Sharp Bounds on the Signless Laplacian Estrada Index of Graphs

Shan Gao ${ }^{\text {a }}$, Huiqing Liu ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China.

Abstract

Let G be a connected graph with n vertices and m edges. Let $q_{1}, q_{2}, \ldots, q_{n}$ be the eigenvalues of the signless Laplacian matrix of G, where $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$. The signless Laplacian Estrada index of G is defined as $\operatorname{SLEE}(G)=\sum_{i=1}^{n} e^{q_{i}}$. In this paper, we present some sharp lower bounds for $\operatorname{SLEE}(G)$ in terms of the k-degree and the first Zagreb index, respectively.

1. Introduction

Let $G=(V, E)$ be a simple connected undirected graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $|E(G)|=m$. Sometimes, we refer to G as an (n, m) graph. For $v_{i} \in V(G), N_{G}\left(v_{i}\right)$ is the set of all neighbors of the vertex v_{i} in G and $d_{G}\left(v_{i}\right)=\left|N_{G}\left(v_{i}\right)\right|$. The average of G is defined as $\bar{d}(G)=\frac{1}{n} \sum_{i=1}^{n} d_{G}\left(v_{i}\right)$. For $v_{i} \in V(G)$, the number of walks of length k of G starting at v_{i} is denoted by $d_{k}\left(v_{i}\right)$, and also called k-degree of the vertex v_{i} (see [16]). Clearly, one has $d_{0}\left(v_{i}\right)=1, d_{1}\left(v_{i}\right)=d_{G}\left(v_{i}\right)$ and $d_{k+1}\left(v_{i}\right)=\sum_{w \in N\left(v_{i}\right)} d_{k}(w)$. For two vertices v_{i} and $v_{j}(i \neq j)$, the distance between v_{i} and v_{j} is the number of edges in a shortest path joining v_{i} and v_{j}. The diameter of a graph, denoted by $\operatorname{diam}(G)$, is the maximum distance between any two vertices of G.

The first Zagreb index is one of the oldest and most used molecular structure-descriptor, defined as the sum of squares of the degrees of the vertices, i.e.,

$$
M_{1}(G)=\sum_{i=1}^{n} d_{G}^{2}\left(v_{i}\right)
$$

Zagreb index $M_{1}(G)$ was first introduced in [14] and the survey of properties of M_{1} is given in [3], [4].
Let $A(G)$ be the adjacency matrix of G and $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is $L(G)=D(G)-A(G)$. Clearly, $L(G)$ is a real symmetric matrix. From this fact and Geršgorin's Theorem, it follows that its eigenvalues are nonnegative real numbers. The signless Laplacian matrix of G is $Q(G)=D(G)+A(G)$. Sometimes, $Q(G)$ is also called the unoriented Laplacian matrix of G (see [12], [18]). The matrix $Q(G)$ is symmetric and nonnegative, and, when G is connected, it is irreducible. The eigenvalues of an $n \times n$ matrix M are denoted by $\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)$ and assume that $\lambda_{1}(M) \geq \lambda_{2}(M) \geq \cdots \geq \lambda_{n}(M)$, while for a graph G, we will denote $\lambda_{i}:=\lambda_{i}(L(G)), q_{i}:=\lambda_{i}(Q(G))$ and

[^0]$\mu_{i}:=\lambda_{i}(A(G)), i=1,2, \ldots, n$. Research on signless Laplacian matrix has become popular recently (see [5]-[11]).

Some graph-spectrum-based invariants, put forward [10] and [13], respectively, are defined as

$$
E E(G)=\sum_{i=1}^{n} e^{\mu_{i}} \quad \text { and } \quad \operatorname{LEE}(G)=\sum_{i=1}^{n} e^{\lambda_{i}} .
$$

$E E$ was eventually called the Estrada index [2], $L E E$ was called the Laplacian Estrada index, and for details on the theory of $E E$ and $L E E$ see the reviews [9], [17], [19] and [20]. Ayyaswamy et al. [1] defined the signless Laplacian Estrada index of a graph G, denoted by $\operatorname{SLEE}(G)$, as

$$
\operatorname{SLEE}(G)=\sum_{i=1}^{n} e^{q_{i}}
$$

and obtain some upper and lower bounds for it in terms of the number of vertices and number of edges. Although $\operatorname{SLEE}(G)=\operatorname{LEE}(G)$ for G is a bipartite graph, it is chemically interesting for the fullerenes, fluoranthenes and other non-alternant conjugated species, in which SLEE and $L E E(G)$ differ.

