mapping
[4].

Remark 2.3. Notice that since β : [0,∞)→ [0, 1), we have

α(x, y)ψ(d(Tx,Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) < ψ(M(x, y)) for any x, y ∈ X with x , y. (4)

Theorem 2.4. Let (X, d) be a complete metric space, α : X × X → R be a function, and let T : X → X be a map.
Suppose that the following conditions are satisfied:

(i) T is generalized α-ψ-Geraghty contraction type map;
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(ii) T is triangular α-admissible;
(iii) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(iv) T is continuous.

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be such that α(x1,Tx1) ≥ 1. Define a sequence {xn} ⊂ X by xn+1 = Txn for n ∈N.
Suppose that xn0 = xn0+1 for some n0 ∈ N. Then, it is clear that xn0 is a fixed point of T and hence the

proof is completed. From now on, we suppose that xn , xn+1 for all n ∈N.
Due to Lemma 2.1, we have

α(xn, xn+1) ≥ 1 (5)

for all n ∈N. Taking (3) into account, we derive

ψ(d(xn+1, xn+2)) = ψ(d(Txn,Txn+1))
≤ α(xn, xn+1)ψ(d(Txn,Txn+1))
≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1))

(6)

for all n ∈N, where

M(xn, xn+1) = max{d(xn, xn+1), d(xn,Txn), d(xn+1,Txn+1)}
= max{d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)}.

Notice that the case M(xn, xn+1) = d(xn+1, xn+2) is impossible due to the definition of β. Indeed,

ψ(d(xn+1, xn+2)) ≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1))
≤ β(ψ(d(xn+1, xn+2)))ψ(d(xn+1, xn+2)) < ψ(d(xn+1, xn+2)).

Thus, we conclude that M(xn, xn+1) = d(xn, xn+1)). Keeping the inequality (6) in the mind, we getψ(d(xn+1, xn+2)) <
ψ(d(xn, xn+1)) for all n ∈N. Regarding the properties of ψ, we conclude that d(xn+1, xn+2) < d(xn, xn+1) for all
n ∈ N. Hence, we deduce that the sequence {d(xn, xn+1)} is nonnegative and nonincreasing. Consequently,
there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We claim that r = 0. Suppose, on the contrary, that r > 0.
Then, due to (6), we have

ψ(d(xn+1, xn+2))
ψ(M(xn, xn+1))

≤ β(ψ(M(xn, xn+1))) < 1.

In what follows that lim
n→∞

β(ψ(M(xn, xn+1))) = 1. Owing to the fact that β ∈ F , we have

lim
n→∞

ψ(M(xn, xn+1)) = 0, (7)

which yields that

r = lim
n→∞

d(xn, xn+1) = 0. (8)

We observe that

M(xm, xn) = max{d(xm, xn), d(xm,Txm), d(xn,Txn)}
= max{d(xm, xn), d(xm, xm+1), d(xn, xn+1)}

By using the result lim
n→∞

d(xn, xn+1) = 0, we find that

lim
m,n→∞

M(xm, xn) = lim
m,n→∞

d(xm, xn). (9)
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We assert that {xn} is a Cauchy sequence. Suppose, on the contrary, that we have

ε = lim sup
m,n→∞

d(xn, xm) > 0. (10)

By using the triangular inequality, we derive

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm). (11)

Combining (3), (11) with the properties of ψ, we get

ψ(d(xn, xm)) ≤ ψ (d(xn, xn+1) + d(Txn,Txm) + d(xm+1, xm))
≤ ψ (d(xn, xn+1)) + ψ (d(Txn,Txm)) + ψ (d(xm+1, xm))
≤ ψ (d(xn, xn+1)) + β(ψ (M(xn, xm)))ψ (M(xn, xm)) + ψ (d(xm+1, xm)) .

(12)

Together with (9), (12) and (8), we deduce that

lim
m,n→∞

ψ(d(xn, xm)) ≤ lim
m,n→∞

β(ψ (M(xn, xm))) lim
m,n→∞

ψ (M(xm, xn))

≤ lim
m,n→∞

β(ψ (M(xn, xm))) lim
m,n→∞

ψ (d(xm, xn)) .

