A New Note on Almost Increasing and Quasi Monotone Sequences

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In [22], we proved a main theorem dealing an application of almost increasing and quasi monotone sequences. In this paper, we prove that theorem under weaker conditions. We also obtained some new and known results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). A sequence $\left(d_{n}\right)$ is said to be δ-quasi monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [2]). Let $\sum a_{n}$ be a given infinite series with partial sums (s_{n}). We denote by t_{n} the $n t h(C, 1)$ mean of the sequence $\left(n a_{n}\right)$. A series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [24])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
R_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(R_{n}\right)$ of the Riesz mean or simply the (\bar{N}, p_{n}) mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [25]). Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|R_{n}-R_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

[^0]and it is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [27])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|R_{n}-R_{n-1}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

\]

In the special case $p_{n}=1$ for all values of $\mathrm{n},\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability (see [4]). Finally, if we take $p_{n}=1$ for all values of n, then we get $\left|C, 1, \theta_{n}\right|_{k}$ summability.

2. Known result

Many works dealing with an application of increasing sequences to the some absolute summability methods of infinite series have been done (see [5-23], [26], [29]). Among them, in [22], the following main theorem has been proved.
Theorem 2.1 Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty$, $\sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the conditions

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty, \tag{6}\\
& \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \text { as } m \rightarrow \infty, \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{8}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, where $\left(\theta_{n}\right)$ is any sequence of positive constants such that $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence.

3. The main result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now we shall prove the following theorem.
Theorem 3.1 Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty$, $\sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the condition (6) of Theorem 2.1 is satisfied and if the conditions

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{9}\\
& \sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{10}
\end{align*}
$$

are satisfied, where $\left(\theta_{n}\right)$ is as in Theorem B, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\overline{\mathrm{N}}, p_{n}, \theta_{n}\right|_{k^{\prime}}, k \geq 1$.
Remark 3.2 It should be noted that conditions (9) and (10) are the same as conditions (7) and (8), respectively, when $\mathrm{k}=1$. When $k>1$, conditions (9) and (10) are weaker than conditions (7) and (8), respectively, but the converses are not true. As in [28] we can show that if (7) is satisfied, then we get that

$$
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right) .
$$

If (9) is satisfied, then for $k>1$ we obtain that

$$
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=\sum_{n=1}^{m} X_{n}^{k-1} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}^{k}\right) \neq O\left(X_{m}\right) .
$$

The similar argument is also valid for the conditions (8) and (10).
We need following lemmas for the proof of our theorem.
Lemma 3.3 ([5]) Under the conditions of the theorem, we have that

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty . \tag{11}
\end{equation*}
$$

Lemma 3.4 ([6]) Let $\left(X_{n}\right)$ be an almost increasing sequence such that $n\left|\Delta X_{n}\right|=O\left(X_{n}\right)$. If $\left(A_{n}\right)$ is a δ-quasimonotone with $\sum n \delta_{n} X_{n}<\infty$, and $\sum A_{n} X_{n}$ is convergent, then

$$
\begin{align*}
& n A_{n} X_{n}=O(1) \quad \text { as } n \rightarrow \infty, \tag{12}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty . \tag{13}
\end{align*}
$$

4. Proof of Theorem 3.1 Let $\left(T_{n}\right)$ be denote the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, by definition and changing the order of summation, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} .
$$

Then, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v} .
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{n+1}{n P_{n}} p_{n} t_{n} \lambda_{n}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} t_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \lambda_{v+1} \frac{1}{v} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality for $k>1$, it is enough to show that

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 .
$$

Firstly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \theta_{n}^{k-1}\left(\frac{1}{X_{v}}\right)^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|A_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 3. 3. Now, when $k>1$ applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v} \| t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|\left(\frac{1}{X_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|\left(\frac{1}{X_{v}}\right)^{k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

