

Signed Total k-independence in Digraphs

Lutz Volkmann ${ }^{\text {a }}$
${ }^{a}$ Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany

Abstract

Let $k \geq 2$ be an integer. A function $f: V(D) \rightarrow\{-1,1\}$ defined on the vertex set $V(D)$ of a digraph D is a signed total k-independence function if $\sum_{x \in N^{-}(v)} f(x) \leq k-1$ for each $v \in V(D)$, where $N^{-}(v)$ consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by $w(f)=\sum_{x \in V(D)} f(x)$. The maximum of weights $w(f)$, taken over all signed total k-independence functions f on D, is the signed total k-independence number $\alpha_{s t}^{k}(D)$ of D.

In this work, we mainly present upper bounds on $\alpha_{s t}^{k}(D)$, as for example $\alpha_{s t}^{k}(D) \leq n-2\left\lceil\left(\Delta^{-}+1-k\right) / 2\right\rceil$ and $$
\alpha_{s t}^{k}(D) \leq \frac{\Delta^{+}+2 k-\delta^{+}-2}{\Delta^{+}+\delta^{+}} \cdot n,
$$ where n is the order, Δ^{-}the maximum indegree and Δ^{+}and δ^{+}are the maximum and minimum outdegree of the digraph D. Some of our results imply well-known properties on the signed total 2-independence number of graphs.

1. Terminology and Introduction

In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and arc set of a digraph D are denoted by $V(D)$ and $A(D)$, respectively. The $\operatorname{order} n=n(D)$ of a digraph D is the number of its vertices. If $u v$ is an arc of D, then we write $u \rightarrow v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v)=N_{D}^{-}(v)$ and $N^{+}(v)=N_{D}^{+}(v)$, respectively. The numbers $d_{D}^{-}(v)=d^{-}(v)=\left|N^{-}(v)\right|$ and $d_{D}^{+}(v)=d^{+}(v)=\left|N^{+}(v)\right|$ are the indegree and outdegree of v, respectively. The minimum indegree, maximum indegree, minimum outdegree and maximum outdegree of D are denoted by $\delta^{-}=\delta^{-}(D), \Delta^{-}=\Delta^{-}(D), \delta^{+}=\delta^{+}(D)$ and $\Delta^{+}=\Delta^{+}(D)$, respectively. A digraph D is called inregular or r-inregular if $\delta^{-}(D)=\Delta^{-}(D)=r$ and outregular or r-outregular if $\delta^{+}(D)=\Delta^{+}(D)=r$. We say that D is regular or r-regular if it is r-inregular and r-outregular. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X, v)$ is the set of arcs from X to v and $E(v, X)$ the set of arcs from v to X. If X and Y are two disjoint vertex sets of a digraph D, then $E(X, Y)$ is the set of arcs from X to Y. The number of vertices of odd indegree and even indegree are denoted by n_{o} and n_{e}, respectively. If $X \subseteq V(D)$ and f is a mapping from $V(D)$ into some set of numbers, then $f(X)=\sum_{x \in X} f(x)$. For a vertex v in $V(D)$, we denote $f\left(N^{-}(v)\right)$ by $f[v]$ for notational convenience. The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e.

[^0]In this work, we initiate the concept of the signed total k-independence number of a digraph. For graphs G and $k=2$, this parameter was introduced by Wang and Shan [5] as a certain dual to the signed total domination number. The signed total domination number was introduced by Zelinka [7]. A two-valued function $f: V(G) \rightarrow\{-1,1\}$ is a signed total 2-independence function if $f(N(v)) \leq 1$ for each vertex $v \in V(G)$, where $N(v)$ is the neighborhood of the vertex v in the graph G. The sum $f(V(G))$ is called the weight $w(f)$ of f. The maximum of weights $w(f)$, taken over all signed total 2-independence functions f on G, is called the signed total 2-independence number of G, denoted by $\alpha_{s t}^{2}(G)$. The signed total 2-independence number is called negative decision number by Wang [4], and its possible application in social networks was also presented. This parameter has been studied in [4,5] and [6]. Detailed information on domination and independence can be found in the two books by Haynes, Hedetniemi and Slater [1, 2].

Let $k \geq 2$ be an integer. A two-valued function $f: V(D) \rightarrow\{-1,1\}$ is a signed total k-independence function if $f[v] \leq k-1$ for every $v \in V(D)$. The weight of a signed total k-independence function f is defined by $w(f)=f(V(D))$. The maximum of weights $w(f)$, taken over all signed total k-independence functions f on D, is called the signed total k-independence number of D, denoted by $\alpha_{s t}^{k}(D)$. A signed total k-independence function of weight $\alpha_{s t}^{k}(D)$ is called a $\alpha_{s t}^{k}(D)$-function. If $k \geq n$, then obviously $\alpha_{s t}^{k}(D)=n$. Therefore we assume throughout this paper that $k \leq n-1$. The signed total k-independence number only exists for digraphs D with $\delta^{-}(D) \geq 1$. The signed total 2-independence number of a digraph is a dual to the signed total domination number in a certain sense. The signed total domination number for digraphs was introduced by Sheikholeslami in [3].