Hence by (10), we get

1 ≤ lim
m,n→∞

β(ψ (M(xn, xm))) ,

which implies lim
m,n→∞

β(ψ (M(xn, xm))) = 1. Consequently, we get lim
m,n→∞

M(xn, xm) = 0 and hence lim
m,n→∞

d(xn, xm) =

0. It is a contradiction. Therefore, {xn} is a Cauchy sequence. Recalling the completeness of X, we conclude
that there exists

x∗ = lim
n→∞

xn ∈ X.

Since the mapping T is continuous, we find limn→∞ xn = Tx∗, and so x∗ = Tx∗.

It is also possible to remove the continuity of the mapping T by replacing a weaker condition:

Definition 2.5. Let (X, d) be a complete metric space, α : X × X → R be a function, and let T : X → X be a map.
We say that the sequence {xn} is α-regular the following condition is satisfied:
If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → +∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

In the following theorem, we omit the continuity condition of the mapping T in Theorem 2.4.

Theorem 2.6. Let (X, d) be a complete metric space, α : X × X → R be a function, and let T : X → X be a map.
Suppose that the following conditions are satisfied:

(i) T is a generalized α-ψ-Geraghty contraction type map;
(ii) T is triangular α-admissible;

(iii) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(iv) {xn} is α-regular

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗.

Proof. Following the proof of Theorem 2.4, we know that the sequence {xn} defined by xn+1 = Txn for all
n ≥ 0, converges to some x∗ ∈ X. From (5) and assumption (iv) of the theorem, there exists a subsequence
{xn(k)} of {xn} such that limk→∞ α(xn(k), x∗) ≥ 1. Applying (3), for all k, we get that

α(xn(k), x∗)ψ(d(xn(k)+1,Tx∗)) = α(xn(k), x∗)ψ(d(Txn(k),Tu))
≤ β(ψ(M(xn(k), x∗)))ψ(M(xn(k), x∗)).

(13)
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On the other hand, we have

M(xn(k), x∗) = max{d(xn(k), x∗), d(xn(k),Txn(k)), d(x∗,Tx∗)}
= max{d(xn(k), x∗), d(xn(k), xn(k)+1), d(x∗,Tx∗)},

and hence,

lim
k→∞

ψ(M(xn(k), x∗)) = ψ(d(x∗,Tx∗)). (14)

From (13) we have

α(xn(k), x∗)
ψ(d(xn(k)+1,Tx∗))
ψ(M(xn(k), x∗))

≤ β(ψ(M(xn(k), x∗))) < 1.

Letting k → ∞ in the above inequality, we obtain limn→∞ β(ψ(M(xn(k), x∗))) = 1, and so ψ(d(x∗,Tx∗)) =
limk→∞ ψ(M(xn(k), x∗)) = 0. Hence, x∗ = Tx∗.

For the uniqueness of a fixed point of a α-Geraghty contractive mapping, we will consider the following
condition.

(H1) For all x, y ∈ Fix(T), there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 2.7. Adding condition (H1) to the hypotheses of Theorem 2.4 (resp. Theorem 2.6), we obtain that x∗ is the
unique fixed point of T.

Proof. Due to Theorem 2.4 (resp. Theorem 2.6), we have a fixed point, say x∗ ∈ X. Let y∗ ∈ X be another fixed point
of T.

Then, by assumption, there exists z ∈ X such that

α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1. (15)

Since T is α−admissible, from (15), we have

α(x∗,Tnz) ≥ 1 and α(y∗,Tnz) ≥ 1, for all n.

Hence we have

d(x∗,Tnz) ≤ α(x∗,Tn−1z)d(Tx∗,TTn−1z)
≤ β(d(x∗,Tn−1z))d(x∗,Tn−1z)
< d(x∗,Tn−1z)

(16)

for all n ∈N.
Thus, the sequence {d(x∗,Tnz)} is nonincreasing, and there exists u ≥ 0 such that

lim
n→∞

d(x∗,Tnz) = u.

