Filomat 28:10 (2014), 2121–2130 DOI 10.2298/FIL1410121V

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Signed Total *k*-independence in Digraphs

Lutz Volkmann^a

^aLehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany

Abstract. Let $k \ge 2$ be an integer. A function $f : V(D) \to \{-1, 1\}$ defined on the vertex set V(D) of a digraph D is a signed total k-independence function if $\sum_{x \in N^-(v)} f(x) \le k - 1$ for each $v \in V(D)$, where $N^-(v)$ consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by $w(f) = \sum_{x \in V(D)} f(x)$. The maximum of weights w(f), taken over all signed total k-independence functions f on D, is the signed total k-independence number $\alpha_{st}^k(D)$ of D.

In this work, we mainly present upper bounds on $\alpha_{st}^k(D)$, as for example $\alpha_{st}^k(D) \le n - 2\lceil (\Delta^- + 1 - k)/2 \rceil$ and

$$\alpha_{st}^k(D) \leq \frac{\Delta^+ + 2k - \delta^+ - 2}{\Delta^+ + \delta^+} \cdot n,$$

where *n* is the order, Δ^- the maximum indegree and Δ^+ and δ^+ are the maximum and minimum outdegree of the digraph *D*. Some of our results imply well-known properties on the signed total 2-independence number of graphs.

1. Terminology and Introduction

In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and arc set of a digraph D are denoted by V(D) and A(D), respectively. The *order* n = n(D) of a digraph D is the number of its vertices. If uv is an arc of D, then we write $u \rightarrow v$, and we say that v is an *out-neighbor* of u and u is an *in-neighbor* of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^-(v) = N_D^-(v)$ and $N^+(v) = N_D^+(v)$, respectively. The numbers $d_D^-(v) = d^-(v) = |N^-(v)|$ and $d_D^+(v) = d^+(v) = |N^+(v)|$ are the *indegree* and *outdegree* of v, respectively. The *minimum indegree, maximum indegree, minimum outdegree* and *maximum outdegree* of D are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. A digraph D is called *inregular* or *r-inregular* if $\delta^-(D) = \Delta^-(D) = r$ and *outregular* or *r-outregular* if $\delta^+(D) = \Delta^+(D) = r$. We say that D is *regular* or *r-regular* if it is *r*-inregular and *r*-outregular. If $X \subseteq V(D)$ and $v \in V(D)$, then E(X, v) is the set of arcs from X to Y. The number of vertices of odd indegree and even indegree are denoted by n_o and n_e , respectively. If $X \subseteq V(D)$ and f is a mapping from V(D) into some set of numbers, then $f(X) = \sum_{x \in X} f(x)$. For a vertex v in V(D), we denote $f(N^-(v))$ by f[v] for notational convenience. The *associated digraph* D(G) of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C20 ; Secondary 05C69,

Keywords. Digraph, Signed total *k*-independence function, Signed total *k*-independence number, Nordhaus-Gaddum type results Received: 17 September 2013; Accepted: 16 January 2014

Communicated by Francesco Belardo

Email address: volkm@math2.rwth-aachen.de (Lutz Volkmann)

In this work, we initiate the concept of the signed total *k*-independence number of a digraph. For graphs *G* and k = 2, this parameter was introduced by Wang and Shan [5] as a certain dual to the signed total domination number. The signed total domination number was introduced by Zelinka [7]. A two-valued function $f : V(G) \rightarrow \{-1, 1\}$ is a *signed total 2-independence function* if $f(N(v)) \leq 1$ for each vertex $v \in V(G)$, where N(v) is the neighborhood of the vertex v in the graph *G*. The sum f(V(G)) is called the weight w(f) of *f*. The maximum of weights w(f), taken over all signed total 2-independence functions *f* on *G*, is called the *signed total 2-independence number* of *G*, denoted by $\alpha_{st}^2(G)$. The signed total 2-independence number is called *negative decision number* by Wang [4], and its possible application in social networks was also presented. This parameter has been studied in [4, 5] and [6]. Detailed information on domination and independence can be found in the two books by Haynes, Hedetniemi and Slater [1, 2].

Let $k \ge 2$ be an integer. A two-valued function $f : V(D) \to \{-1, 1\}$ is a signed total k-independence function if $f[v] \le k - 1$ for every $v \in V(D)$. The weight of a signed total k-independence function f is defined by w(f) = f(V(D)). The maximum of weights w(f), taken over all signed total k-independence functions f on D, is called the signed total k-independence number of D, denoted by $\alpha_{st}^k(D)$. A signed total k-independence function of weight $\alpha_{st}^k(D)$ is called a $\alpha_{st}^k(D)$ -function. If $k \ge n$, then obviously $\alpha_{st}^k(D) = n$. Therefore we assume throughout this paper that $k \le n - 1$. The signed total k-independence number of a digraph is a dual to the signed total domination number in a certain sense. The signed total domination number for digraphs was introduced by Sheikholeslami in [3].