In this paper, we present some lower bounds for $\operatorname{SLEE}(G)$ in terms of the k-degree and the first Zagrab index, and characterize the equality cases, respectively.

2. Results

The following results will be useful in the sequel.
Lemma 2.1 [15]. Let A be a nonnegative symmetric matrix and x be a unit vector of \mathfrak{R}^{n}. If $\rho(A)=x^{T} A x$, then $A x=\rho(A) x$.
Lemma 2.2 [6]. Let G be a connected graph. If $Q(G)$ has exactly k distinct eigenvalues, then diam $(G)+1 \leq k$.
In the following, we denote $M_{k}=\sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right), N_{k}=\sum_{i=1}^{n}\left(d_{1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+d_{k+1}\left(v_{i}\right)\right)^{2}$ for $k \geq 1$. Then $M_{1}=$ $\sum_{i=1}^{n} d_{1}\left(v_{i}\right)^{2}$ is the first Zagreb index.
Lemma 2.3. Let G be a connected graph with n vertices and k-degree sequence $d_{k}\left(v_{1}\right), d_{k}\left(v_{2}\right), \ldots, d_{k}\left(v_{n}\right)$. Then

$$
\begin{equation*}
q_{1}(G) \geq \sqrt{\frac{N_{k}}{M_{k}}} \tag{1}
\end{equation*}
$$

with equality holds in (1) if and only if $Q^{k+2}(G) \mathbf{J}=q_{1}^{2}(G) Q^{k}(G) \mathbf{J}$.
Proof. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be the unit positive eigenvector of $Q(G)$ corresponding to $q_{1}(G)$. Take

$$
C=\sqrt{\frac{1}{\sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right)}}\left(d_{k}\left(v_{1}\right), d_{k}\left(v_{2}\right), \ldots, d_{k}\left(v_{n}\right)\right)^{T} .
$$

Noting that C is a unit positive vector, and hence we have

$$
q_{1}(G)=\sqrt{\rho\left(Q^{2}(G)\right)}=\sqrt{X^{T} Q^{2}(G) X} \geq \sqrt{C^{T} Q^{2}(G) C} .
$$

Since

$$
\begin{aligned}
& Q(G) C \\
= & \sqrt{\frac{1}{\sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right)}}\left(d_{1}\left(v_{1}\right) d_{k}\left(v_{1}\right)+\sum_{j=1}^{n} a_{1 j} d_{k}\left(v_{j}\right), \ldots, d_{1}\left(v_{n}\right) d_{k}\left(v_{n}\right)+\sum_{j=1}^{n} a_{n j} d_{k}\left(v_{j}\right)\right)^{T} \\
= & \sqrt{\frac{1}{\sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right)}}\left(d_{1}\left(v_{1}\right) d_{k}\left(v_{1}\right)+d_{k+1}\left(v_{1}\right), \ldots, d_{1}\left(v_{n}\right) d_{k}\left(v_{n}\right)+d_{k+1}\left(v_{n}\right)\right)^{T},
\end{aligned}
$$

we have

$$
q_{1}(G) \geq \sqrt{C^{T} Q^{2}(G) C}=\sqrt{\frac{\sum_{i=1}^{n}\left(d_{1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+d_{k+1}\left(v_{i}\right)\right)^{2}}{\sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right)}}
$$