From (16) we have
d(x∗,Tnz)

d(x∗,Tn−1z)
≤ β(d(x∗,Tn−1z))

and thus limn→∞ β(d(x∗,Tnz)) = 1. Hence limn→∞ d(x∗,Tnz) = 0 which yields limn→∞ Tnz = x∗.
Similarly, we have limn→∞ Tnz = y∗. Thus, we have x∗ = y∗.
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3. Consequences

We start this section with following definition.

Definition 3.1. Let (X, d) be a metric space, and let α : X × X → R be a function. A map T : X → X is called
α-ψ-Geraghty contraction type map if there exists β ∈ F such that for all x, y ∈ X

α(x, y)ψ(d(Tx,Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)), (17)

where ψ ∈ Ψ.

Note that if take ψ(t) = t in Definition 3.1, then T is called generalized α-Geraghty contraction mapping [4].

Theorem 3.2. Let (X, d) be a complete metric space, α : X × X → R be a function, and let T : X → X be a map.
Suppose that the following conditions are satisfied:

(1) T is α-ψ-Geraghty contraction type map;
(2) T is triangular α-admissible;
(3) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(4) T is continuous.

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be such that α(x1,Tx1) ≥ 1.
Following the lines in the proof of Theorem 2.4, we know that the sequence {xn} defined by xn+1 = Txn

for all n, converges to some x∗ ∈ X, and α(xn, xn+1) ≥ 1 for all n.
Since T is continuous, then obviously, x∗ is a fixed point of T.

Theorem 3.3. Let (X, d) be a complete metric space, α : X × X → R be a function, and let T : X → X be a map.
Suppose that the following conditions are satisfied:

(i) T is α-Geraghty contraction type map;
(ii) T is triangular α-admissible;

(iii) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(iv) {xn} is α-regular

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be such that α(x1,Tx1) ≥ 1.
Following the lines in the proof of Theorem 2.4, we know that the sequence {xn} defined by xn+1 = Txn

for all n, converges to some x∗ ∈ X, and α(xn, xn+1) ≥ 1 for all n.
Suppose that the condition (iv) holds. Consequently, we have limn→∞ supα(xn, x∗) > 0.
Thus, there exists a subsequence {xn(k)} of {xn} such that limk→∞ α(xn(k), x∗) = p > 0.
Then we have

ψ(d(xn(k)+1,Tx∗)) =ψ(d(Txn(k),Tx∗))

≤ 1
α(xn(k), x∗)

β(ψ(d(xn(k), x∗)))ψ(d(xn(k), x∗))

≤ 1
α(xn(k), x∗)

ψ(d(xn(k), x∗))

for all sufficiently large k.
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Hence, we obtain

ψ(d(x∗,Tx∗)) = lim
k→∞

ψ(d(xn(k)+1,Tx∗))

≤1
p

lim
n→∞

ψ(d(xn(k), x∗)),

=0.

Therefore, x∗ is a fixed point of T.

Theorem 3.4. Adding condition (H1) to the hypotheses of Theorem 3.2 (resp. Theorem 3.3), we obtain that x∗ is the
unique fixed point of T.

Proof. Due to Theorem 3.2 (resp. Theorem 3.3), we have a fixed point, say x∗ ∈ X. Let y∗ ∈ X be another
fixed point of T.

Then, by assumption, there exists z ∈ X such that

α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1. (18)

Since T is α−admissible, from (18), we have

α(x∗,Tnz) ≥ 1 and α(y∗,Tnz) ≥ 1, for all n.

Hence we have

ψ(d(x∗,Tnz)) ≤ α(x∗,Tn−1z)ψ(d(Tx∗,TTn−1z))
≤ β(ψ(d(x∗,Tn−1z)))ψ(d(x∗,Tn−1z))
< ψ(d(x∗,Tn−1z))

(19)

for all n ∈ N. Consequently, the sequence {ψ(d(x∗,Tnz))} is nonincreasing, and there is u ≥ 0 such that
limn→∞ ψ(d(x∗,Tnz)) = u.

