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Abstract. This paper considers certain general forms of fractional kinetic equations and obtains their
solutions. The usefulness of the main results are depicted by deriving certain generalized fractional kinetic
equations. By adopting important methodology at various stages, we extensively treat solving completely
the problems on fractional kinetic equations involving various types of special functions. Relevances and
some new consequences of the main results are also pointed out.

1. Introduction and Preliminaries

During last few decades fractional kinetic equations of different forms have been widely used in describ-
ing and solving several important problems of physics and astrophysics. The generalized fractional kinetic
equations discussed here can be used to investigate a large variety of known fractional kinetic equations. If
an arbitrary reaction is characterized by a time dependent quantity N = N (t), then it is possible to calculate
the rate dN/dt by the mathematical equation

dN
dt

= −d + p, (1)

where d is the destruction rate and p is the production rate of N. In general, the destruction rate d and
the production rate p depend on the quantity N (t) itself: d = d (N) or p = p (N), which is a complicated
dependence because the destruction or production at time t depends not only on N (t) but also on the past
history N

(
η
)
, η < t, of variable N. Formally, this can be described by the following equation:

dN
dt

= −d (Nt) + p (Nt) , (2)

where the function Nt is defined by Nt (t∗) = N (t − t∗) , t∗ > 0.
Haubold and Mathai [10] studied a special case of this equation, namely,

dNi

dt
= −ciNi (t) , (3)
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with the initial condition that Ni (t = 0) = N0 is the number density of species i at time t = 0 and constant
ci > 0, is known as the standard kinetic equation. The solution of (3) is given by

Ni (t) = N0e−cit. (4)

An alternative form of equation (3) upon integration is given by

N (t) −N0 = c0D−1
t N (t) , (5)

where 0D−1
t is the standard integral operator. Its fractional generalization considered in [10] can be expressed

as

N (t) −N0 = cν0D−νt N (t) , (6)

where 0D−νt is the familiar Riemann-Liouville fractional integral operator ([14]; see also [1], [12] and [13])

0D−νt f (t) =
1

Γ (ν)

∫ t

0
(t − x)ν−1 f (x) dx (< (ν) > 0) . (7)

By replacing the Riemann-Liouville fractional integral operator with some other suitable fractional integral
operators, we can get many interesting generalizations of the equation (6).

Recently, Chouhan and Saraswat [6] have studied the following equation:

N (t) −N0 f (t) = −cβEγα,β,ω;0+
N (t) , (8)

where Eγα,β,ω;0+
N (t) is the integral operator defined by ([16, p.9])

(
Eγα,β,ω;a+

ϕ
)

(t) =

∫ t

a
(t − x)β−1 Eγα,β

(
ω (t − x)α

)
ϕ (x) dx

(
α, β, γ, ω ∈ C,< (α) > 0,<

(
β
)
> 0

)
, (9)

where the operator (9) contains the generalized Mittag-Leffler function (see also [8], [12])

Eγα,β (z) =

∞∑
k=0

(
γ
)

k

Γ
(
αk + β

) zk

k!
(
z, α, β, γ ∈ C,< (α) > 0

)
(10)

as its kernel. Formulations of equations similar to (8) were also considered in [11].
Raina in [17] investigated a class of functions defined by

Fρ,λ (x) =

∞∑
k=0

σ (k)
Γ
(
ρk + λ

)xk (
ρ, λ ∈ C

(
<

(
ρ
)
> 0

)
; |x| < R

)
, (11)

where the coefficients σ (k) is a bounded arbitrary sequence of real (or complex) numbers and R is the set of
real numbers. Here and throughout, when λ = 1 and ρ = 0 in (1.11), we shall put (for convenience sake)

F0,1 (x) = F (x) (12)

which is used below.
Clearly, many known functions such as the generalized Mittag-Leffler function (10) as mentioned above

can be expressed in terms of (11). The well-known Fox-Wright function defined by (see [12], [13])

pΨq [z] = pΨq

 (a1, α1) , · · · ,
(
ap, αp

)(
b j, β j

)
, · · · ,

(
bq, βq

) ; z

 = pΨq

 (al, αl)1,p(
b j, β j

)
1,q

; z


=

∞∑
k=0

∏p
l=1 Γ (al + αlk)∏q
j=1 Γ

(
b j + β jk

) zk

k!
, (13)
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z, al, b j ∈ C, αl, β j ∈ R, l = 1, · · · , p, j = 1, · · · , q

)
is also a special case of the function (11).