Throughout this paper, if f is a $\alpha_{s t}^{k}(D)$-function, then we let P and M denote the sets of those vertices in D which assigned under f the values 1 and -1 , respectively, and we let $|P|=p$ and $|M|=m$. Thus $w(f)=|P|-|M|=n-2 m=2 p-n$.

We mainly present upper bounds on $\alpha_{s t}^{k}(D)$. In addition, we prove some Nordhaus-Gaddum type inequalities. A lot of examples demonstrate the sharpness of the obtained bounds. Some of our results imply well-known properties on the signed total 2 -independence number of graphs given by Wang [4], Wang, Shan [5] and Wang, Tong, Volkmann [6].

Since $N_{D(G)}^{-}(v)=N_{G}(v)$ for each vertex $v \in V(G)=V(D(G))$, the following useful observation is valid.
Proposition 1.1. Let $k \geq 2$ be an integer. If $D(G)$ is the associated digraph of a graph G with $\delta(G) \geq 1$, then we have $\alpha_{s t}^{k}(D(G))=\alpha_{s t}^{k}(G)$.

2. Upper Bounds

Theorem 2.1. If $k \geq 2$ is an integer and D a digraph of order $n \geq k+1$ with $\delta^{-}(D) \geq 1$, then

$$
2 k-2-n \leq \alpha_{s t}^{k}(D) \leq n-2\left\lceil\frac{\Delta^{-}(D)+1-k}{2}\right\rceil .
$$

Proof. Let $w \in V(D)$ be a vertex of maximum indegree $d^{-}(w)=\Delta^{-}=\Delta^{-}(D)$, and let f be a $\alpha_{s t}^{k}(D)$-function.
The condition $f[w] \leq k-1$ leads to $|E(P, w)|-|E(M, w)| \leq k-1$, and since w is a vertex of maximum indegree, we have $|E(P, w)|+|E(M, w)|=\Delta^{-}$. Combining the last two inequalities, we deduce that $2|E(M, w)| \geq \Delta^{-}-k+1$. It follows that

$$
m \geq|E(M, w)|=\frac{2|E(M, w)|}{2} \geq \frac{\Delta^{-}+1-k}{2}
$$

and so $m \geq\left\lceil\left(\Delta^{-}+1-k\right) / 2\right\rceil$. This yields the upper bound

$$
\alpha_{s t}^{k}(D)=n-2 m \leq n-2\left\lceil\frac{\Delta^{-}+1-k}{2}\right\rceil .
$$

For the lower bound define the function $f: V(D) \rightarrow\{-1,1\}$ by $f\left(a_{1}\right)=f\left(a_{2}\right)=\ldots=f\left(a_{k-1}\right)=1$ for an arbitrary set of $k-1$ vertices $A=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ and $f(x)=-1$ for each vertex $x \in V(D)-A$. Obviously, f is a signed total k-independence function on D of weight $2 k-2-n$ and thus $\alpha_{s t}^{k}(D) \geq 2 k-2-n$.

Let K_{n}^{*} be the complete digraph of order n. If $n \geq 3$, then it is straightforward to verify that $\alpha_{s t}^{n-1}\left(K_{n}^{*}\right)=n-4$. Thus the lower bound in Theorem 2.1 is sharp.

Example 2.2. Let $k \geq 2$ be an integer, and let $K_{1, \Delta}$ be the star with the center w of degree $\Delta \geq k$ and the leaves $v_{1}, v_{2}, \ldots, v_{\Delta}$. Now let D be the associated digraph of $K_{1, \Delta}$. Then $\Delta^{-}(D)=\Delta$ and $\delta^{-}(D)=1$.

Assume first that $\Delta-k$ is even. Define the function $f: V(D) \rightarrow\{-1,1\}$ by $f(w)=f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=$ $f\left(v_{(\Delta+k-2) / 2}\right)=1$ and $f(x)=-1$ otherwise. Then

$$
f[w]=\frac{\Delta+k-2}{2}-\frac{\Delta+2-k}{2}=k-2
$$

and $f[x]=1 \leq k-1$ for $x \neq w$. Therefore f is a signed total k-independence function on D with $w(f)=k-1$. Hence Theorem 2.1 implies that

$$
k-1 \leq \alpha_{s t}^{k}(D) \leq n(D)-2\left\lceil\frac{\Delta+1-k}{2}\right\rceil=k-1
$$