From (19) we have
ψ(d(x∗,Tnz))
ψ(d(x∗,Tn−1z))

≤ β(ψ(d(x∗,Tn−1z)))

and hence limn→∞ β(ψ(d(x∗,Tnz))) = 1. In what follows that limn→∞ ψ(d(x∗,Tnz)) = 0 which implies
limn→∞ Tnz = x∗.

Similarly, we have limn→∞ Tnz = y∗. Thus, we have x∗ = y∗.

Corollary 3.5. Let (X, d) be a complete metric space, α : X×X→ [0,∞) be a function, and let T : X→ X be a map.
Suppose that the following conditions are satisfied:

(i) T is generalized α-Geraghty contraction type map;
(ii) T is triangular α-admissible;

(iii) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(iv) either T is continuous or {xn} is α-regular

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗. Further if, for all x, y ∈ Fix(T), there exists z ∈ X such
that α(x, z) ≥ 1 and α(y, z) ≥ 1, then T has a unique fixed point.

Proof. Combine Theorem 2.4-Theorem 2.7 by taking ψ(t) = t.

Corollary 3.6. Let (X, d) be a complete metric space, α : X×X→ [0,∞) be a function, and let T : X→ X be a map.
Suppose that the following conditions hold:
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(i) T is α-Geraghty contraction type map;
(ii) T is triangular α-admissible;

(iii) there exists x1 ∈ X such that α(x1,Tx1) ≥ 1;
(iv) either T is continuous or {xn} is α-regular

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗. Further if, for all x, y ∈ Fix(T), there exists z ∈ X such
that α(x, z) ≥ 1 and α(y, z) ≥ 1, then T has a unique fixed point.

Proof. Combine Theorem 3.2-Theorem 3.4 by taking ψ(t) = t.

In Corollary 3.6, let α(x, y) = 1 for all x, y ∈ X. Then, we have the following corollary.

Corollary 3.7. [8] Let (X, d) be a metric space, and let T : X → X be a map. Suppose that there exists β ∈ F such
that for all x, y ∈ X

d(Tx,Ty) ≤ β(d(x, y))d(x, y). (20)

Then, T has a unique fixed point x∗ ∈ X, and {Tnx} converges to x∗, for each x ∈ X.

Corollary 3.8. [9] Let (X,≼) be a partially ordered set and suppose that there exists a metric d on X such that (X, d)
is a complete metric space. Suppose that T : X→ X is a map. Assume that the following conditions are satisfied.

(i) there exists β ∈ F such that
ψ(d(Tx,Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all x, y ∈ X with y ≼ x, where ψ ∈ Ψ,
(ii) there exists x1 ∈ X such that x1 ≼ Tx1;

(iii) T is increasing;
(iv) either T is continuous or, if {xn} is increasing sequence with limn→∞ xn = x, then xn ≼ x for all n ∈N.

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗. Further if, for any x, y ∈ X, there exists z ∈ X such
that z is comparable to x and y, then T has a unique fixed point in X.

Proof. Define a function α : X × X→ [0,∞) by

α(x, y) =

1 if x ≼ y,
0 otherwise.

Then, from (i) we have α(x, y)ψ(d(Ty,Tx)) ≤ β(ψ(d(x, y)))ψ(d(x, y)) for all x, y ∈ X, and hence (17) is
satisfied.

Obviously, condition (2) is satisfied. Since T is increasing, α(x, y) = 1 implies α(Tx,Ty) = 1 for all x, y ∈ X.
Thus, the condition (iii) of Theorem 3.2 and Theorem 3.3are satisfied.

Condition (ii) implies that there exists x1 ∈ X such that α(x1,Tx1) = 1, and so condition (iii) of Theorem
3.2 and Theorem 3.3 are satisfied.

Condition (iv) implies that condition (iv) of Theorem 3.2 and Theorem 3.3 satisfied.
Thus, all conditions of Theorem 3.2 and Theorem 3.3 are satisfied. By Corollary 3.6, T has a fixed point

in X.

If we take ψ(t) = t in Corollary 3.8, then we get the following result.