Again, we have that

$$
\begin{align*}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{v}\left|\Delta \lambda_{v}\right|^{k} v^{k}\left|t_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{P_{v}}{v}\left|t_{v}\right|^{k} v^{k}\left|A_{v}\right|^{k-1}\left|A_{v}\right| \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} v^{k-1}\left(\frac{1}{v X_{v}}\right)^{k-1}\left|A_{v} \| t_{v}\right|^{k} \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m} v\left|A_{v}\right| \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|A_{v}\right|\right) \sum_{i=1}^{v} \frac{\left|t_{i}\right|^{k}}{i X_{i}^{k-1}}+O(1) m\left|A_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|A_{v}\right|\right)\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1)| \Delta A_{v}\left|-A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 3.4. Finally, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \frac{1}{v}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \frac{1}{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v+1} \| t_{v}\right|^{k} \frac{1}{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}} \\
& =O(1) \sum_{v=2}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \sum_{v=1}^{m}\left|A_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) a s m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 3. 3. This completes the proof of Theorem 3.1. If we set $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we obtain the result in [6] under weaker conditions. If we take $p_{n}=1$ for all values of n and $\theta_{n}=n$, then we get a new result concerning the $|C, 1|_{k}$ summability factors of infinite series. Also, if we take $p_{n}=1$ for all values of n then we have a new result dealing with the $\left|C, 1, \theta_{n}\right|_{k}$ summability factors of infinite series. Furthermore, if we take $\theta_{n}=n$, then we have another new result concerning the $\left|R, p_{n}\right|_{k}$ summability factors of infinite series.

Acknowledgement. The author expresses his thanks to Professor Hari M. Srivastava for his invaluable suggestions for the improvement of this paper.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obš č. 5 (1956)483-522 (in Russian)
[2] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc. 14A (1965) 38-46
[3] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985) 147-149
[4] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009-1012
[5] H. Bor, An application of almost increasing and δ-quasi monotone sequences, JIPAM. J. Inequal. Pure Appl. Math. 1 (2000) Article 18
[6] H. Bor, Corrigendum on the paper "An application of almost increasing and δ-quasi-monotone sequences", JIPAM. J. Inequal. Pure Appl. Math. 3 (2002) Article 16
[7] H. Bor, An application of almost increasing sequences, Math. Inequal. Appl. 5 (2002) 79-83
[8] H. Bor and H. M. Srivastava, Almost increasing sequences and their applications, Internat. J. Pure Appl. Math. 3(2002) 29-35.
[9] H. Bor, A study on almost increasing sequences, JIPAM. J. Inequal.Pure Appl. 4 (2003) Article 97
[10] H. Bor an L. Leindler, A note on δ-quasi-monotone and almost increasing sequences, Math.Inequal. Appl. 8 (2005) 129-134
[11] H. Bor and H. S. Özarslan, On the quasi-monotone and almost increasing sequences, J. Math. Inequal. 1(2007), 529-534
[12] H. Bor, A new application of almost increasing sequences, J. Comput. Anal. Appl. 10 (2008) 17-23
[13] H. Bor and H. S. Özarslan, A study on quasi power increasing sequences, Rocky Mountain J. Math. 38 (2008) 801-807
[14] H. Bor, On some new applications of power increasing sequences, C. R. Acad. Sci. Paris, Ser I 346 (2008), 391-394.
[15] H. Bor, An application of almost increasing sequences, Appl. Math. Lett. 24 (2011) 298-301.
[16] H. Bor, On a new application of almost increasing sequences, Math. Comput. Modelling, 53 (2011) 230-233.
[17] H. Bor, H. M. Srivastava and W. T. Sulaiman, A new application of certain generalized power increasing sequences, Filomat 26 (2012) 871-879
[18] H. Bor, Quasi monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp.
[19] H. Bor, A new application of generalized power increasing sequences, Filomat, 26 (2012), 631-635
[20] H. Bor, Almost increasing sequences and their new applications, J. Inequal. Appl. 2013, 2013: 207.
[21] H. Bor and D. S. Yu, An application of generalized power increasing sequences on factors theorem, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 167-174
[22] H. Bor, A new study on almost increasing and quasi monotone sequences, Georgian Math. J., 20 (2013), 239-246
[23] H. Bor, An application of quasi-f-power increasing sequences, Positivity, 17 (2013) 677-681.
[24] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141
[25] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, (1949)
[26] S. M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73.
[27] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317
[28] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648.
[29] W. T. Sulaiman, On a new application of almost increasing sequences. Bull. Math. Anal. Appl. 4 (2012) 29-33

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05, 40G99
 Keywords. Almost increasing sequences; quasi monotone sequences; Riesz mean; absolute summability; Hölder inequality; Minkowski inequality

 Received: 03 April 2013; Accepted: 26 June 2013
 Communicated by Hari M. Srivastava
 Email address: hbor33@gmail.com (Hüseyin Bor)