and thus $\alpha_{s t}^{k}(D)=k-1$.
Assume second that $\Delta-k \geq 1$ is odd. Define the function $f: V(D) \rightarrow\{-1,1\}$ by $f(w)=f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=$ $f\left(v_{(\Delta+k-1) / 2}\right)=1$ and $f(x)=-1$ otherwise. Then

$$
f[w]=\frac{\Delta+k-1}{2}-\frac{\Delta+1-k}{2}=k-1
$$

and $f[x]=1 \leq k-1$ for $x \neq w$. Therefore f is a signed total k-independence function on D with $w(f)=k$. Hence Theorem 2.1 implies that

$$
k \leq \alpha_{s t}^{k}(D) \leq n(D)-2\left\lceil\frac{\Delta+1-k}{2}\right\rceil=k
$$

and thus $\alpha_{s t}^{k}(D)=k$.
Example 2.2 demonstrates that the upper bound in Theorem 2.1 is sharp.
Corollary 2.3. ([6]) If G is a graph of order n without isolated vertices and maximum degree Δ, then $\alpha_{s t}^{2}(G) \leq$ $n-2\lfloor\Delta / 2\rfloor$.

Proof. Since $\Delta=\Delta^{-}(D(G))$, it follows from Proposition 1.1 and Theorem 2.1 that

$$
\alpha_{s t}^{2}(G)=\alpha_{s t}^{2}(D(G)) \leq n-2\left\lceil\frac{\Delta^{-}(D(G))-1}{2}\right\rceil=n-2\left\lfloor\frac{\Delta}{2}\right\rfloor
$$

Corollary 2.4. Let $k \geq 2$ be an integer. If D is a digraph of order $n \geq k+1$ with $\delta^{-}(D) \geq 1$, then $\alpha_{s t}^{k}(D)=n$ if and only if $\Delta^{-}(D) \leq k-1$.

Proof. If $\Delta^{-}(D) \leq k-1$, then $f: V(D) \rightarrow\{-1,1\}$ with $f(v)=1$ for each vertex $v \in V(D)$ is a signed total k-independence function on D of weight n and thus $\alpha_{s t}^{k}(D)=n$.

Conversely, assume that $\alpha_{s t}^{k}(D)=n$. If we suppose that $\Delta^{-}(D) \geq k$, then Theorem 2.1 leads to the contradiction $n=\alpha_{s t}^{k}(D) \leq n-2$. Therefore $\Delta^{-}(D) \leq k-1$, and the proof is complete.
Theorem 2.5. Let $k \geq 2$ be an even integer. If D is a digraph of order $n \geq k+1$ with $\delta^{+}, \delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \min \left\{\frac{n\left(\Delta^{+}+k-2\right)+n_{o}-|A(D)|}{\Delta^{+}}, \frac{n\left(k-2-\delta^{+}\right)+n_{o}+|A(D)|}{\delta^{+}}\right\}
$$

Proof. Let V_{o} and V_{e} be the vertex sets of odd and even indegree, respectively. Now let f be a $\alpha_{s t}^{k}(D)$-function. The conditions $f[v] \leq k-1$ and k even imply that $f[v] \leq k-2$ for $v \in V_{e}$. It follows that

$$
\sum_{v \in V(D)} f[v]=\sum_{v \in V_{o}} f[v]+\sum_{v \in V_{e}} f[v] \leq n_{o}(k-1)+\left(n-n_{o}\right)(k-2)=n(k-2)+n_{o}
$$

and thus

$$
\begin{aligned}
n(k-2)+n_{o} & \geq \sum_{v \in V(D)} f[v]=\sum_{v \in V(D)} d^{+}(v) f(v)=\sum_{v \in P} d^{+}(v)-\sum_{v \in M} d^{+}(v) \\
& =\sum_{v \in V(D)} d^{+}(v)-2 \sum_{v \in M} d^{+}(v)=2 \sum_{v \in P} d^{+}(v)-\sum_{v \in V(D)} d^{+}(v) \\
& =|A(D)|-2 \sum_{v \in M} d^{+}(v)=2 \sum_{v \in P} d^{+}(v)-|A(D)| .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
n(k-2)+n_{o} \geq|A(D)|-2(n-p) \Delta^{+} \tag{1}
\end{equation*}
$$

as well as

$$
\begin{equation*}
n(k-2)+n_{o} \geq 2 p \delta^{+}-|A(D)| \tag{2}
\end{equation*}
$$

and so

$$
\begin{equation*}
2 p \leq \frac{k n+2 n \Delta^{+}-|A(D)|+n_{o}-2 n}{\Delta^{+}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 p \leq \frac{k n+|A(D)|+n_{o}-2 n}{\delta^{+}} . \tag{4}
\end{equation*}
$$