Throughout this paper, if *f* is a $\alpha_{st}^k(D)$ -function, then we let *P* and *M* denote the sets of those vertices in *D* which assigned under *f* the values 1 and -1, respectively, and we let |P| = p and |M| = m. Thus w(f) = |P| - |M| = n - 2m = 2p - n.

We mainly present upper bounds on $\alpha_{st}^k(D)$. In addition, we prove some Nordhaus-Gaddum type inequalities. A lot of examples demonstrate the sharpness of the obtained bounds. Some of our results imply well-known properties on the signed total 2-independence number of graphs given by Wang [4], Wang, Shan [5] and Wang, Tong, Volkmann [6].

Since $N_{D(G)}^{-}(v) = N_{G}(v)$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Proposition 1.1. Let $k \ge 2$ be an integer. If D(G) is the associated digraph of a graph G with $\delta(G) \ge 1$, then we have $\alpha_{st}^k(D(G)) = \alpha_{st}^k(G)$.

2. Upper Bounds

Theorem 2.1. If $k \ge 2$ is an integer and D a digraph of order $n \ge k + 1$ with $\delta^{-}(D) \ge 1$, then

$$2k - 2 - n \le \alpha_{st}^k(D) \le n - 2\left\lceil \frac{\Delta^-(D) + 1 - k}{2} \right\rceil.$$

Proof. Let $w \in V(D)$ be a vertex of maximum indegree $d^{-}(w) = \Delta^{-} = \Delta^{-}(D)$, and let f be a $\alpha_{st}^{k}(D)$ -function.

The condition $f[w] \le k-1$ leads to $|E(P, w)| - |E(M, w)| \le k-1$, and since w is a vertex of maximum indegree, we have $|E(P, w)| + |E(M, w)| = \Delta^-$. Combining the last two inequalities, we deduce that $2|E(M, w)| \ge \Delta^- - k+1$. It follows that

$$m \ge |E(M, w)| = \frac{2|E(M, w)|}{2} \ge \frac{\Delta^- + 1 - k}{2}$$

and so $m \ge \lceil (\Delta^- + 1 - k)/2 \rceil$. This yields the upper bound

$$\alpha_{st}^k(D) = n - 2m \le n - 2\left\lceil \frac{\Delta^- + 1 - k}{2} \right\rceil.$$

For the lower bound define the function $f : V(D) \rightarrow \{-1, 1\}$ by $f(a_1) = f(a_2) = \ldots = f(a_{k-1}) = 1$ for an arbitrary set of k - 1 vertices $A = \{a_1, a_2, \ldots, a_{k-1}\}$ and f(x) = -1 for each vertex $x \in V(D) - A$. Obviously, f is a signed total k-independence function on D of weight 2k - 2 - n and thus $\alpha_{st}^k(D) \ge 2k - 2 - n$. \Box

Let K_n^* be the complete digraph of order n. If $n \ge 3$, then it is straightforward to verify that $a_{st}^{n-1}(K_n^*) = n-4$. Thus the lower bound in Theorem 2.1 is sharp.

Example 2.2. Let $k \ge 2$ be an integer, and let $K_{1,\Delta}$ be the star with the center w of degree $\Delta \ge k$ and the leaves $v_1, v_2, \ldots, v_{\Delta}$. Now let D be the associated digraph of $K_{1,\Delta}$. Then $\Delta^-(D) = \Delta$ and $\delta^-(D) = 1$.

Assume first that $\Delta - k$ is even. Define the function $f : V(D) \rightarrow \{-1, 1\}$ by $f(w) = f(v_1) = f(v_2) = \dots = f(v_{(\Delta+k-2)/2}) = 1$ and f(x) = -1 otherwise. Then

$$f[w] = \frac{\Delta + k - 2}{2} - \frac{\Delta + 2 - k}{2} = k - 2$$

and $f[x] = 1 \le k - 1$ for $x \ne w$. Therefore f is a signed total k-independence function on D with w(f) = k - 1. Hence Theorem 2.1 implies that

$$k-1 \le \alpha_{st}^k(D) \le n(D) - 2\left\lceil \frac{\Delta+1-k}{2} \right\rceil = k-1$$

and thus $\alpha_{st}^k(D) = k - 1$.