For the purpose of this paper, the fractional integral operator containing (11) as its kernel is defined by(
Jρ,λ,a+;ωϕ

)
(x) =

∫ x

a
(x − t)λ−1

Fρ,λ
[
ω (x − t)ρ

]
ϕ (t) dt (x > a) , (14)

where a ∈ R+ (x > a); λ, ρ, ω ∈ C;
(
< (λ) > 0,<

(
ρ
)
> 0

)
, ϕ (t) is such that the integral on the right side exists.

Apart from the integral operator (9), we shall also use the two known integral operators described
below.

i. Srivastava and Ťomovski introduced and investigated the integral operator (see [22, p. 202, Eqn.
(2.12)])(

E
ω;γ,q
a+;α,βϕ

)
(x) =

∫ x

a
(x − t)β−1 Eγ,qα,β

[
ω (x − t)α

]
dt (x > a) , (15)(

γ,ω ∈ C;< (α) > max
{
0,<

(
q
)
− 1

}
; min

{
<

(
β
)
,<

(
q
)}
> 0

)
where

Eγ,qα,β (z) =

∞∑
k=0

[
γ
]

qk

Γ
(
αk + β

) zk

k!
(16)

is the generalized Mittag-Leffler function defined by Shukla and Prajapati [21, p. 798, Eqn. (1.4)] in
which we have preferred to use the notation (in terms of the quotient of two gamma functions) as[

γ
]

qk =
Γ
(
γ + qk

)
Γ
(
γ
)

instead of the Pochhammer symbolic notation
(
γ
)

qk because q is not a non-negative integer but q ∈ C
in (16).

ii. As a special case of (14), Raina gives the following integral operator involving the Fox-Wright function
(13) (see [17, p. 199, Eqn. (4.1)]):(

H
λ,h:(ap,αp)
ω,a+:(bq,βq)

ϕ
)

(x) =

∫ x

a
(x − t)λ−1

pΨq

[
ω (x − t)h

]
ϕ (t) dt, (17)

where λ,ω, h, ai, b j ∈ C (< (λ) > 0,< (h) > 0) ;αi, β j ∈ R,∀i = 1, · · · , p; j = 1, · · · , q;

∆ =

q∑
j=1

β j −

p∑
i=1

αi > −1,

or

∆ = −1,
∣∣∣ω (x − t)h

∣∣∣ < δ =

p∏
i=1

|αi|
−αi

q∏
j=1

∣∣∣β j

∣∣∣β j

and if
∣∣∣ω (x − t)h

∣∣∣ = δ, then <
(
µ
)
> − 1

2 . Note that the integral operator (15) is a special case of
(17). In addition, for λ,ω, h, ai, b j ∈ C (< (λ) > 0, < (h) > 0); αi, β j ∈ R, i = 1, · · · , p; j = 1, · · · , q and

∆∗ =
∑q

j=1 β j −
∑p

i=1 αi > −< (h) , then
(
H

λ,h:(ap,αp)
ω,a+:(bq,βq)

ϕ
)

(x) defines a bounded linear operator on L (a, b)

(a < b), and satisfying the norm condition that (see [17, p. 200, Theorem 4.])∥∥∥∥∥(Hλ,h:(ap,αp)
ω,a+:(bq,βq)

ϕ
)

(x)
∥∥∥∥∥ ≤ Ω∗

∥∥∥ϕ∥∥∥ , ϕ ∈ L (a, b) , (18)

where the explicit expression of Ω∗ is given in [17, p. 200, Eqn. (4.3)]
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The purpose of this paper is to investigate new computable extensions of the generalized fractional
kinetic equations by involving the fractional integral operator (14) which can effectively and conveniently
be used to derive various classes of fractional kinetic equations. We also consider below certain new
generalized forms of fractional kinetic equations and point out their consequences and relevances with
other known results.

2. Generalized Fractional Kinetic Equations

In this section we will find the solution of the generalized fractional kinetic equation involving the
integral operator (14) by applying the Laplace transform technique.

We mention here an important paper of Ťomovski, et al. [23] in which several corrections have been
pointed out to some of the earlier works on the subject (see, for instance [19]) of obtaining solutions to
certain fractional kinetic equations.

Some useful results related to (11) and (14) will also be mentioned here.