Using (3) and (4), we obtain

$$
\alpha_{s t}^{k}(D)=2 p-n \leq \frac{n\left(\Delta^{+}+k-2\right)-|A(D)|+n_{o}}{\Delta^{+}}
$$

and

$$
\alpha_{s t}^{k}(D)=2 p-n \leq \frac{n\left(k-2-\delta^{+}\right)+|A(D)|+n_{o}}{\delta^{+}}
$$

and the last two inequalities lead to the desired result.
Corollary 2.6. Let $k \geq 2$ be an even integer. If D is a digraph of order $n \geq k+1$ with $\delta^{+}, \delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n\left(\Delta^{+}+2 k-\delta^{+}-4\right)+2 n_{o}}{\Delta^{+}+\delta^{+}}
$$

Proof. According to (1) and (2), we have

$$
2 p \Delta^{+} \leq n\left(2 \Delta^{+}+k-2\right)-|A(D)|+n_{o}
$$

and

$$
2 p \delta^{+} \leq n(k-2)+|A(D)|+n_{0} .
$$

Adding these two inequalities, we arrive at

$$
2 p \leq \frac{2 n\left(\Delta^{+}+k-2\right)+2 n_{o}}{\Delta^{+}+\delta^{+}}
$$

and this yields to the desired bound immediately.

Corollary 2.7. If $k \geq 2$ is an even integer and D an r-outregular digraph of order $n \geq k+1$ with $r \geq 1$ and $\delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n(k-2)+n_{o}}{r}
$$

Corollary 2.8. Let $k \geq 2$ be an even integer and D an r-regular digraph of order $n \geq k+1$. If $r \geq 2$ is even, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n(k-2)}{r}
$$

In the case that k is odd, we obtain the next results analogously to the proofs of Theorem 2.5 and Corollary 2.6.

Theorem 2.9. Let $k \geq 3$ be an odd integer. If D is a digraph of order $n \geq k+1$ with $\delta^{+}, \delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \min \left\{\frac{n\left(\Delta^{+}+k-2\right)-|A(D)|+n_{e}}{\Delta^{+}}, \frac{n\left(k-2-\delta^{+}\right)+|A(D)|+n_{e}}{\delta^{+}}\right\}
$$

Corollary 2.10. Let $k \geq 3$ be an odd integer. If D is a digraph of order $n \geq k+1$ with $\delta^{+}, \delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n\left(\Delta^{+}+2 k-\delta^{+}-4\right)+2 n_{e}}{\Delta^{+}+\delta^{+}}
$$

Corollary 2.11. Let $k \geq 3$ be an odd integer. If D is an r-outregular digraph of order $n \geq k+1$ with $r \geq 1$ and $\delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n(k-2)+n_{e}}{r}
$$

Corollary 2.12. Let $k \geq 3$ be an odd integer and D an r-regular digraph of order $n \geq k+1$. If $r \geq 1$ is odd, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n(k-2)}{r}
$$

Example 2.13. Let $u_{1}, u_{2}, \ldots, u_{p}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be the partite sets of the complete bipartite digraph $K_{p, p}^{*}$ and let k be an integer such that $2 \leq k \leq p$.

Assume that $k=2 t$ is even and $p=2 s+1$ is odd. Define the function $f: V\left(K_{p, p}^{*}\right) \rightarrow\{-1,1\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=$ $\ldots=f\left(u_{t+s}\right)=f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=f\left(v_{t+s}\right)=1$ and $f(x)=-1$ otherwise. Then $f[x]=t+s-(s+1-t)=2 t-1=$ $k-1$ for each vertex $x \in V\left(K_{p, p}^{*}\right)$. Therefore f is a signed total k-independence function on $K_{p, p}^{*}$ with $w(f)=2(k-1)$. Hence Corollary 2.7 implies that

$$
2(k-1) \leq \alpha_{s t}^{k}\left(K_{p, p}^{*}\right) \leq \frac{2 p(k-2)+2 p}{p}=2(k-1)
$$

and thus $\alpha_{s t}^{k}\left(K_{p, p}^{*}\right)=2(k-1)$ when k is even and p is odd.
Assume that $k=2 t$ and $p=2 s$ are even. Define $f: V\left(K_{p, p}^{*}\right) \rightarrow\{-1,1\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=\ldots=f\left(u_{t+s-1}\right)=$ $f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=f\left(v_{t+s-1}\right)=1$ and $f(x)=-1$ otherwise. Then $f[x]=t+s-1-(s+1-t)=2 t-2=k-2$ for each vertex $x \in V\left(K_{p, p}^{*}\right)$. Therefore f is a signed total k-independence function on $K_{p, p}^{*}$ with $w(f)=2(k-2)$. Hence Corollary 2.8 implies that

$$
2(k-2) \leq \alpha_{s t}^{k}\left(K_{p, p}^{*}\right) \leq \frac{2 p(k-2)}{p}=2(k-2)
$$

