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A New Note on Almost Increasing and Quasi Monotone Sequences

Hüseyin Bora

aP. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In [22], we proved a main theorem dealing an application of almost increasing and quasi
monotone sequences. In this paper, we prove that theorem under weaker conditions. We also obtained
some new and known results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). A sequence (dn) is said
to be δ-quasi monotone, if dn → 0, dn > 0 ultimately and ∆dn ≥ −δn, where ∆dn = dn − dn+1 and δ=(δn) is a
sequence of positive numbers (see [2]). Let

∑
an be a given infinite series with partial sums (sn). We denote

by tn the nth (C,1) mean of the sequence (nan). A series
∑

an is said to be summable | C, 1 |k, k ≥ 1, if (see
[24])

∞∑
n=1

1
n
| tn |k< ∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (2)

The sequence-to-sequence transformation

Rn =
1

Pn

n∑
v=0

pvsv (3)

defines the sequence (Rn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [25]). Let (θn) be any sequence of positive constants. The series

∑
an is

said to be summable | N̄, pn |k, k ≥ 1, if (see [3])

∞∑
n=1

(Pn/pn)k−1 | Rn − Rn−1 |k< ∞, (4)
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and it is said to be summable | N̄, pn, θn |k, k ≥ 1, if (see [27])
∞∑

n=1

θk−1
n | Rn − Rn−1 |k< ∞. (5)

In the special case pn = 1 for all values of n, | N̄, pn |k summability is the same as | C, 1 |k summability. If we
take θn =

Pn
pn
, then | N̄, pn, θn |k summability reduces to | N̄, pn |k summability. Also, if we take θn = n and

pn = 1 for all values of n, then we get | C, 1 |k summability. Furthermore, if we take θn = n, then | N̄, pn, θn |k
summability reduces to | R, pn |k summability (see [4]). Finally, if we take pn = 1 for all values of n, then we
get | C, 1, θn |k summability.

2. Known result

Many works dealing with an application of increasing sequences to the some absolute summability
methods of infinite series have been done (see [5-23], [26], [29]). Among them, in [22], the following main
theorem has been proved.
Theorem 2.1 Let (Xn) be an almost increasing sequence such that | ∆Xn |= O(Xn/n) and let λn → 0 as n→∞.
Suppose that there exists a sequence of numbers (An) such that it is δ-quasi-monotone with

∑
nδnXn < ∞,∑

AnXn is convergent and | ∆λn |≤ | An | for all n. If the conditions

m∑
n=1

1
n
| λn |= O(1) as m→∞, (6)

m∑
n=1

1
n
| tn |k= O(Xm) as m→∞, (7)

and
m∑

n=1

θk−1
n

( pn

Pn

)k
| tn |k= O(Xm) as m→∞ (8)

are satisfied, then the series
∑

anλn is summable | N̄, pn, θn |k, k ≥ 1, where (θn) is any sequence of positive

constants such that
(
θnpn

Pn

)
is a non-increasing sequence.

3. The main result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now we shall prove the
following theorem.
Theorem 3.1 Let (Xn) be an almost increasing sequence such that | ∆Xn |= O(Xn/n) and let λn → 0 as n→∞.
Suppose that there exists a sequence of numbers (An) such that it is δ-quasi-monotone with

∑
nδnXn < ∞,∑

AnXn is convergent and | ∆λn |≤ | An | for all n. If the condition (6) of Theorem 2.1 is satisfied and if the
conditions

m∑
n=1

| tn |k
nXk−1

n
= O(Xm) as m→∞ (9)

m∑
n=1

θk−1
n

( pn

Pn

)k | tn |k
Xk−1

n
= O(Xm) as m→∞, (10)
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are satisfied, where (θn) is as in Theorem B, then the series
∑

anλn is summable | N̄, pn, θn |k, k ≥ 1.

Remark 3.2 It should be noted that conditions (9) and (10) are the same as conditions (7) and (8),
respectively, when k=1. When k > 1, conditions (9) and (10) are weaker than conditions (7) and (8),
respectively, but the converses are not true. As in [28] we can show that if (7) is satisfied, then we get that

m∑
n=1

| tn |k
nXk−1

n
= O

 1
Xk−1

1

 m∑
n=1

| tn |k
n
= O(Xm).

If (9) is satisfied, then for k > 1 we obtain that

m∑
n=1

| tn |k
n
=

m∑
n=1

Xk−1
n
| tn |k
nXk−1

n
= O(Xk−1

m )
m∑

n=1

| tn |k
nXk−1

n
= O(Xk

m) , O(Xm).

The similar argument is also valid for the conditions (8) and (10).
We need following lemmas for the proof of our theorem.
Lemma 3.3 ([5]) Under the conditions of the theorem, we have that

| λn | Xn = O(1) as n→∞. (11)

Lemma 3.4 ([6]) Let (Xn) be an almost increasing sequence such that n | ∆Xn |= O(Xn). If (An) is a δ-quasi-
monotone with

∑
nδnXn < ∞, and

∑
AnXn is convergent, then

nAnXn = O(1) as n→∞, (12)

∞∑
n=1

nXn | ∆An |< ∞. (13)

4. Proof of Theorem 3.1 Let (Tn) be denote the (N̄, pn) mean of the series
∑

anλn. Then, by definition and
changing the order of summation, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
i=0

aiλi =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv.