Proposition 2.1. The Laplace transform of function Fρ,λ (x) is

L

[
xλ−1
Fρ,λ (ωxρ)

]
(s) = s−λF

(
ωs−ρ

) (
< (λ) > 0,<

(
ρ
)
> 0,< (s) > 0, ω ∈ C

)
, (19)

provided that the series on the right-hand side is convergent.

Proof. Using (11), we readily have

L

[
xλ−1
Fρ,λ (ωxρ)

]
(s) = L

xλ−1
∞∑

k=0

σ (k)
Γ
(
ρk + λ

)ωkxρk


=

∞∑
k=0

σ (k)
Γ
(
ρk + λ

)ωk
L

[
xρk+λ−1

]
(s)

=

∞∑
k=0

σ (k)ωks−ρk−λ = s−λF
(
ωs−ρ

)
, (20)

provided that the series denoted by F (ωs−ρ) is convergent.

Proposition 2.2. The Laplace transform of the integral operator
(
Jρ,λ,0+;ωϕ

)
(x) is given by

L

[(
Jρ,λ,0+;ωϕ

)
(x)

]
(s) = s−λF

(
ωs−ρ

)
L

[
ϕ (t)

]
(s) . (21)(

< (λ) > 0,<
(
ρ
)
> 0,< (s) > 0, ω ∈ C

)
Proof. By virtue of the convolution theorem of the Laplace transforms, it readily follows that

L

[(
Jρ,λ,0+;ωϕ

)
(x)

]
(s) = L

[
xλ−1
Fρ,λ (ωxρ)

]
(s)L

[
ϕ (t)

]
(s)

= s−λF
(
ωs−ρ

)
L

[
ϕ (t)

]
(s) . (22)

Theorem 2.3. If c > 0, β > 0,λ, ρ, ω ∈ C
(
< (λ) > 0,<

(
ρ
)
> 0

)
and f (t) ∈ L (0,∞), then the solution of the

generalized fractional kinetic equation

N (t) −N0 f (t) = −cβ
(
Jρ,λ,0+;ωN

)
(t) (23)
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is expressed by

N (t) = N0

 f (t) +

∞∑
i=1

(
−cβ

)i (
Jρ,λi,0+;ω f

)
(t)

 , (24)

provided that the series on the right-side of (24) exists, where
(
Jρ,λi,0+;ω f

)
(t) is the integral operator defined by (14)

and its kernel function is determined by coefficients (29) below.

Proof. Applying the Laplace transform to equation (23) and using (21) gives

L [N (t)] (s) −N0L
[

f (t)
]

(s) = −cβs−λF
(
ωs−ρ

)
L [N (t)] (s) . (25)

Solving for L [N (t)] (s), it gives

L [N (t)] (s) = N0
L

[
f (t)

]
(s)

1 + cβs−λF (ωs−ρ)

= N0

 ∞∑
i=0

(
−cβ

)i [
s−λi
F

i (ωs−ρ
)]L [

f (t)
]

(s) . (26)(∣∣∣cβs−λF (
ωs−ρ

)∣∣∣ < 1
)

In particular, we can directly write s−λi
F

i (ωs−ρ) as the image of the Laplace transform of a known function.
To clarify the point, let

F
(
ωs−ρ

)
=

∞∑
k=0

(
ωs−ρ

)k
=

1
1 − ωs−ρ

,

then (see [12, p. 47, Eqn. (1.9.13)])

s−λiFi (ωs−ρ
)

=
s−λi

(1 − ωs−ρ)i =
sρi−λi

(sρ − ω)i = L
[
xλi−1Ei

ρ,λi (ωxρ)
]

(s) . (27)

(
ω, α ∈ C,< (s) > 0,

∣∣∣ωs−ρ
∣∣∣ < 1

)
where the function Ei

ρ,λi (ωxρ) (s) is given by (10).