Assume second that $\Delta - k \ge 1$ is odd. Define the function $f : V(D) \rightarrow \{-1, 1\}$ by $f(w) = f(v_1) = f(v_2) = \ldots = f(v_{(\Delta+k-1)/2}) = 1$ and f(x) = -1 otherwise. Then

$$f[w] = \frac{\Delta + k - 1}{2} - \frac{\Delta + 1 - k}{2} = k - 1$$

and $f[x] = 1 \le k - 1$ for $x \ne w$. Therefore f is a signed total k-independence function on D with w(f) = k. Hence Theorem 2.1 implies that

$$k \le \alpha_{st}^k(D) \le n(D) - 2\left[\frac{\Delta + 1 - k}{2}\right] = k$$

and thus $\alpha_{st}^k(D) = k$.

Example 2.2 demonstrates that the upper bound in Theorem 2.1 is sharp.

Corollary 2.3. ([6]) If G is a graph of order n without isolated vertices and maximum degree Δ , then $\alpha_{st}^2(G) \leq n - 2\lfloor\Delta/2\rfloor$.

Proof. Since $\Delta = \Delta^{-}(D(G))$, it follows from Proposition 1.1 and Theorem 2.1 that

$$\alpha_{st}^2(G) = \alpha_{st}^2(D(G)) \le n - 2\left[\frac{\Delta^-(D(G)) - 1}{2}\right] = n - 2\left\lfloor\frac{\Delta}{2}\right\rfloor. \ \Box$$

Corollary 2.4. Let $k \ge 2$ be an integer. If D is a digraph of order $n \ge k + 1$ with $\delta^{-}(D) \ge 1$, then $\alpha_{st}^{k}(D) = n$ if and only if $\Delta^{-}(D) \le k - 1$.

Proof. If $\Delta^{-}(D) \leq k - 1$, then $f : V(D) \rightarrow \{-1, 1\}$ with f(v) = 1 for each vertex $v \in V(D)$ is a signed total *k*-independence function on *D* of weight *n* and thus $\alpha_{st}^{k}(D) = n$.

Conversely, assume that $\alpha_{st}^k(D) = n$. If we suppose that $\Delta^-(D) \ge k$, then Theorem 2.1 leads to the contradiction $n = \alpha_{st}^k(D) \le n - 2$. Therefore $\Delta^-(D) \le k - 1$, and the proof is complete. \Box

Theorem 2.5. Let $k \ge 2$ be an even integer. If D is a digraph of order $n \ge k + 1$ with $\delta^+, \delta^- \ge 1$, then

$$\alpha_{st}^{k}(D) \le \min\left\{\frac{n(\Delta^{+} + k - 2) + n_{o} - |A(D)|}{\Delta^{+}}, \frac{n(k - 2 - \delta^{+}) + n_{o} + |A(D)|}{\delta^{+}}\right\}.$$

Proof. Let V_o and V_e be the vertex sets of odd and even indegree, respectively. Now let f be a $\alpha_{st}^k(D)$ -function. The conditions $f[v] \le k - 1$ and k even imply that $f[v] \le k - 2$ for $v \in V_e$. It follows that

$$\sum_{v \in V(D)} f[v] = \sum_{v \in V_o} f[v] + \sum_{v \in V_e} f[v] \le n_o(k-1) + (n-n_o)(k-2) = n(k-2) + n_o(k-2) + n_o($$

and thus

$$\begin{split} n(k-2) + n_o &\geq \sum_{v \in V(D)} f[v] = \sum_{v \in V(D)} d^+(v) f(v) = \sum_{v \in P} d^+(v) - \sum_{v \in M} d^+(v) \\ &= \sum_{v \in V(D)} d^+(v) - 2 \sum_{v \in M} d^+(v) = 2 \sum_{v \in P} d^+(v) - \sum_{v \in V(D)} d^+(v) \\ &= |A(D)| - 2 \sum_{v \in M} d^+(v) = 2 \sum_{v \in P} d^+(v) - |A(D)|. \end{split}$$

It follows that

$$n(k-2) + n_o \ge |A(D)| - 2(n-p)\Delta^+$$
(1)

as well as

$$n(k-2) + n_o \ge 2p\delta^+ - |A(D)|$$
(2)

and so

$$2p \le \frac{kn + 2n\Delta^+ - |A(D)| + n_o - 2n}{\Delta^+}$$
(3)

and

$$2p \le \frac{kn + |A(D)| + n_o - 2n}{\delta^+}.$$
(4)

Using (3) and (4), we obtain

$$\alpha_{st}^k(D) = 2p - n \le \frac{n(\Delta^+ + k - 2) - |A(D)| + n_o}{\Delta^+}$$

and

$$\alpha_{st}^{k}(D) = 2p - n \le \frac{n(k - 2 - \delta^{+}) + |A(D)| + n_{o}}{\delta^{+}},$$

and the last two inequalities lead to the desired result. \Box

Corollary 2.6. Let $k \ge 2$ be an even integer. If D is a digraph of order $n \ge k + 1$ with $\delta^+, \delta^- \ge 1$, then

$$\alpha_{st}^k(D) \le \frac{n(\Delta^+ + 2k - \delta^+ - 4) + 2n_o}{\Delta^+ + \delta^+}.$$