Then, for n ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav.

By Abel’s transformation, we have

Tn − Tn−1 =
n + 1
nPn

pntnλn −
pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v
+

pn

PnPn−1

n−1∑
v=1

Pv∆λvtv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pvtvλv+1
1
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of the theorem, by Minkowski’s inequality for k > 1, it is enough to show that

∞∑
n=1

θk−1
n | Tn,r |k< ∞, f or r = 1, 2, 3, 4.
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Firstly, we have that

m∑
n=1

θk−1
n | Tn,1 |k =

m∑
n=1

θk−1
n | λn |k−1| λn |

( pn

Pn

)k
| tn |k

= O(1)
m∑

n=1

| λn | θk−1
n

( 1
Xv

)k−1 ( pn

Pn

)k
| tn |k

= O(1)
m−1∑
n=1

∆ | λn |
n∑

v=1

θk−1
v

( pv

Pv

)k | tv |k
Xk−1

v

+ O(1) | λm |
m∑

n=1

θk−1
n

( pn

Pn

)k | tn |k
Xk−1

n

= O(1)
m−1∑
n=1

| An | Xn +O(1) | λm | Xm

= O(1) as m→∞,

by virtue of the hypotheses of the theorem and Lemma 3. 3. Now, when k > 1 applying Hölder’s inequality

with indices k and k′, where
1
k
+

1
k′
= 1, as in Tn,1, we have that

m+1∑
n=2

θk−1
n | Tn,2 |k = O(1)

m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pn−1

n−1∑
v=1

pv | λv |k| tv |k

 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

pv | λv |k−1| λv || tv |k
m+1∑

n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

pv | tv |k| λv |
( 1

Xv

)k−1 m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

θk−1
v

( pv

Pv

)k
| λv |

( 1
Xv

)k−1

| tv |k

= O(1)
m∑

v=1

| λv | θk−1
v

( pv

Pv

)k | tv |k
Xk−1

v
= O(1) as m→∞.

Again, we have that

m+1∑
n=2

θk−1
n | Tn,3 |k = O(1)

m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pn−1

n−1∑
v=1

Pv

v
| ∆λv |k vk | tv |k


 1

Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv

v
| tv |k vk | Av |k−1| Av |

m+1∑
n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

vk−1
( 1

vXv

)k−1

| Av || tv |k

(14)
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= O(1)
(
θ1p1

P1

)k−1 m∑
v=1

v | Av |
| tv |k
vXk−1

v

= O(1)
m−1∑
v=1

∆(v| Av |)
v∑

i=1

| ti |k
iXk−1

i

+O(1)m| Am |
m∑

v=1

| tv |k
vXk−1

v

= O(1)
m−1∑
v=1

| ∆(v | Av |) | Xv +O(1)m| Am |Xm

= O(1)
m−1∑
v=1

| (v + 1) | ∆Av | −Av | Xv +O(1)m | Am | Xm

= O(1)
m−1∑
v=1

v | ∆Av | Xv +O(1)
m−1∑
v=1

| Av |Xv +O(1)m| Am |Xm

= O(1) as m→∞,

by virtue of the hypotheses of the theorem and Lemma 3.4. Finally, we have that

m+1∑
n=2

θk−1
n | Tn,4 |k ≤

m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pn−1

n−1∑
v=1

Pv | λv+1 |k| tv |k
1
v

 1
Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv | λv+1 |k−1| λv+1 || tv |k
1
v

m+1∑
n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1

= O(1)
m∑

v=1

Pv

( 1
Xv

)k−1

| λv+1 || tv |k
1
v

m+1∑
n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1

= O(1)
m∑

v=1

| λv+1 |
(
θvpv

Pv

)k−1 | tv |k
vXk−1

v

= O(1)
(
θ1p1

P1

)k−1 m∑
v=1

| λv+1 |
| tv |k
vXk−1

v

= O(1)
m−1∑
v=1

∆ | λv+1 |
v∑

r=1

| tr |k
rXk−1

r
+O(1) | λm+1 |

m∑
v=1

| tv |k
vXk−1

v

= O(1)
m∑

v=2

| ∆λv | Xv +O(1) | λm+1 | Xm+1

= O(1)
m∑

v=1

| Av |Xv +O(1) | λm+1 | Xm+1

= O(1) as m→∞

by virtue of the hypotheses of the theorem and Lemma 3. 3. This completes the proof of Theorem 3. 1.

If we set θn =
Pn

pn
, then we obtain the result in [6] under weaker conditions. If we take pn = 1 for all values

of n and θn = n, then we get a new result concerning the | C, 1 |k summability factors of infinite series. Also,
if we take pn = 1 for all values of n then we have a new result dealing with the | C, 1, θn |k summability
factors of infinite series. Furthermore, if we take θn = n, then we have another new result concerning the
| R, pn |k summability factors of infinite series.
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