We observe that s−λi
F

i (ωs−ρ) (i = 1, 2, 3, · · · ) can be expressed as

s−λi
F

i (ωs−ρ
)

= s−λi
i∏

j=1

∞∑
k j=0

σ
(
k j

) (
ωs−ρ

)k j =

∞∑
k=0

C (k; i)ωks−λi−ρk, (28)

where the coefficients C (k; i) are given by

C (k; i) =
∑

k1+k2+···+ki=k

i∏
j=1

σ
(
k j

)
. (29)

Since

s−(λi+ρk−1)−1 =
L

[
tλi+ρk−1

]
(s)

Γ
(
λi + ρk

) (
<

(
λi + ρk

)
> 0

)
, (30)
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therefore, substituting (28) into (26) and taking into account the formula (30), we obtain that

L [N (t)] (s) = N0L
[

f (t)
]

(s) + N0

∞∑
i=1

(
−cβ

)i [
s−λi
F

i (ωs−ρ
)]
L

[
f (t)

]
(s)

= N0L
[

f (t)
]

(s) + N0

∞∑
i=1

(
−cβ

)i
 ∞∑

k=0

C (k; i)ωk

Γ
(
λi + ρk

)L [
tλi+ρk−1

]
(s)L

[
f (t)

]
(s)

 . (31)

Now taking the inverse Laplace transform of (31) and applying the convolution theorem, it follows that

N (t) = N0 f (t) + N0

∞∑
i=1

(
−cβ

)i
 ∞∑

k=0

C (k; i)ωk

Γ
(
λi + ρk

) ∫ t

0
(t − x)λi+ρk−1 f (x) dx


= N0 f (t) + N0

∞∑
i=1

(
−cβ

)i
∫ t

0

∞∑
k=0

C (k; i)
Γ
(
ρk + λi

) [
ω (t − x)ρ

]k (t − x)λi−1 f (x) dx

= N0 f (t) + N0

∞∑
i=1

(
−cβ

)i
∫ t

0
(t − x)λi−1

Fρ,λi
[
ω (t − x)ρ

]
f (x) dx

= N0 f (t) + N0

∞∑
i=1

(
−cβ

)i (
Jρ,λi,0+;ω f

)
(t)

= N0

 f (t) +

∞∑
i=1

(
−cβ

)i (
Jρ,λi,0+;ω f

)
(t)

 . (32)

Note that the interchange of order of integration and summation employed in above equation is permissible
because the coefficient C (k; i), as a finite sum of several bounded sequences, is also bounded for all k and
the series is absolutely convergent from its definition. This completes the proof.

As a direct consequence of the above theorem, we mention here a known result. Indeed, if we set
σ (k) =

(
γ
)

k /k!, ρ = α, λ = β in Theorem 2.3, we have the following corollary.

Corollary 2.4. ([6, Theorem 3.1]) Corresponding to the fractional kinetic equation (8), there holds its solution given
by

N (t) = N0

 f (t) +

∞∑
i=1

(
−cβ

)i
Eγi
α,βi,ω;0+

f (t)

 . (33)

Proof. The corollary follows from the summation identity:

∑
k1+···+ki=k

(
γ
)

k1

k1!
· · ·

(
γ
)

ki

ki!
=

(
γi

)
k

k!
. (34)

To prove (34), we need some results about the multivariable Lagrange polynomials. The multivariable
Lagrange polynomials are generated by (see [2]; see also [5])

r∏
j=1

{(
1 − x jt

)−α j
}

=

∞∑
n=0

1
(α1,··· ,αr)
n (x1, · · · , xr) tn. (35)

(
|t| < min

{
|x1|
−1 , · · · , |xr|

−1
})
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Its explicit representation is given by

1
(α1,··· ,αr)
n (x1, · · · , xr) =

∑
k1+···+kr=n

(α1)k1
· · · (αr)kr

xk1
1

k1!
· · ·

xkr
r

kr!
. (36)

Clearly, we have

∑
k1+···+ki=k

(
γ
)

k1

k1!
· · ·

(
γ
)

ki

ki!
= 1

(γ,··· ,γ)
k (1, · · · , 1) . (37)

By using ([2, p. 147, Eqn. (36)])

1
(α1,··· ,αr)
n (x, · · · , x) =

(
α1 + · · · + αr + n − 1

n

)
xn (n ∈N0) , (38)

with x = 1 and α j = γ
(
j = 1, · · · , i

)
, the result (34) follows.

If we set γ = 0 in Corollary 2.4, then Eγk
α,βk,ω;0+

reduces to the Riemann-Liouville fractional operator 0D−βk
t ,

and we have the following known result.

Corollary 2.5. ([19, p. 506]) If c > 0,<
(
β
)
> 0 and f (t) ∈ L (0,∞), then for the solution of the equation

N (t) −N0 f (t) = −cβ0D−βt N (t) , (39)

there exists the formula

N (t) = N0

 f (t) +

∞∑
k=1

(
−cβ

)k (
0D−βk

t f
)

(t)

 . (40)

The cases when the function f (t) ≡ 1, f (t) = tµ−1 (
<

(
µ
)
> 0

)
and f (t) = tµ−1e−at have been studied in

[19]. These choices for the function f (t) can be made applicable in our Theorem 2.3 also, but we omit further
details in this regard.