Proof. According to (1) and (2), we have

$$2p\Delta^{+} \le n(2\Delta^{+} + k - 2) - |A(D)| + n_{o}$$

and

$$2p\delta^+ \le n(k-2) + |A(D)| + n_0$$

Adding these two inequalities, we arrive at

$$2p \le \frac{2n(\Delta^+ + k - 2) + 2n_o}{\Delta^+ + \delta^+}$$

and this yields to the desired bound immediately. \square

Corollary 2.7. If $k \ge 2$ is an even integer and D an r-outregular digraph of order $n \ge k + 1$ with $r \ge 1$ and $\delta^- \ge 1$, then

$$\alpha_{st}^k(D) \le \frac{n(k-2) + n_o}{r}.$$

Corollary 2.8. Let $k \ge 2$ be an even integer and D an r-regular digraph of order $n \ge k + 1$. If $r \ge 2$ is even, then

$$\alpha_{st}^k(D) \le \frac{n(k-2)}{r}.$$

In the case that k is odd, we obtain the next results analogously to the proofs of Theorem 2.5 and Corollary 2.6.

Theorem 2.9. Let $k \ge 3$ be an odd integer. If D is a digraph of order $n \ge k + 1$ with $\delta^+, \delta^- \ge 1$, then

$$\alpha_{st}^{k}(D) \le \min\left\{\frac{n(\Delta^{+} + k - 2) - |A(D)| + n_{e}}{\Delta^{+}}, \frac{n(k - 2 - \delta^{+}) + |A(D)| + n_{e}}{\delta^{+}}\right\}$$

Corollary 2.10. Let $k \ge 3$ be an odd integer. If D is a digraph of order $n \ge k + 1$ with $\delta^+, \delta^- \ge 1$, then

$$\alpha_{st}^k(D) \le \frac{n(\Delta^+ + 2k - \delta^+ - 4) + 2n_e}{\Delta^+ + \delta^+}$$

Corollary 2.11. Let $k \ge 3$ be an odd integer. If *D* is an *r*-outregular digraph of order $n \ge k + 1$ with $r \ge 1$ and $\delta^- \ge 1$, then

$$\alpha_{st}^k(D) \le \frac{n(k-2) + n_e}{r}.$$

Corollary 2.12. Let $k \ge 3$ be an odd integer and D an r-regular digraph of order $n \ge k + 1$. If $r \ge 1$ is odd, then

$$\alpha_{st}^k(D) \le \frac{n(k-2)}{r}.$$

Example 2.13. Let u_1, u_2, \ldots, u_p and v_1, v_2, \ldots, v_p be the partite sets of the complete bipartite digraph $K_{p,p}^*$, and let k be an integer such that $2 \le k \le p$.

Assume that k = 2t is even and p = 2s + 1 is odd. Define the function $f : V(K_{p,p}^*) \rightarrow \{-1,1\}$ by $f(u_1) = f(u_2) = \dots = f(u_{t+s}) = f(v_1) = f(v_2) = \dots = f(v_{t+s}) = 1$ and f(x) = -1 otherwise. Then f[x] = t + s - (s + 1 - t) = 2t - 1 = k - 1 for each vertex $x \in V(K_{p,p}^*)$. Therefore f is a signed total k-independence function on $K_{p,p}^*$ with w(f) = 2(k - 1). Hence Corollary 2.7 implies that

$$2(k-1) \le \alpha_{st}^k(K_{p,p}^*) \le \frac{2p(k-2)+2p}{p} = 2(k-1)$$

and thus $\alpha_{st}^k(K_{p,p}^*) = 2(k-1)$ when k is even and p is odd.

Assume that k = 2t and p = 2s are even. Define $f : V(K_{p,p}^*) \rightarrow \{-1,1\}$ by $f(u_1) = f(u_2) = \ldots = f(u_{t+s-1}) = f(v_1) = f(v_2) = \ldots = f(v_{t+s-1}) = 1$ and f(x) = -1 otherwise. Then f[x] = t + s - 1 - (s + 1 - t) = 2t - 2 = k - 2 for each vertex $x \in V(K_{p,p}^*)$. Therefore f is a signed total k-independence function on $K_{p,p}^*$ with w(f) = 2(k-2). Hence Corollary 2.8 implies that

$$2(k-2) \le \alpha_{st}^k(K_{p,p}^*) \le \frac{2p(k-2)}{p} = 2(k-2)$$

and thus $\alpha_{st}^k(K_{p,p}^*) = 2(k-2)$ when k and p are even.