If the equality holds in (1), then

$$
\rho\left(Q^{2}(G)\right)=C^{T} Q^{2}(G) C .
$$

By Lemma 2.1, we have $\rho\left(Q^{2}(G)\right) C=Q^{2}(G) C$. Since $Q(G)$ is a nonnegative irreducible positive semidefinite matrix, all eigenvalues of $Q(G)$ are nonnegative. By Perron-Frobenius Theorem, the multiplicity of $\rho(Q(G))$ is one. Since $\rho\left(Q^{2}(G)\right)=\left(\rho(Q(G))^{2}\right.$, we have the multiplicity of $\rho\left(Q^{2}(G)\right)$ is one. Hence, if the equality holds, if and only if $C=X$ is the eigenvector of $Q^{2}(G)$ corresponding to the eigenvector $\rho(Q(G))^{2}$, that is, if and only if $Q^{k+2}(G) \mathbf{J}=q_{1}^{2}(G) Q^{k}(G) \mathbf{J}$.
Remark 1. A known lower bound

$$
\begin{equation*}
q_{1} \geq \frac{4 m}{n} \tag{2}
\end{equation*}
$$

was given in [5], where the equality holds if and only if G is a regular graph. Note that

$$
\begin{aligned}
N_{k} M_{k-1} & =\sum_{i=1}^{n}\left(d_{1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+d_{k+1}\left(v_{i}\right)\right)^{2} \sum_{i=1}^{n} d_{k-1}^{2}\left(v_{i}\right) \\
& \geq\left(\sum_{i=1}^{n}\left(d_{1}\left(v_{i}\right) d_{k-1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+d_{k-1}\left(v_{i}\right) d_{k+1}\left(v_{i}\right)\right)\right)^{2} \\
& =\left(\sum_{i=1}^{n} d_{1}\left(v_{i}\right) d_{k-1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+\sum_{i=1}^{n} d_{k-1}\left(v_{i}\right) \sum_{j=1}^{n} a_{i j} d_{k}\left(v_{j}\right)\right)^{2} \\
& =\left(\sum_{i=1}^{n} d_{1}\left(v_{i}\right) d_{k-1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+\sum_{j=1}^{n} d_{k}\left(v_{j}\right) \sum_{i=1}^{n} a_{j i} d_{k-1}\left(v_{i}\right)\right)^{2} \\
& =\left(\sum_{i=1}^{n} d_{1}\left(v_{i}\right) d_{k-1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+\sum_{i=1}^{n} d_{k}\left(v_{i}\right) \sum_{j=1}^{n} d_{k}\left(v_{j}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(d_{1}\left(v_{i}\right) d_{k-1}\left(v_{i}\right)+d_{k}\left(v_{i}\right)\right)^{2} \sum_{i=1}^{n} d_{k}^{2}\left(v_{i}\right)=N_{k-1} M_{k}
\end{aligned}
$$

and equality holds if and only if all the $\frac{d_{1}\left(v_{i}\right) d_{k}\left(v_{i}\right)+d_{k+1}\left(v_{i}\right)}{d_{k-1}\left(v_{i}\right)}(i=1,2, \ldots, n)$ are equal. Hence

$$
q_{1} \geq \sqrt{\frac{N_{k}}{M_{k}}} \geq \cdots \geq \sqrt{\frac{N_{1}}{M_{1}}} \geq \sqrt{\frac{4 M_{1}}{n}} \geq \frac{4 m}{n}
$$

as $\left.n N_{1}=n \sum_{i=1}^{n}\left(d^{2}\left(v_{i}\right)+d_{2}\left(v_{i}\right)\right)^{2} \geq\left(\sum_{i=1}^{n}\left(d^{2}\left(v_{i}\right)+d_{2}\left(v_{i}\right)\right)\right)^{2}=\left(\sum_{i=1}^{n} d^{2}\left(v_{i}\right)+\sum_{i=1}^{n} d_{2}\left(v_{i}\right)\right)\right)^{2}=\left(2 \sum_{i=1}^{n} d^{2}\left(v_{i}\right)\right)^{2}=4 M_{1}^{2}$ and $n M_{1}=n \sum_{i=1}^{n} d^{2}\left(v_{i}\right) \geq\left(\sum_{i=1}^{n} d\left(v_{i}\right)\right)^{2}=4 m^{2}$. This shows that (1) is better than (2).