The following theorem considers the case when

σ
(
k j

)
=

[
γ
]

qk j

k j!

in (29), then the coefficients C (k; i) are specified by

C (k; i) =
∑

k1+···+ki=k

[
γ
]

qk1

k1!
· · ·

[
γ
]

qki

ki!
. (41)

It is clear from Theorem 2.3 that we just need to evaluate and represent the coefficients in (41) in a more
compact form as in (34) but it is not easy. However, we adopt a more concise and suitable method used in
the proof of the result given below.

Theorem 2.6. If c > 0,< (λ) > 0,<
(
ρ
)
> max

{
0,<

(
q
)
− 1

}
,<

(
q
)
> 0, λ,ω ∈ C and f (t) ∈ L (0,∞),

then for the solution of the equation involving operator (15):

N (t) −N0 f (t) = −cβ
(
E
ω;γ,q
0+;ρ,λN

)
(t) (42)
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there holds the formula

N (t) = N0 f (t) + N0

∞∑
i=1

(
−cβ

)i
∞∫

0

· · ·

∞∫
0︸    ︷︷    ︸

i times

(
H

λi,ρ:−

ω
∑i

j=1 tq
j ,0+:(λi,ρ)

f
)

(t) dµ (t1, · · · , ti) , (43)

where dµ (t1, · · · , ti) is given below by (47) and
(
H

λi,ρ:−

ω
∑i

j=1 tq
j ,0+:(λi,ρ)

f
)

(t) is defined by (17).

Proof. By applying the representation that

[
γ
]

qk j
=

1
Γ
(
γ
) ∞∫

0

tγ+qk j−1e−tdt
(
<

(
γ + qk j

)
> 0, j = 1, · · · , i

)
(44)

and

(t1 + · · · + ti)
k =

∑
k1+···+ki=k

k!
k1! · · · ki!

tk1
1 · · · t

ki
i (45)

to (41), and interchanging the order of integration and summation, we obtain

∑
k1+···+ki=k

[
γ
]

qk1

k1!
· · ·

[
γ
]

qki

ki!
=

1
k!

∞∫
0

· · ·

∞∫
0

(
tq
1 + · · · + tq

i

)k
dµ (t1, · · · , ti) , (46)

where k ∈N0 and

dµ (t1, · · · , ti) =

i∏
j=1

dµ
(
t j

)
=

i∏
j=1

tγ−1
j e−t j

Γ
(
γ
) dt, t j ∈ [0,∞) , j = 1, · · · , i. (47)

Then, substituting (46) into (24), we have

(
Jρ,λi,0+;ω f

)
(t) =

∫ t

0
(t − x)λi−1 f (x)

∞∑
k=0

[
ω (t − x)ρ

]k

Γ
(
ρk + λi

)
k!

∞∫
0

· · ·

∞∫
0

(
tq
1 + · · · + tq

i

)k
dµ (t1, · · · , ti) dx

=

∫ t

0
(t − x)λi−1 f (x)

∞∫
0

· · ·

∞∫
0

∞∑
k=0

[
ω (t − x)ρ

]k

Γ
(
ρk + λi

)
k!

(
tq
1 + · · · + tq

i

)k
dµ (t1, · · · , ti) dx

=

∫ t

0
(t − x)λi−1 f (x)

∞∫
0

· · ·

∞∫
0

0Ψ1

[
−(
λi, ρ

) ;ωt (t − x)ρ
]

dµ (t1, · · · , ti) dx

=

∞∫
0

· · ·

∞∫
0

∫ t

0
(t − x)λi−1 f (x) 0Ψ1

[
−(
λi, ρ

) ;ωt (t − x)ρ
]

dxdµ (t1, · · · , ti) , (48)

where we write t =
∑i

j=1 tq
j .