Assume that k = 2t + 1 and p = 2s + 1 are odd. Define $f : V(K_{p,p}^*) \rightarrow \{-1, 1\}$ by $f(u_1) = f(u_2) = \ldots = f(u_{t+s}) = f(v_1) = f(v_2) = \ldots = f(v_{t+s}) = 1$ and f(x) = -1 otherwise. Then f[x] = t + s - (s + 1 - t) = 2t - 1 = k - 2 for each vertex $x \in V(K_{p,p}^*)$. Therefore f is a signed total k-independence function on $K_{p,p}^*$ with w(f) = 2(k-2). Hence Corollary 2.12 implies that

$$2(k-2) \le \alpha_{st}^k(K_{p,p}^*) \le \frac{2p(k-2)}{p} = 2(k-2)$$

and thus $\alpha_{st}^k(K_{p,p}^*) = 2(k-2)$ when k and p are odd.

Assume that k = 2t + 1 is odd and p = 2s is even. Define $f : V(K_{p,p}^*) \to \{-1, 1\}$ by $f(u_1) = f(u_2) = \ldots = f(u_{t+s}) = f(v_1) = f(v_2) = \ldots = f(v_{t+s}) = 1$ and f(x) = -1 otherwise. Then f[x] = t + s - (s - t) = 2t = k - 1 for each vertex $x \in V(K_{p,p}^*)$. Therefore f is a signed total k-independence function on $K_{p,p}^*$ with w(f) = 2(k - 1). Hence Corollary 2.11 implies that

$$2(k-1) \le \alpha_{st}^k(K_{p,p}^*) \le \frac{2p(k-2)+2p}{p} = 2(k-1)$$

and thus $\alpha_{st}^k(K_{p,p}^*) = 2(k-1)$ when k is odd and p is even.

Example 2.13 shows that Corollaries 2.7, 2.8, 2.11 and 2.12 and therefore Theorems 2.5 and 2.9 as well as Corollaries 2.6 and 2.10 are sharp.

Corollary 2.14. ([5]) Let G be a graph of order n without isolated vertices, maximum degree Δ and minimum degree δ . If $n_0(G)$ is the number of vertices of odd degree, then

$$\alpha_{st}^2(G) \le \frac{n(\Delta - \delta) + 2n_0(G)}{\Delta + \delta}$$

Proof. Since $\delta = \delta^+(D(G))$, $\Delta = \Delta^+(D(G))$, n = n(D(G)) and $n_0 = n_0(G)$, it follows from Corollary 2.6 and Proposition 1.1 that

$$\alpha_{st}^{2}(G) = \alpha_{st}^{2}(D(G)) \le \frac{n(\Delta^{+}(D(G)) - \delta^{+}(D(G))) + 2n_{0}}{\Delta^{+}(D(G)) + \delta^{+}(D(G))} = \frac{n(\Delta - \delta) + 2n_{0}(G)}{\Delta + \delta}.$$

Corollary 2.15. ([4, 5]) If G is an r-regular graph of order n with $r \ge 1$, then $\alpha_{st}^2(G) \le n/r$ when r is odd and $\alpha_{st}^2(G) \le 0$ when r is even.

Theorem 2.16. $k \ge 2$ be an integer. If *D* is a digraph of order $n \ge k + 1$ and minimum indegree $\delta^- \ge k - 1$, then

$$\alpha_{st}^{k}(D) \leq \frac{n}{\Delta^{+}} \left(\Delta^{+} - 2 \left\lceil \frac{\delta^{-} + 1 - k}{2} \right\rceil \right).$$

Proof. Let *f* be a $\alpha_{st}^k(D)$ -fuction. As $f[x] \le k - 1$, we deduce that $|E(P, x)| - |E(M, x)| \le k - 1$ for each vertex $x \in V(D)$. It follows that

$$\delta^{-} \le d^{-}(x) = |E(P, x)| + |E(M, x)| \le 2|E(M, x)| + k - 1$$

and so $|E(M, x)| \ge \lceil (\delta^- + 1 - k)/2 \rceil$ for each vertex $x \in V(D)$. This leads to

$$n \left| \frac{\delta^{-} + 1 - k}{2} \right| \leq \sum_{x \in V(D)} |E(M, x)| = \sum_{x \in M} |E(M, x)| + \sum_{x \in P} |E(M, x)|$$
$$= \sum_{x \in M} |E(x, M)| + \sum_{x \in M} |E(x, P)| = \sum_{x \in M} d^{+}(x) \leq m\Delta^{+}$$

and thus

$$m \ge \frac{n}{\Delta^+} \left[\frac{\delta^- + 1 - k}{2} \right].$$

It follows that

$$\alpha_{st}^k(D) = n - 2m \le \frac{n}{\Delta^+} \left(\Delta^+ - 2 \left\lceil \frac{\delta^- + 1 - k}{2} \right\rceil \right). \square$$

Counting the arcs from *P* to *M*, we obtain the next theorem analogously to the proof of Theorem 2.16.