Remark 2. Another lower bound

$$
\begin{equation*}
q_{1}(G) \geq \frac{M_{1}}{m} \tag{3}
\end{equation*}
$$

was given in [6], where the equality holds if and only if G is a regular graph or a bipartite semi-regular graph. Recall that (3) is better than (2).

Remark 3. Let G_{1} and G_{2} be the graph obtained from K_{3} by attaching a pendant edge and three pendant edges to one vertex of K_{3}, respectively. For G_{1}, the bound (1) is 4.5 when $k=1$ and the bound (3) is 3.8842 ,
and so (1) is better than (3); and for G_{2}, the bound (1) is 6 when $k=1$ and the bound (3) is 6.1779 , and so (3) is better than (1). Hence, the bounds (1) and (3) are incomparable.
Lemma 2.4 [6]. Let h be a nonnegative. Then (i, j)-entry of $A(G)^{h}$ is the number of walks of length h from v_{i} to v_{j}. In the following, we present our main results. The idea of the following proofs comes from [1] and [2].
Theorem 2.5. If G is a connected (n, m) graph with the k-degree sequence $d_{k}\left(v_{1}\right), d_{k}\left(v_{2}\right), \ldots, d_{k}\left(v_{n}\right)$. Then

$$
\begin{equation*}
\operatorname{SLEE}(G) \geq e^{\sqrt{\frac{N_{k}}{M_{k}}}}+(n-1) e^{\left(2 m-\sqrt{\frac{N_{k}}{M_{k}}} / /(n-1)\right.} \tag{4}
\end{equation*}
$$

with equality in (4) holds if and only if $G \cong K_{n}$.
Proof. First we note that if $G \cong K_{n}$, then $q_{1}=2 n-2$ and $q_{2}=q_{3}=\cdots=q_{n}=n-2$, and then $\operatorname{SLEE}(G)=$ $e^{2 n-2}+(n-1) e^{n-2}$. Also, we have $M_{k}=n(n-1)^{2 k}, N_{k}=4 n(n-1)^{2 k+2}$ by Lemma 2.4. Then $e^{\sqrt{\frac{N_{k}}{M_{k}}}}+(n-$ 1) $e^{\left(2 m-\sqrt{\frac{N_{k}}{M_{k}}} / /(n-1)\right.}=e^{2 n-2}+(n-1) e^{n-2}$. Hence (4) holds.

Since $q_{1} \geq q_{2} \geq \cdots \geq q_{n} \geq 0$ and $\operatorname{tr}(Q(G))=\sum_{i=1}^{n} q_{i}=2 m$, we have

$$
\begin{align*}
\operatorname{SLEE}(G) & =e^{q_{1}}+e^{q_{2}}+\cdots+e^{q_{n}} \\
& \geq e^{q_{1}}+(n-1)\left(e^{q_{2}+\cdots+e^{\ell^{n}}}\right)^{1 /(n-1)} \tag{5}\\
& =e^{q_{1}}+(n-1)\left(e^{2 m-q_{1}}\right)^{1 /(n-1)}
\end{align*}
$$

Let $f(x)=e^{x}+(n-1)\left(e^{2 m-x}\right)^{1 /(n-1)}$ and it is easy to see that $f(x)$ is an increasing function when $x>0$. By Lemma 2.2, we have

$$
\operatorname{SLEE}(G) \geq e^{\sqrt{\frac{N_{k}}{M_{k}}}}+(n-1) e^{\left(2 m-\sqrt{\frac{N_{k}}{M_{k}}} / /(n-1)\right.}
$$

If equality holds in (4), then equality must be taken in inequality (5). So, we have $q_{2}=q_{3}=\cdots=q_{n}$, and hence, by Lemma 2.3, $\operatorname{diam}(G)=1$. Thus, $G \cong K_{n}$.