The inner integral with respect to variable x can be further expressed by using operator (17), that is,(
H

λi,ρ:−

ω
∑i

j=1 tq
j ,0+:(λi,ρ)

f
)

(t) =

∫ t

0
(t − x)λi−1 f (x) 0Ψ1

[
−(
λi, ρ

) ;ωt (t − x)ρ
]

dx.
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Hence,

(
Jρ,λi,0+;ω f

)
(t) =

∞∫
0

· · ·

∞∫
0

(
H

λi,ρ:−

ω
∑i

j=1 tq
j ,0+:(λi,ρ)

f
)

(t) dµ (t1, · · · , ti) , (49)

and (43) follows.

Remark 2.7. Since (9) is a special case of (17), we have(
E
ω;γ,q
0+;ρ,λN

)
(t) =

1
Γ
(
γ
) (
H

λ,ρ:(γ,ρ)
ω,0+:(λ,ρ)N

)
(t) , (50)

and equation (42) can also be expressed as

N (t) −N0 f (t) = −
cβ

Γ
(
γ
) (
H

λ,ρ:(γ,ρ)
ω,0+:(λ,ρ)N

)
(t) . (51)

In recent years the fractional kinetic equations involving specific f (t) have generated extensive interest
among scientists and mathematicians. A large number of equations and their solutions have been found
and studied with the help of special functions (see, for example [3], [6], [7], [9], and [20]). Here we consider
the equation (23) when f (t) is expressed by

f (t) = tα−1
Fρ,α (ωtρ) .

For convenience and clarity sake, we use the superscripts to indicate the particular coefficient of the kernel
function. For example,

F
σ1
ρ,λ

(ωtρ) =

∞∑
n=0

σ1 (n)
Γ
(
ρn + λ

) [ωtρ]n , (52)

and correspondingly

(
J
σ1
ρ,λ,a+;ωϕ

)
(x) =

∫ x

a
(x − t)λ−1

F
σ1
ρ,λ

[
ω (x − t)ρ

]
ϕ (t) dt (x > a) . (53)

Theorem 2.8. If c > 0, β > 0, λ, α, ρ, ω1, ω2 ∈ C (< (α) > 0,< (λ) > 0,<
(
ρ
)
> 0) and f (t) ∈ L (0,∞),

then the solution of the generalized fractional kinetic equation

N (t) −N0tα−1
F
σ2
ρ,α (ω2tρ) = −cβ

(
J
σ1
ρ,λ;0+;ω1

N
)

(t) (54)

is expressed by

N (t) = N0tα−1

F σ2
ρ,α (ω2tρ) +

∞∑
i=1

(−1)i cβitλi
F

Ω(m;σ3,σ2;ω1,ω2)
ρ,λi+α (ω1tρ)

 , (55)

where function F Ω(m;σ3,σ2;ω1,ω2)
ρ,λi+α (ω1tρ) is given by (56) below.

Proof. The solution of (54) can be obtained by using (24) with

f (t) = tα−1
F
σ2
ρ,α (ω2tρ) .
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We have (on using (11) and (14) )

J
σ3
ρ,λi,0+;ω1

[
xα−1
F
σ2
ρ,α (ω2xρ)

]
(t) =

∫ t

0
(t − x)λi−1

F
σ3
ρ,λi

[
ω1 (t − x)ρ

]
xα−1
F
σ2
ρ,α (ω2xρ) dx

=

∞∑
m=0

∞∑
n=0

σ3 (m) σ2 (n)ωm
1 ω

n
2

Γ
(
ρm + λi

)
Γ
(
ρn + α

) ∫ t

0
xα+ρn−1 (t − x)λi+ρm−1 dx

= tα−1tλi
∞∑

m=0

∞∑
n=0

σ3 (m) σ2 (n)
Γ
(
ρ (m + n) + λi + α

)ωm
1 ω

n
2tρ(m+n)

= tα−1tλi
∞∑

m=0

Ω (m; σ3, σ2;ω1, ω2)
Γ
(
ρm + λi + α

) ωm
1 tρm, (56)

where (in view of (29))

σ3 (m) =
∑

k1+···+ki=m

i∏
j=1

σ1

(
k j

)
(57)

and

Ω (m; σ3, σ2;ω1, ω2) =

m∑
n=0

σ3 (m − n) σ2 (n)
(
ω2

ω1

)n
. (58)

We can briefly write now

J
σ3
ρ,λi,0+;ω1

[
xα−1
F
σ2
ρ,α (ω2tρ)

]
(t) = tα−1tλi

F
Ω(m;σ3,σ2;ω1,ω2)
ρ,λi+α (ω1tρ) , (59)

and substituting (59) into (24), we get (55). This completes the proof.