Theorem 2.17. Let $k \ge 2$ be an integer. If *D* is a digraph of order $n \ge k + 1$ with $\delta^+, \delta^- \ge 1$, then

$$\alpha_{st}^{k}(D) \leq \frac{n}{\delta^{+}} \left(2 \left\lfloor \frac{\Delta^{-} + k - 1}{2} \right\rfloor - \delta^{+} \right).$$

Note that Theorems 2.16 and 2.17 also imply Corollaries 2.8 and 2.12 immediately.

Theorem 2.18. Let $k \ge 2$ be an integer and D a digraph of order $n \ge k + 1$ with $\delta^- \ge 1$. If $\delta^+ - \lfloor (\Delta^- + k - 1)/2 \rfloor \ge 0$, then

$$\alpha_{st}^{k}(D) \leq n+k-2+\delta^{+} - \left\lfloor \frac{\Delta^{-}+k-1}{2} \right\rfloor - \sqrt{\left(k-2+\delta^{+}-\left\lfloor \frac{\Delta^{-}+k-1}{2} \right\rfloor\right)^{2} + 4n\left(\delta^{+}-\left\lfloor \frac{\Delta^{-}+k-1}{2} \right\rfloor\right)}.$$

Proof. Let f be a $\alpha_{st}^k(D)$ -function. The condition $f[x] \le k - 1$ implies that $|E(P, x)| + 1 - k \le |E(M, x)|$ for each vertex $x \in P$. It follows that

$$\Delta^{-} \ge d^{-}(x) = |E(P, x)| + |E(M, x)| \ge 2|E(P, x)| + 1 - k$$

and so $|E(P, x)| \leq \lfloor (\Delta^- + k - 1)/2 \rfloor$ for each $x \in P$. Hence we deduce that

$$|E(D[P])| = \sum_{x \in P} |E(P, x)| \le p \left\lfloor \frac{\Delta^- + k - 1}{2} \right\rfloor$$

and thus

$$|E(P,M)| = \sum_{x \in P} d^{+}(x) - |E(D[P])| \ge p\delta^{+} - p\left\lfloor \frac{\Delta^{-} + k - 1}{2} \right\rfloor = (n-m)\left(\delta^{+} - \left\lfloor \frac{\Delta^{-} + k - 1}{2} \right\rfloor\right).$$
(5)

Because of $f[x] \le k - 1$, each vertex of M has most m + k - 2 in-neighbors in P. and so $|E(P, M)| \le m(m + k - 2)$. Using (5), we conclude that

$$(n-m)\left(\delta^+ - \left\lfloor \frac{\Delta^- + k - 1}{2} \right\rfloor\right) \le |E(P, M)| \le m(m+k-2)$$

and therefore

$$m^{2} + m\left(k - 2 + \delta^{+} - \left\lfloor\frac{\Delta^{-} + k - 1}{2}\right\rfloor\right) - n\left(\delta^{+} - \left\lfloor\frac{\Delta + k - 1}{2}\right\rfloor\right) \ge 0.$$

This leads to

$$m \ge -\frac{1}{2}\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right) + \sqrt{\frac{1}{4}\left(k-2+\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)^{2}+n\left(\delta^{+}-\left\lfloor\frac{\Delta^{+}+k-1}{2}\right\rfloor\right)}$$

and we obtain the desired bound as follows

$$\alpha_s^k(D) = n - 2m \le n + k - 2 + \delta^+ - \left\lfloor \frac{\Delta^+ + k - 1}{2} \right\rfloor - \sqrt{\left(k - 2 + \delta^+ - \left\lfloor \frac{\Delta^+ + k - 1}{2} \right\rfloor\right)^2 + 4n\left(\delta^+ - \left\lfloor \frac{\Delta^+ + k - 1}{2} \right\rfloor\right)}. \quad \Box$$

3. Nordhaus-Gaddum Type Results

The *complement* \overline{D} of a digraph D is the digraph with vertex set V(D) such that for any two distinct vertices u, v the arc uv belongs to \overline{D} if and only if uv does not belong to D. As an application of Theorem 2.1 and Corollaries 2.4, 2.7, 2.8, 2.11 and 2.12, we shall prove some Nordhaus-Gaddum type results.

Theorem 3.1. Let $k \ge 2$ be an integer. If D is a digraph of order $n \ge k + 1$ such that $\delta^{-}(D), \delta^{-}(\overline{D}) \ge 1$, then

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 1$$

with equality only if D is inregular.