Now we give another lower bound on $\operatorname{SLEE}(G)$ in terms of the Zagrab index M_{1} of G.
Theorem 2.6. If G is a connected (n, m) graph with the Zagrab index M_{1}. Then

$$
\begin{equation*}
\operatorname{SLEE}(G) \geq e^{\frac{M_{1}}{m}}+e^{\frac{4 m}{n}-\frac{M_{1}}{m}}+(n-2) e^{\frac{2 m}{n}} \tag{6}
\end{equation*}
$$

with equality in (6) holds if and only if $G \cong K_{n / 2, n / 2}$.
Proof. Since $q_{1} \geq q_{2} \geq \cdots \geq q_{n} \geq 0$ and $\operatorname{tr}(Q(G))=\sum_{i=1}^{n} q_{i}=2 m$, we have

$$
\begin{align*}
\operatorname{SLEE}(G) & =e^{q_{1}}+e^{q_{2}}+\cdots+e^{q_{n-1}}+e^{q_{n}} \\
& \geq e^{q_{1}}+e^{q_{n}}+(n-2)\left(e^{q_{2}+\cdots+e^{q_{n-1}}}\right)^{\frac{1}{n-2}} \tag{7}\\
& =e^{q_{1}}+e^{q_{n}}+(n-2) e^{\frac{2 m-q_{1}-q_{m}}{n-2}} .
\end{align*}
$$

Let $f(x, y)=e^{x}+e^{y}+(n-2) e^{\frac{2 m-x-y}{n-2}}$, where $x>0$ and $y \geq 0$. Then $f(x, y)$ has a minimum value $e^{x}+e^{4 m / n-x}+$ $(n-2) e^{\frac{2 m-4 m / n}{n-2}}$ at $x+y=4 m / n$ (see [1]). Note that $e^{x}+e^{4 m / n-x}+(n-2) e^{\frac{2 m-4 m / n}{n-2}}$ is an increasing function for $x>0$, and hence, by (2), we have

$$
\begin{equation*}
e^{q_{1}}+e^{4 m / n-q_{1}}+(n-2) e^{\frac{2 m-4 m / n}{n-2}} \geq e^{\frac{M_{1}}{m}}+e^{\frac{4 m}{n}-\frac{M_{1}}{m}}+(n-2) e^{\frac{2 m-4 m / n}{n-2}} \tag{8}
\end{equation*}
$$

Thus (6) holds.
If equality holds in (6), then the above inequalities would be equalities. From (3) and (7), we have that G is regular or bipartite semi-regular. From (8) and $\sum_{i=1}^{n} q_{i}=2 m$, we have $q_{2}=\cdots=q_{n-1}=\left(2 m-q_{1}-q_{n}\right) /(n-2)$. Since $q_{1}+q_{n}=4 m / n, q_{1}=4 m / n, q_{n}=0$ and $q_{2}=\cdots=q_{n-1}=2 m / n$. Hence $G \cong K_{n / 2, n / 2}$.

Remark 4. From Remark 2 and the proof of Theorem 2.6, we have the bound (6) is better that the bound (15) of [1].

Next we establish a lower bound for $\operatorname{SLEE}(G)$ in terms of n and m.
Theorem 2.7. Let G be an (n, m)-graph. Then

$$
\begin{equation*}
\operatorname{SLEE}(G)>\sqrt{e^{\frac{8 m}{n}}+1+\left(n^{2}-2\right) e^{\frac{4 n}{n}}} \tag{9}
\end{equation*}
$$

Proof. Note that $\sum_{i=1}^{n} q_{i}=2 m$ and

$$
\begin{equation*}
\operatorname{SLEE}(G)^{2}=\sum_{i=1}^{n} e^{2 q_{i}}+2 \sum_{i<j} e^{q_{i}} e^{q_{j}} \tag{10}
\end{equation*}
$$

By the arithmetic-geometric inequality, we have

$$
\begin{align*}
2 \sum_{i<j} e^{q_{i}} e^{q_{j}} & \geq n(n-1)\left(\prod_{i<j} e^{q_{i}} e^{q_{j}}\right)^{\frac{2}{n(n-1)}} \tag{11}\\
& =n(n-1)\left(\left(\prod_{i=1}^{n} e^{q_{i}}\right)^{n-1}\right)^{\frac{2}{n(n-1)}} \\
& =n(n-1)\left(e^{\sum_{i=1}^{n} q_{i}}\right)^{\frac{2}{n}}=n(n-1) e^{4 m / n}
\end{align*}
$$