Corollary 3.9. [2] Let (X,≼) be a partially ordered set and suppose that there exists a metric d on X such that (X, d)
is a complete metric space. Suppose that T : X→ X is a map. Assume that the following conditions hold:

(i) there exists β ∈ F such that
d(Tx,Ty) ≤ β(d(x, y))d(x, y)

for all x, y ∈ X with y ≼ x;
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(ii) there exists x1 ∈ X such that x1 ≼ Tx1;
(iii) T is increasing;
(iv) either T is continuous or if {xn} is increasing sequence with limn→∞ xn = x, then xn ≼ x for all n ∈N.

Then, T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗. Further if, for any x, y ∈ X, there exists z ∈ X such that
z is comparable to x and y, then T has a unique fixed point in X.

We give an example to illustrate Theorem 3.2.

Example 3.10. Let X = [0,∞), and let d(x, y) =| x − y | for all x, y ∈ X. Let β(t) = 1
1+t for all t ≥ 0. Then, β ∈ F .

Let ψ(t) = t
2 and a mapping T : X→ X be defined by

Tx =


1
3

x (0 ≤ x ≤ 1),

3x (x > 1).

Also, we define a function α : X × X→ [0,∞) in the following way

α(x, y) =

1 (0 ≤ x, y ≤ 1),
0 otherwise.

Condition (iii) of Theorem 3.2 is satisfied with x1 = 1. Condition (iv) of Theorem 3.2 is satisfied with xn = Tnx1 =
1
3n .

Obviously, condition (ii) is satisfied. Let x, y ∈ X be such that α(x, y) ≥ 1. Then, x, y ∈ [0, 1], and so Tx ∈ [0, 1],Ty ∈
[0, 1] and α(Tx,Ty) = 1. Hence T is α-admissible, and hence (ii) is satisfied. Finally, we shall prove that (i) is satisfied.

If 0 ≤ x, y ≤ 1, then α(x, y) = 1, and we have

β(ψ(d(x, y)))ψ(d(x, y)) − α(x, y)ψ(d(Tx,Ty)) =β(ψ(d(x, y)))ψ(d(x, y)) − ψ(d(Tx,Ty))

=

|x−y|
2

1 + |x−y|
2

− 1
6
| x − y |

=
| x − y | (6 − 2 | x − y |)

6(2+ | x − y |)
≥0.

Therefore, we derive that α(x, y)ψ(d(Tx,Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)) for 0 ≤ x, y ≤ 1. If 0 ≤ x ≤ 1 and
y > 1, then, obviously, we have α(x, y)ψ(d(Tx,Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)), since α(x, y) = 0. Consequently, all
assumptions of Theorem 3.2 are satisfied, and hence T has a fixed point x∗ = 0.

We also notice that (20) is not satisfied. In fact, for x = 1, y = 2, we have

d(T1,T2) =
17
3
>

1
2
> β(d(2, 1))d(2, 1).

4. Application to ordinary differential equations

We consider the following two-point boundary value problem of second order differential equation:

− d2x
dt2 = f (t, x(t)), t ∈ [0, 1]

x(0) = x(1) = 0,
(21)

where f : [0, 1] ×R→ R is continuous function.
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The Green function associated to (21) is given by

G(t, s) =

t(1 − s), 0 ≤ t ≤ s ≤ 1
s(1 − t), 0 ≤ s ≤ t ≤ 1.

Let C(I) be the space of all continuous functions defined on I, where I = [0, 1], and let

d(x, y) = ∥x − y∥∞ = sup
t∈I
| x(t) − y(t) | for all x, y ∈ C(I).

Then, (C(I), d) is a complete metric space.

We consider the following conditions:

(a) there exists a function ξ : R2 → R such that for all t ∈ I, for all a, b ∈ R with ξ(a, b) ≥ 0, we have

| f (t, a) − f (t, b) |≤ ln(| a − b | +1);

(b) there exists x1 ∈ C(I) such that for all t ∈ I

ξ(x1(t),
∫ 1

0
G(t, s) f (s, x1(s))ds) ≥ 0;

(c) for all t ∈ I and for all x, y ∈ C(I),

ξ(x(t), y(t)) ≥ 0 implies ξ
(∫ 1

0
G(t, s) f (s, x(s))ds,

∫ 1

0
G(t, s) f (s, y(s))ds

)
≥ 0;

(d) for any cluster point x of a sequence {xn} of points in C(I) with ξ(xn, xn+1) ≥ 0, limn→∞ inf ξ(xn, x) ≥ 0.