Proof. As $\Delta^{-}(D) + \Delta^{-}(\overline{D}) \ge n - 1$, Theorem 2.1 implies that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \leq n - 2\left[\frac{\Delta^{-}(D) + 1 - k}{2}\right] + n - 2\left[\frac{\Delta^{-}(\overline{D}) + 1 - k}{2}\right]$$

$$\leq n - \Delta^{-}(D) + k - 1 + n - \Delta^{-}(\overline{D}) + k - 1$$

$$= 2n + 2k - 2 - \Delta^{-}(D) - \Delta^{-}(\overline{D})$$

$$\leq n + 2k - 1$$

$$(6)$$

and this is the desired Nordhaus-Gaddum bound. Let $d_D^-(u) = \delta^-(D)$. If *D* is not inregular, then $\delta^-(D) < \Delta^-(D)$ and therefore

$$\begin{array}{rcl} \Delta^{-}(D) + \Delta^{-}(D) & \geq & \Delta^{-}(D) + d^{-}_{\overline{D}}(u) = \Delta^{-}(D) + d^{-}_{\overline{D}}(u) + d^{-}_{D}(u) - d^{-}_{D}(u) \\ & = & \Delta^{-}(D) + n - 1 - d^{-}_{D}(u) = \Delta^{-}(D) + n - 1 - \delta^{-}(D) \geq n. \end{array}$$

Using this inequality chain and (7), we obtain in the case that *D* is not inregular the better bound $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 2$. This completes the proof. \Box

For regular digraphs we shall improve the Nordhaus-Gaddum bound given in Theorem 3.1.

Theorem 3.2. Let $k \ge 2$ be an integer, and let D be an r-regular digraph of order $n \ge k + 1$ such that $r \ge 1$ and $n - r - 1 \ge 1$. If $r \ge k$ or $n - r - 1 \ge k$, then

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3.$$

Proof. Note that \overline{D} is (n - r - 1)-regular.

Case 1. Assume that $k \ge 2$ is even.

Subcase 1.1. Assume that *r* and n - r - 1 are even. Then (6) implies that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \le n - (r + 2 - k) + n - (n - r - 1 + 2 - k) = n + 2k - 3$$

Subcase 1.2. Assume that $r \ge k$ and $n - r - 1 \ge k$. Furthermore, assume that r or n - r - 1 is odd, say r is odd. Since k is even and $r \ge k$, we observe that $k + 1 \le r \le n - k - 1$ and thus $n \ge 2k + 2$. Corollary 2.7 implies that

$$\begin{aligned}
\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) &\leq n(k-1)\left(\frac{1}{r} + \frac{1}{n-r-1}\right) \\
&\leq n(k-1)\max\left\{\frac{1}{k+1} + \frac{1}{n-k-2}, \frac{1}{n-k-1} + \frac{1}{k}\right\} \\
&\leq n(k-1)\left(\frac{1}{n-k-1} + \frac{1}{k}\right).
\end{aligned}$$
(8)

Now we show that

$$n(k-1)\left(\frac{1}{n-k-1} + \frac{1}{k}\right) < n+2k-2.$$
(9)

Inequality (9) is equivalent to

$$nk^2 + n^2 + 2k > n + 2k^3 + 2kn. (10)$$

Since $n \ge 2k + 2$, we deduce that

$$nk^{2} + n^{2} + 2k \ge (2k+2)k^{2} + n(2k+2) + 2k = 2k^{3} + 2k^{2} + 2kn + 2n + 2k > 2k^{3} + 2kn + n.$$

Therefore (10) and so (9) are proved. The inequalities (8) and (9) show that $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3$ in that case.

Subcase 1.3. Assume that $r \ge k$ and $n - r - 1 \le k - 1$ or $r \le k - 1$ and $n - r - 1 \ge k$, say $r \ge k$ and $n - r - 1 \le k - 1$. Note that $n = (n - r - 1) + r + 1 \le k - 1 + r + 1 = r + k$.

Subcase 1.3.1. Assume that r is even. It follows from Corollaries 2.4 and 2.8 that

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le \frac{n(k-2)}{r} + n.$$
(11)

Since $n \le r + k$ and $r \ge k$, we observe that

$$n(k-2) \le (r+k)(k-2) = r(k-2) + k(k-2) \le r(k-2) + r(k-1) = r(2k-3).$$

Using this inequality chain and (11), we obtain

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le \frac{n(k-2)}{r} + n \le n + 2k - 3.$$

Subcase 1.3.2. Assume that *r* is odd. Since *k* is even, we see that $r \ge k + 1$. It follows from Corollaries 2.4 and 2.7 that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \le \frac{n(k-1)}{r} + n.$$
(12)

Since $n \le r + k$ and $r \ge k + 1$, we observe that

$$n(k-1) \le (r+k)(k-1) = r(k-1) + k(k-1) < r(k-1) + r(k-1) = r(2k-2).$$

Using this inequality chain and (12), we obtain

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \le \frac{n(k-1)}{r} + n < \frac{r(2k-2)}{r} + n = n + 2k - 2$$

and thus $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3$.