On the other hand, by an argument similar to the proof of Theorem 2.6, we have

$$
\begin{align*}
\sum_{i=1}^{n} e^{2 q_{i}} & \geq e^{2 q_{1}}+e^{2 q_{n}}+(n-2)\left(e^{2 q_{2}+\cdots+2 e^{q_{n}-1}}\right)^{\frac{1}{n-2}} \\
& =e^{2 q_{1}}+e^{2 q_{n}}+(n-2) e^{\frac{4 m-2 q_{1}-2 q_{m}}{n-2}} \\
& \geq e^{2 q_{1}}+e^{8 m / n-2 q_{1}}+(n-2) e^{\frac{4 m}{n}} \\
& \geq e^{8 m / n}+e^{0}+(n-2) e^{\frac{4 m}{n}} \tag{12}
\end{align*}
$$

and the equality in (12) holds if and only $G \cong K_{n / 2, n / 2}$. But if $G \cong K_{n / 2, n / 2}$, then the inequality (11) should be strict. Hence, by (10)

$$
\operatorname{SLEE}(G)>\sqrt{e^{\frac{8 m}{n}}+1+\left(n^{2}-2\right) e^{\frac{4 n}{n}}}
$$

References

[1] S.K. Ayyaswamy, S. Balachandran, Y.B. Venkatakrishnan and I. Gutman, Signless Laplacian Estrada index, MATCH Commun. Math. Comput. Chem. 66(2011) 785-794.
[2] J.A. Dela Pena, I. Gutman and J. Rada, Estimating the Estrada index, Linear Algebra Appl. 427(2007) 70-76.
[3] S. Nikolić, G. Kovac̆ević, A. Milicević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[5] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacian of finite Graphs, Linear Algebra and its Applications 423(2007) 155-171.
[6] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer Universitext, 2012, pp. 250 (monograph).
[7] D.M. Cardoso, D. Cvetković, P. Rowlinson, S.K. Simić, A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl. 429(2008) 2770-2780.
[8] K.Ch. Das, Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs, Discrete Math. 312(2012) 992-998.
[9] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman (Eds.), Applications of Graph Spectra, Math. Inst., Belgrade, 2009, 123-140.
[10] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319(2000) 713-718.
[11] Y.-Z. Fan, S. Fallat, Edge bipartiteness and signless Laplacian spread of graphs, Appl. Anal. Discrete Math. 6(2012) 31-45.
[12] Y.Z. Fan, B.S. Tam, J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order, Linear and Multilinear Algebra 56(4)(2008) 381-397.
[13] G.H. Fath-Tabar, A.R. Ashrafi, I. Gutman, Note on Estrada and L-Estrada indices of graphs, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math.) 139(2009) 116.
[14] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17(1972) 535-538.
[15] Y. Hong, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrix of trees, Research Report, 2003.
[16] Y.P. Hou, Z. Tang, C. Woo, On the spectral radius, k-degree and the upper bound of energy in a graph, MATCH Commun. Math. Comput. Chem. 57(2007) 341-350.
[17] A. Ilić, B. Zhou, Laplacian Estrada index of trees, MATCH Commun. Math. Comput. Chem. 63 (2010) 769-776.
[18] B.S. Tam, Y.Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. 429(2008) 735-758.
[19] B. Zhou, On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 611-619.
[20] B. Zhou, I. Gutman, More on the Laplacian Estrada index, Appl. Anal. Discrete Math. 3 (2009) 371-378.

[^0]: 2010 Mathematics Subject Classification. 05C50; 15A18
 Keywords. connected graph, signless Laplacian Estrada index, k-degree, the first Zagrab index
 Received: 06 June 2013; Accepted: 31 October 2013
 Communicated by Vladimir Muller
 Research supported by NNSFC (Nos. 11171097, 61373019)
 Email addresses: gaoshan8214@126.com (Shan Gao), hql_2008@163.com (Huiqing Liu)