and thus $\alpha_{s t}^{k}\left(K_{p, p}^{*}\right)=2(k-2)$ when k and p are even.
Assume that $k=2 t+1$ and $p=2 s+1$ are odd. Define $f: V\left(K_{p, p}^{*}\right) \rightarrow\{-1,1\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=\ldots=f\left(u_{t+s}\right)=$ $f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=f\left(v_{t+s}\right)=1$ and $f(x)=-1$ otherwise. Then $f[x]=t+s-(s+1-t)=2 t-1=k-2$ for each vertex $x \in V\left(K_{p, p}^{*}\right)$. Therefore f is a signed total k-independence function on $K_{p, p}^{*}$ with $w(f)=2(k-2)$. Hence Corollary 2.12 implies that

$$
2(k-2) \leq \alpha_{s t}^{k}\left(K_{p, p}^{*}\right) \leq \frac{2 p(k-2)}{p}=2(k-2)
$$

and thus $\alpha_{s t}^{k}\left(K_{p, p}^{*}\right)=2(k-2)$ when k and p are odd.
Assume that $k=2 t+1$ is odd and $p=2 s$ is even. Define $f: V\left(K_{p, p}^{*}\right) \rightarrow\{-1,1\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=\ldots=$ $f\left(u_{t+s}\right)=f\left(v_{1}\right)=f\left(v_{2}\right)=\ldots=f\left(v_{t+s}\right)=1$ and $f(x)=-1$ otherwise. Then $f[x]=t+s-(s-t)=2 t=k-1$ for each vertex $x \in V\left(K_{p, p}^{*}\right)$. Therefore f is a signed total k-independence function on $K_{p, p}^{*}$ with $w(f)=2(k-1)$. Hence Corollary 2.11 implies that

$$
2(k-1) \leq \alpha_{s t}^{k}\left(K_{p, p}^{*}\right) \leq \frac{2 p(k-2)+2 p}{p}=2(k-1)
$$

and thus $\alpha_{s t}^{k}\left(K_{p, p}^{*}\right)=2(k-1)$ when k is odd and p is even.
Example 2.13 shows that Corollaries 2.7, 2.8, 2.11 and 2.12 and therefore Theorems 2.5 and 2.9 as well as Corollaries 2.6 and 2.10 are sharp.

Corollary 2.14. ([5]) Let G be a graph of order n without isolated vertices, maximum degree Δ and minimum degree δ. If $n_{0}(G)$ is the number of vertices of odd degree, then

$$
\alpha_{s t}^{2}(G) \leq \frac{n(\Delta-\delta)+2 n_{0}(G)}{\Delta+\delta}
$$

Proof. Since $\delta=\delta^{+}(D(G)), \Delta=\Delta^{+}(D(G)), n=n(D(G))$ and $n_{0}=n_{0}(G)$, it follows from Corollary 2.6 and Proposition 1.1 that

$$
\alpha_{s t}^{2}(G)=\alpha_{s t}^{2}(D(G)) \leq \frac{n\left(\Delta^{+}(D(G))-\delta^{+}(D(G))\right)+2 n_{0}}{\Delta^{+}(D(G))+\delta^{+}(D(G))}=\frac{n(\Delta-\delta)+2 n_{0}(G)}{\Delta+\delta}
$$

Corollary 2.15. ([4,5]) If G is an r-regular graph of order n with $r \geq 1$, then $\alpha_{s t}^{2}(G) \leq n / r$ when r is odd and $\alpha_{s t}^{2}(G) \leq 0$ when r is even.

Theorem 2.16. $k \geq 2$ be an integer. If D is a digraph of order $n \geq k+1$ and minimum indegree $\delta^{-} \geq k-1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n}{\Delta^{+}}\left(\Delta^{+}-2\left\lceil\frac{\delta^{-}+1-k}{2}\right\rceil\right)
$$

Proof. Let f be a $\alpha_{s t}^{k}(D)$-fuction. As $f[x] \leq k-1$, we deduce that $|E(P, x)|-|E(M, x)| \leq k-1$ for each vertex $x \in V(D)$. It follows that

$$
\delta^{-} \leq d^{-}(x)=|E(P, x)|+|E(M, x)| \leq 2|E(M, x)|+k-1
$$

and so $|E(M, x)| \geq\left\lceil\left(\delta^{-}+1-k\right) / 2\right\rceil$ for each vertex $x \in V(D)$. This leads to

$$
\begin{aligned}
n\left\lceil\frac{\delta^{-}+1-k}{2}\right\rceil & \leq \sum_{x \in V(D)}|E(M, x)|=\sum_{x \in M}|E(M, x)|+\sum_{x \in P}|E(M, x)| \\
& =\sum_{x \in M}|E(x, M)|+\sum_{x \in M}|E(x, P)|=\sum_{x \in M} d^{+}(x) \leq m \Delta^{+}
\end{aligned}
$$

and thus

$$
m \geq \frac{n}{\Delta^{+}}\left\lceil\frac{\delta^{-}+1-k}{2}\right\rceil
$$

It follows that

$$
\alpha_{s t}^{k}(D)=n-2 m \leq \frac{n}{\Delta^{+}}\left(\Delta^{+}-2\left\lceil\frac{\delta^{-}+1-k}{2}\right\rceil\right)
$$

Counting the arcs from P to M, we obtain the next theorem analogously to the proof of Theorem 2.16.