The expression defining the coefficient Ω (m; σ3, σ2;ω1, ω2) above suggets that we can obtain closed form
solutions by suitably choosing the coefficients σ1 and σ2 such that the finite sum (58) is summable.

If we set ω1 = ω2 = ω in (58), so that

σ1 (m) =

(
ρ1

)
m

m!
and σ2 (n) =

(
ρ2

)
n

n!
,

and σ3 (m − n) is given by

σ3 (m − n) =

(
iρ1

)
m−n

(m − n)!
.

By applying the Chu-Vandermonde identity [15, p. 387, Eqn. (15.4.24)], we find that

Ω (m; σ3, σ2;ω1, ω2) =

(
iρ1 + ρ2

)
m

m!
.

Hence, we have the following corollary.

Corollary 2.9. ([6]) If c > 0, β > 0, α, ρ1, ρ2, ρ, ω, λ ∈ C,< (λ) > 0,<
(
ρ
)
> 0, then the solution of equation

N (t) −N0tα−1Eρ2
ρ,α (ωtρ) = −cβ

(
Eρ1

ρ,λ,ω;0+
N
)

(t) (60)

is given by

N (t) = N0tα−1

Eρ2
ρ,α (ωtρ) +

∞∑
i=1

(−1)i cβitλiEiρ1+ρ2

ρ,λi+α (ωtρ)

 . (61)
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3. Extensions of Generalized Fractional Kinetic Equations

In this section, we will investigate further extensions of the generalized fractional kinetic equation (23).

Theorem 3.1. If ai > 0, λi, ρ, ω ∈ C
(
< (λi) > 0,<

(
ρ
)
> 0, i = 1, · · · ,n

)
and f (t) ∈ L (0,∞),

then the solution of the extended form of the generalized fractional kinetic equation

N (t) −N0 f (t) = −

n∑
i=1

aiJρ,λi;0+,ωN (t) (62)

is given by

N (t) = N0

 f (t) +

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

(
Jρ,

∑n
i=1 λiki,0+;ω f

)
(t)

 , (63)

provided that the series on the right side of (63) exists, where the integral operator
(
Jρ,

∑n
i=1 λiki,0+;ω f

)
(t) is defined by

(14).

Proof. Applying the Laplace transform to (62) and using (21), we get

L [N (t)] (s) −N0L
[

f (t)
]

(s) = −

n∑
i=1

ais−λiF
(
ωs−ρ

)
L [N (t)] (s) . (64)

Solving for L [N (t)] (s), it gives

L [N (t)] (s) = N0

1 + F
(
ωs−ρ

) n∑
i=1

ais−λi


−1

L
[

f (t)
]

(s)

= N0

∞∑
k=0

(−1)k
F

k (ωs−ρ
)  n∑

i=1

ais−λi


k

L
[

f (t)
]

(s) . (65)(∣∣∣∣F (
ωs−ρ

) (
a1s−λ1 + · · · + ans−λn

)∣∣∣∣ < 1;< (s) > 0
)

We note (in view of the particular case (12)) that

F
k (ωs−ρ

)
=

∞∑
l=0

Ω (l; k)ωls−ρl (k = 1, 2, 3, · · · ) , (66)

where the coefficients Ω (l; k) are given by

Ω (l; k) =
∑

l1+l2+···+lk=l

σ (l1) · · · σ (lk) . (67)

On the other hand, we also note that n∑
i=1

ais−λi


k

=
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i s−

∑n
i=1 λiki , (68)

(k = 1, 2, 3, · · · )

where the summation is taken over all non-negative integers k1, · · · , kn, such that
∑n

i=1 ki = k.
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Substituting (66) and (68) into (65), we obtain

L [N (t)] (s) = N0L
[

f (t)
]

(s) + N0

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

×

∞∑
l=0

Ω (l; k)ωls−ρl−
∑n

i=1 λikiL
[

f (t)
]

(s)

= N0L
[

f (t)
]

(s) + N0

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

×

∞∑
l=0

Ω (l; k)ωl
L

[
tρl+

∑n
i=1 λiki−1

]
L

[
f (t)

]
(s)

Γ
(
ρl +

∑n
i=1 λiki

) . (69)

Taking the inverse Laplace transform of (69) and applying the convolution theorem of the Laplace trans-
forms, we have

N (t) = N0 f (t) + N0

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

×

∞∑
l=0

Ω (l; k)ωl

Γ
(
ρl +

∑n
i=1 λiki

) ∫ t

0
(t − x)ρl+

∑n
i=1 λiki−1 f (x) dx

= N0 f (t) + N0

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

×

∫ t

0
(t − x)

∑n
i=1 λiki−1

Fρ,
∑n

i=1 λiki

[
ω (t − x)ρ

]
f (x) dx

= N0

 f (t) +

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

(
Jρ,

∑n
i=1 λiki,0+;ω f

)
(t)

 , (70)

which proves Theorem 3.1.