Theorem 4.1. Suppose that conditions (a)-(d) are satisfied. Then, (21) has at least one solution x∗ ∈ C2(I).

Proof. It is known that x ∈ C2(I) is a solution of (21) if and only if x ∈ C(I) is a solution of the integral
equation

x(t) =
∫ 1

0
G(t, s) f (s, x(s))ds for all t ∈ I.

We define T : C(I)→ C(I) by

Tx(t) =
∫ 1

0
G(t, s) f (s, x(s))ds for all t ∈ I.

Then, the problem (21) is equivalent to finding x∗ ∈ C(I) that is a fixed point of T.
Let x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I.
From (a) we have

d(Tx,Ty) =| Tx(t) − Ty(t) |=
∣∣∣∣∣∣
∫ 1

0
G(t, s)[ f (s, x(s)) − f (s, y(s))]ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s) | f (s, x(s)) − f (s, y(s)) | ds

≤
∫ 1

0
G(t, s) ln(| x(s) − y(s) | +1)ds

≤ sup
t∈I

∫ 1

0
G(t, s)ds ln(| x(s) − y(s) | +1)

=
1
8

ln(| x(s) − y(s) | +1) ≤ ln(| x(s) − y(s) | +1) = ln(d(x, y) + 1)
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which yields that

ln(d(Tx,Ty) + 1) ≤ ln(ln(d(x, y) + 1) + 1) =
ln(ln(d(x, y) + 1) + 1)

ln(d(x, y) + 1)
ln(d(x, y) + 1)

Put ψ(x) = ln(x + 1) and β(x) = ψ(x)
x . Obviously, ψ : [ 0,∞) → [0,∞) is continuous, subadditive,

nondecreasing and ψ is positive in (0,∞) with ψ(0) = 0 and also ψ(x) < x for any β ∈ F .
Thus we have ψ(d(Tx,Ty)) < β(ψ(d(x, y)))ψ(d(x, y)) for all x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I.
We define α : C(I) × C(I)→ [0,∞) by

α(x, y) =

1, if ξ(x(t), y(t)) ≥ 0, t ∈ I,
0, otherwise .

Then, for all x, y ∈ C(I), we have

α(x, y)d(Tx,Ty) < β(d(x, y))d(x, y).

Obviously, α(x, y) = 1 and α(y, z) = 1 implies α(x, z) = 1 for all x, y, z ∈ C(I).
If α(x, y) = 1 for all x, y ∈ C(I), then ξ(x(t), y(t)) ≥ 0. From (c) we have ξ(Tx(t),Ty(t)) ≥ 0, and so

α(Tx,Ty) = 1. Thus, T is triangular α-admissible.
From (b) there exists x1 ∈ C(I) such that α(x1,Tx1) = 1.
By (d), we have that, for any cluster point x of a sequence {xn} of points in C(I) with α(xn, xn+1) = 1,

lim
n→∞

infα(xn, x) = 1.
By applying Theorem 3.2, T has a fixed point in C(I), i.e. there exists x∗ ∈ C(I) such that Tx∗ = x∗, and x∗

is a solution of (21).

Remark 4.2. Notice that from Theorem 3.2 and Theorem 3.3. we deduce the main theorem of [9], Corollary 3.8.
Consequently, we can easily derive the their application, the following initial-value problem{

ut(x, t) = uxx(x, t) + F(x, t,u,ux), −∞ < x < ∞, 0 < t < T
u(x, t) = φ(x), −∞ < x < ∞ (22)

where we assumed thatφ is continuously differentiable and thatφ andφ′ are bounded and F(x, t,u,ux) is a continuous
function. For more detail see [9].
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