Theorem 2.17. Let $k \geq 2$ be an integer. If D is a digraph of order $n \geq k+1$ with $\delta^{+}, \delta^{-} \geq 1$, then

$$
\alpha_{s t}^{k}(D) \leq \frac{n}{\delta^{+}}\left(2\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor-\delta^{+}\right) .
$$

Note that Theorems 2.16 and 2.17 also imply Corollaries 2.8 and 2.12 immediately.
Theorem 2.18. Let $k \geq 2$ be an integer and D a digraph of order $n \geq k+1$ with $\delta^{-} \geq 1$. If $\delta^{+}-\left\lfloor\left(\Delta^{-}+k-1\right) / 2\right\rfloor \geq 0$, then

$$
\alpha_{s t}^{k}(D) \leq n+k-2+\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor-\sqrt{\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor\right)^{2}+4 n\left(\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor\right)}
$$

Proof. Let f be a $\alpha_{s t}^{k}(D)$-function. The condition $f[x] \leq k-1$ implies that $|E(P, x)|+1-k \leq|E(M, x)|$ for each vertex $x \in P$. It follows that

$$
\Delta^{-} \geq d^{-}(x)=|E(P, x)|+|E(M, x)| \geq 2|E(P, x)|+1-k
$$

and so $|E(P, x)| \leq\left\lfloor\left(\Delta^{-}+k-1\right) / 2\right\rfloor$ for each $x \in P$. Hence we deduce that

$$
|E(D[P])|=\sum_{x \in P}|E(P, x)| \leq p\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor
$$

and thus

$$
\begin{equation*}
|E(P, M)|=\sum_{x \in P} d^{+}(x)-|E(D[P])| \geq p \delta^{+}-p\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor=(n-m)\left(\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor\right) \tag{5}
\end{equation*}
$$

Because of $f[x] \leq k-1$, each vertex of M has most $m+k-2$ in-neighbors in P. and so $|E(P, M)| \leq m(m+k-2)$. Using (5), we conclude that

$$
(n-m)\left(\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor\right) \leq|E(P, M)| \leq m(m+k-2)
$$

and therefore

$$
m^{2}+m\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{-}+k-1}{2}\right\rfloor\right)-n\left(\delta^{+}-\left\lfloor\frac{\Delta+k-1}{2}\right\rfloor\right) \geq 0
$$

This leads to

$$
m \geq-\frac{1}{2}\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)+\sqrt{\frac{1}{4}\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)^{2}+n\left(\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)}
$$

and we obtain the desired bound as follows

$$
\alpha_{s}^{k}(D)=n-2 m \leq n+k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor-\sqrt{\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)^{2}+4 n\left(\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)} . \square
$$

3. Nordhaus-Gaddum Type Results

The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ such that for any two distinct vertices u, v the arc $u v$ belongs to \bar{D} if and only if $u v$ does not belong to D. As an application of Theorem 2.1 and Corollaries 2.4, 2.7, 2.8, 2.11 and 2.12, we shall prove some Nordhaus-Gaddum type results.

Theorem 3.1. Let $k \geq 2$ be an integer. If D is a digraph of order $n \geq k+1$ such that $\delta^{-}(D), \delta^{-}(\bar{D}) \geq 1$, then

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-1
$$

with equality only if D is inregular.
Proof. As $\Delta^{-}(D)+\Delta^{-}(\bar{D}) \geq n-1$, Theorem 2.1 implies that

$$
\begin{align*}
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) & \leq n-2\left\lceil\frac{\Delta^{-}(D)+1-k}{2}\right\rceil+n-2\left\lceil\frac{\Delta^{-}(\bar{D})+1-k}{2}\right\rceil \tag{6}\\
& \leq n-\Delta^{-}(D)+k-1+n-\Delta^{-}(\bar{D})+k-1 \\
& =2 n+2 k-2-\Delta^{-}(D)-\Delta^{-}(\bar{D}) \tag{7}\\
& \leq n+2 k-1
\end{align*}
$$

and this is the desired Nordhaus-Gaddum bound. Let $d_{D}^{-}(u)=\delta^{-}(D)$. If D is not inregular, then $\delta^{-}(D)<$ $\Delta^{-}(D)$ and therefore

$$
\begin{aligned}
\Delta^{-}(D)+\Delta^{-}(\bar{D}) & \geq \Delta^{-}(D)+d_{\bar{D}}^{-}(u)=\Delta^{-}(D)+d_{\bar{D}}^{-}(u)+d_{D}^{-}(u)-d_{D}^{-}(u) \\
& =\Delta^{-}(D)+n-1-d_{D}^{-}(u)=\Delta^{-}(D)+n-1-\delta^{-}(D) \geq n .
\end{aligned}
$$