Case 2. Assume that $k \ge 3$ is odd.

Subcase 2.1. Assume that r and n - r - 1 are odd. Then (6) implies as in Subcase 1.1 that

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3$$

Subcase 2.2. Assume that $r \ge k$ and $n - r - 1 \ge k$. Furthermore, assume that r or n - r - 1 is even, say r is even. Since k is odd and $r \ge k$, we observe that $k + 1 \le r \le n - k - 1$ and thus $n \ge 2k + 2$. Corollary 2.11 implies that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \le n(k-1)\left(\frac{1}{r} + \frac{1}{n-r-1}\right)$$

Now we obtain $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3$ as in Subcase 1.2.

Subcase 2.3. Assume that $r \ge k$ and $n - r - 1 \le k - 1$ or $r \le k - 1$ and $n - r - 1 \ge k$, say $r \ge k$ and $n - r - 1 \le k - 1$. Note that $n \le r + k$.

Subcase 2.3.1. Assume that *r* is odd. Then $n(k-2) \le r(2k-3)$, and it follows from Corollaries 2.4 and 2.12 that

$$\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le \frac{n(k-2)}{r} + n \le n + 2k - 3.$$

Subcase 2.3.2. Assume that *r* is even. Since *k* is odd, we see that $r \ge k + 1$. Then n(k - 1) < r(2k - 2), and we deduce from from Corollaries 2.4 and 2.11 that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(\overline{D}) \le \frac{n(k-1)}{r} + n < \frac{r(2k-2)}{r} + n = n + 2k - 2$$

and thus $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3. \square$

Example 3.3. Let $k \ge 3$ be an odd integer, and let H be the graph of order n = 2k + 1 with vertex set

 $\{w, z, u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_{k-1}\}$

such that w is adjacent to $z, u_1, u_2, \ldots, u_k, z$ is adjacent to $v_1, v_2, \ldots, v_{k-1}$, each vertex u_i is adjacent to each vertex v_j for $1 \le i \le k$ and $1 \le j \le k - 1$, u_i is adjacent to u_{i+1} for each $i \in \{2, 4, \ldots, k - 1\}$ and u_1 is adjacent to z. Now let D(H) be the associated digraph of H. It is evident that D(H) is (k + 1)-regular and so $\overline{D(H)}$ is (k - 1)-regular. Define $f : V(D(H)) \rightarrow \{-1, 1\}$ by f(w) = f(z) = -1 and f(x) = 1 for $x \in V(D(H)) - \{w, z\}$. Since every vertex x of D(H)has at least one in-neighbor in $\{w, z\}$, we observe that $f[x] \le k - 1$ for each vertex x. Therefore f is a signed total k-independence function on D(H) with w(f) = 2k - 3. Hence Corollary 2.11 leads to

$$2k - 3 \le \alpha_{st}^k(D(H)) \le \left\lfloor \frac{n(k-1)}{k+1} \right\rfloor = \left\lfloor \frac{(2k+1)(k-1)}{k+1} \right\rfloor = \left\lfloor \frac{(2k-3)(k+1)+2}{k+1} \right\rfloor = 2k - 3$$

and thus $\alpha_{st}^k(D(H)) = 2k - 3$. Applying Corollary 2.4, we obtain

$$\alpha_{st}^{k}(D(H)) + \alpha_{st}^{k}(D(H)) = n + 2k - 3$$

Example 3.3 demonstrates that Theorem 3.2 is sharp, at least for k odd. If $\Delta(D) \le k - 1$ and $\Delta(\overline{D}) \le k - 1$, then Corollary 2.4 implies that $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) = 2n$. The next example will show that in this case the Nordhaus-Gaddum bound $\alpha_{st}^k(D) + \alpha_{st}^k(\overline{D}) \le n + 2k - 3$ in Theorem 3.2 is not valid in general.

Example 3.4. Let $k \ge 3$ be an integer. If D is a (k-1)-regular digraph of order n = 2(k-1), then \overline{D} is (k-2)-regular. It follows from Corollary 2.4 that

$$\alpha_{st}^{k}(D) + \alpha_{st}^{k}(D) = 2n = n + 2k - 2.$$

References

- [1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, editors, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).
- [3] S.M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011) 273-279.
- [4] Changping Wang, The negative decision number in graphs, Australas. J. Combin. 41 (2008) 263-272.
- [5] Haichao Wang and Erfang Shan, Signed total 2-independence in graphs, Util. Math. 74 (2007) 199-206.
- [6] Haichao Wang, Jie Tong and Lutz Volkmann, A note on signed total 2-independence in graphs, Util. Math. 85 (2011) 213-223.
- [7] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229.

2130