Remark 3.2. Some special cases of (62) have been studied in [3, p. 28, Theorem 1] and [4, p. 89, Theorem 1].

Corollary 3.3. If ai > 0, λi, ρ, ω ∈ C
(
< (λi) > 0,<

(
ρ
)
> 0, i = 1, · · · ,n

)
and f (t) ∈ L (0,∞),

then the solution of the fractional kinetic equation

N (t) −N0 f (t) = −

n∑
i=1

aiE
γ
ρ,λi,ω;0+

N (t) (71)

is given by

N (t) = N0

 f (t) +

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

(
Eγk
ρ,

∑n
i=1 λiki,0+;ω

f
)

(t)

 , (72)

where the fractional integral operator
(
Eγk
ρ,

∑n
i=1 λiki,0+;ω

f
)

(t) is defined by (9).

If we set γ = 0 in Corollary 3.3, then the fractional integral operator Eγρ,λi,ω;0+
reduces to the Riemann-

Liouville fractional integral operator 0D−λi
t . We thus have the following result.
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Corollary 3.4. If ai > 0,< (λi) > 0 (i = 1, · · · ,n) and f (t) ∈ L (0,∞), then the solution of the fractional kinetic
equation

N (t) −N0 f (t) = −

n∑
i=1

ai

(
0D−λi

t N
)

(t) (73)

is given by

N (t) = N0

 f (t) +

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

aki
i

(
0D−

∑n
i=1 λiki

t f
)

(t)

 . (74)

Remark 3.5. It may be observed that Chaurasia and Singh [4, p. 89, Theorem 1.] have given the solution of (73) in
a markedly different form by using the Sumudu transform.

By using the same notations and methods employed in the proof of Theorem 2.8, we can easily derive
the following theorem.

Theorem 3.6. If ai > 0, λi, α, ρ, ω1, ω2 ∈ C (< (α) > 0, < (λi) > 0, <
(
ρ
)
> 0, i = 1, · · · ,n) and f (t) ∈ L (0,∞),

then the solution of the generalized fractional kinetic equation

N (t) −N0tα−1
F
σ2
ρ,α (ω2tρ) = −

n∑
i=1

ai

(
J
σ1
ρ,λi;0+;ω1

N
)

(t) (75)

is expressed by

N (t) = N0tα−1
F
σ2
ρ,α (ω2tρ) + N0tα−1

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

(
aitλi

)ki
F

Ω(m;σ3,σ2;ω1,ω2)
ρ,α+

∑n
i=1 λiki

(ω1tρ) , (76)

where the function F Ω(m;σ3,σ2;ω1,ω2)
ρ,λi+α (ω1tρ) is given by (56).

Following the substitutions σ1 (m) =
(
ρ1

)
m/m! and σ2 (n) =

(
ρ2

)
n/n! in Theorem 3.6 and using (58), we obtain

the following corollary:

Corollary 3.7. If ai > 0, λi, α, ρ1, ρ2, ρ, ω ∈ C (< (λi) > 0,<
(
ρ
)
> 0,< (α) > 0, i = 1, · · · ,n) and f (t) ∈ L (0,∞),

then the solution of the generalized fractional kinetic equation

N (t) −N0tα−1Eρ2
ρ,α (ωtρ) = −

n∑
i=1

ai

(
Eρ1

ρ,λi;0+,ωN
)

(t) (77)

is given by

N (t) = N0tα−1Eρ2
ρ,α (ωtρ) + N0tα−1

∞∑
k=1

(−1)k
∑

k1+···+kn=k

k!
k1! · · · kn!

n∏
i=1

(
aitλi

)ki
Ekρ1+ρ2

ρ,α+
∑n

i=1 λiki
(ωtρ) , (78)

where Ekρ1+ρ2

ρ,α+
∑n

i=1 λiki
(ωtρ) is the generalized Mittag-Leffler function defined by (10).
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