Using this inequality chain and (7), we obtain in the case that D is not inregular the better bound $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-2$. This completes the proof.

For regular digraphs we shall improve the Nordhaus-Gaddum bound given in Theorem 3.1.
Theorem 3.2. Let $k \geq 2$ be an integer, and let D be an r-regular digraph of order $n \geq k+1$ such that $r \geq 1$ and $n-r-1 \geq 1$. If $r \geq k$ or $n-r-1 \geq k$, then

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3 .
$$

Proof. Note that \bar{D} is $(n-r-1)$-regular.
Case 1. Assume that $k \geq 2$ is even.
Subcase 1.1. Assume that r and $n-r-1$ are even. Then (6) implies that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n-(r+2-k)+n-(n-r-1+2-k)=n+2 k-3 .
$$

Subcase 1.2. Assume that $r \geq k$ and $n-r-1 \geq k$. Furthermore, assume that r or $n-r-1$ is odd, say r is odd. Since k is even and $r \geq k$, we observe that $k+1 \leq r \leq n-k-1$ and thus $n \geq 2 k+2$. Corollary 2.7 implies that

$$
\begin{align*}
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) & \leq n(k-1)\left(\frac{1}{r}+\frac{1}{n-r-1}\right) \\
& \leq n(k-1) \max \left\{\frac{1}{k+1}+\frac{1}{n-k-2}, \frac{1}{n-k-1}+\frac{1}{k}\right\} \\
& \leq n(k-1)\left(\frac{1}{n-k-1}+\frac{1}{k}\right) . \tag{8}
\end{align*}
$$

Now we show that

$$
\begin{equation*}
n(k-1)\left(\frac{1}{n-k-1}+\frac{1}{k}\right)<n+2 k-2 . \tag{9}
\end{equation*}
$$

Inequality (9) is equivalent to

$$
\begin{equation*}
n k^{2}+n^{2}+2 k>n+2 k^{3}+2 k n . \tag{10}
\end{equation*}
$$

Since $n \geq 2 k+2$, we deduce that

$$
n k^{2}+n^{2}+2 k \geq(2 k+2) k^{2}+n(2 k+2)+2 k=2 k^{3}+2 k^{2}+2 k n+2 n+2 k>2 k^{3}+2 k n+n
$$

Therefore (10) and so (9) are proved. The inequalities (8) and (9) show that $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3$ in that case.

Subcase 1.3. Assume that $r \geq k$ and $n-r-1 \leq k-1$ or $r \leq k-1$ and $n-r-1 \geq k$, say $r \geq k$ and $n-r-1 \leq k-1$. Note that $n=(n-r-1)+r+1 \leq k-1+r+1=r+k$.

Subcase 1.3.1. Assume that r is even. It follows from Corollaries 2.4 and 2.8 that

$$
\begin{equation*}
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-2)}{r}+n \tag{11}
\end{equation*}
$$

Since $n \leq r+k$ and $r \geq k$, we observe that

$$
n(k-2) \leq(r+k)(k-2)=r(k-2)+k(k-2) \leq r(k-2)+r(k-1)=r(2 k-3)
$$

Using this inequality chain and (11), we obtain

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-2)}{r}+n \leq n+2 k-3
$$

Subcase 1.3.2. Assume that r is odd. Since k is even, we see that $r \geq k+1$. It follows from Corollaries 2.4 and 2.7 that

$$
\begin{equation*}
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-1)}{r}+n \tag{12}
\end{equation*}
$$

Since $n \leq r+k$ and $r \geq k+1$, we observe that

$$
n(k-1) \leq(r+k)(k-1)=r(k-1)+k(k-1)<r(k-1)+r(k-1)=r(2 k-2)
$$

Using this inequality chain and (12), we obtain

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-1)}{r}+n<\frac{r(2 k-2)}{r}+n=n+2 k-2
$$

and thus $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3$.
Case 2. Assume that $k \geq 3$ is odd.
Subcase 2.1. Assume that r and $n-r-1$ are odd. Then (6) implies as in Subcase 1.1 that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3
$$

Subcase 2.2. Assume that $r \geq k$ and $n-r-1 \geq k$. Furthermore, assume that r or $n-r-1$ is even, say r is even. Since k is odd and $r \geq k$, we observe that $k+1 \leq r \leq n-k-1$ and thus $n \geq 2 k+2$. Corollary 2.11 implies that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n(k-1)\left(\frac{1}{r}+\frac{1}{n-r-1}\right)
$$

Now we obtain $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3$ as in Subcase 1.2.
Subcase 2.3. Assume that $r \geq k$ and $n-r-1 \leq k-1$ or $r \leq k-1$ and $n-r-1 \geq k$, say $r \geq k$ and $n-r-1 \leq k-1$. Note that $n \leq r+k$.

Subcase 2.3.1. Assume that r is odd. Then $n(k-2) \leq r(2 k-3)$, and it follows from Corollaries 2.4 and 2.12 that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-2)}{r}+n \leq n+2 k-3
$$

Subcase 2.3.2. Assume that r is even. Since k is odd, we see that $r \geq k+1$. Then $n(k-1)<r(2 k-2)$, and we deduce from from Corollaries 2.4 and 2.11 that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq \frac{n(k-1)}{r}+n<\frac{r(2 k-2)}{r}+n=n+2 k-2
$$

and thus $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3$.
Example 3.3. Let $k \geq 3$ be an odd integer, and let H be the graph of order $n=2 k+1$ with vertex set

$$
\left\{w, z, u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{k-1}\right\}
$$

such that w is adjacent to $z, u_{1}, u_{2}, \ldots, u_{k}, z$ is adjacent to $v_{1}, v_{2}, \ldots, v_{k-1}$, each vertex u_{i} is adjacent to each vertex v_{j} for $1 \leq i \leq k$ and $1 \leq j \leq k-1, u_{i}$ is adjacent to u_{i+1} for each $i \in\{2,4, \ldots, k-1\}$ and u_{1} is adjacent to z. Now let $D(H)$ be the associated digraph of H. It is evident that $D(H)$ is $(k+1)$-regular and so $\overline{D(H)}$ is $(k-1)$-regular. Define $f: V(D(H)) \rightarrow\{-1,1\}$ by $f(w)=f(z)=-1$ and $f(x)=1$ for $x \in V(D(H))-\{w, z\}$. Since every vertex x of $D(H)$ has at least one in-neighbor in $\{w, z\}$, we observe that $f[x] \leq k-1$ for each vertex x. Therefore f is a signed total k-independence function on $D(H)$ with $w(f)=2 k-3$. Hence Corollary 2.11 leads to

$$
2 k-3 \leq \alpha_{s t}^{k}(D(H)) \leq\left\lfloor\frac{n(k-1)}{k+1}\right\rfloor=\left\lfloor\frac{(2 k+1)(k-1)}{k+1}\right\rfloor=\left\lfloor\frac{(2 k-3)(k+1)+2}{k+1}\right\rfloor=2 k-3
$$

and thus $\alpha_{s t}^{k}(D(H))=2 k-3$. Applying Corollary 2.4, we obtain

$$
\alpha_{s t}^{k}(D(H))+\alpha_{s t}^{k}(\overline{D(H)})=n+2 k-3 .
$$

Example 3.3 demonstrates that Theorem 3.2 is sharp, at least for k odd. If $\Delta(D) \leq k-1$ and $\Delta(\bar{D}) \leq k-1$, then Corollary 2.4 implies that $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D})=2 n$. The next example will show that in this case the Nordhaus-Gaddum bound $\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D}) \leq n+2 k-3$ in Theorem 3.2 is not valid in general.

Example 3.4. Let $k \geq 3$ be an integer. If D is a $(k-1)$-regular digraph of order $n=2(k-1)$, then \bar{D} is $(k-2)$-regular. It follows from Corollary 2.4 that

$$
\alpha_{s t}^{k}(D)+\alpha_{s t}^{k}(\bar{D})=2 n=n+2 k-2 .
$$

References

[1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, editors, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).
[3] S.M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011) 273-279.
[4] Changping Wang, The negative decision number in graphs, Australas. J. Combin. 41 (2008) 263-272.
[5] Haichao Wang and Erfang Shan, Signed total 2-independence in graphs, Util. Math. 74 (2007) 199-206.
[6] Haichao Wang, Jie Tong and Lutz Volkmann, A note on signed total 2-independence in graphs, Util. Math. 85 (2011) 213-223.
[7] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229.

[^0]: 2010 Mathematics Subject Classification. Primary 05C20 ; Secondary 05C69,
 Keywords. Digraph, Signed total k-independence function, Signed total k-independence number, Nordhaus-Gaddum type results Received: 17 September 2013; Accepted: 16 January 2014
 Communicated by Francesco Belardo
 Email address: volkm@math2.rwth-aachen.de (Lutz Volkmann)

