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Available at: http://www.pmf.ni.ac.rs/filomat

Signed Total k-independence in Digraphs

Lutz Volkmanna

aLehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany

Abstract. Let k ≥ 2 be an integer. A function f : V(D)→ {−1, 1} defined on the vertex set V(D) of a digraph
D is a signed total k-independence function if

∑
x∈N−(v) f (x) ≤ k − 1 for each v ∈ V(D), where N−(v) consists

of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is
defined by w( f ) =

∑
x∈V(D) f (x). The maximum of weights w( f ), taken over all signed total k-independence

functions f on D, is the signed total k-independence number αk
st(D) of D.

In this work, we mainly present upper bounds on αk
st(D), as for example αk

st(D) ≤ n − 2d(∆− + 1 − k)/2e
and

αk
st(D) ≤

∆+ + 2k − δ+
− 2

∆+ + δ+
· n,

where n is the order, ∆− the maximum indegree and ∆+ and δ+ are the maximum and minimum outdegree
of the digraph D. Some of our results imply well-known properties on the signed total 2-independence
number of graphs.

1. Terminology and Introduction

In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and arc set of a digraph
D are denoted by V(D) and A(D), respectively. The order n = n(D) of a digraph D is the number of its vertices.
If uv is an arc of D, then we write u→ v, and we say that v is an out-neighbor of u and u is an in-neighbor of v.
For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by N−(v) = N−D(v) and
N+(v) = N+

D(v), respectively. The numbers d−D(v) = d−(v) = |N−(v)| and d+
D(v) = d+(v) = |N+(v)| are the indegree

and outdegree of v, respectively. The minimum indegree, maximum indegree, minimum outdegree and maximum
outdegree of D are denoted by δ− = δ−(D), ∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D), respectively. A digraph
D is called inregular or r-inregular if δ−(D) = ∆−(D) = r and outregular or r-outregular if δ+(D) = ∆+(D) = r.
We say that D is regular or r-regular if it is r-inregular and r-outregular. If X ⊆ V(D) and v ∈ V(D), then
E(X, v) is the set of arcs from X to v and E(v,X) the set of arcs from v to X. If X and Y are two disjoint vertex
sets of a digraph D, then E(X,Y) is the set of arcs from X to Y. The number of vertices of odd indegree and
even indegree are denoted by no and ne, respectively. If X ⊆ V(D) and f is a mapping from V(D) into some
set of numbers, then f (X) =

∑
x∈X f (x). For a vertex v in V(D), we denote f (N−(v)) by f [v] for notational

convenience. The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e of
G is replaced by two oppositely oriented arcs with the same ends as e.
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In this work, we initiate the concept of the signed total k-independence number of a digraph. For graphs
G and k = 2, this parameter was introduced by Wang and Shan [5] as a certain dual to the signed total
domination number. The signed total domination number was introduced by Zelinka [7]. A two-valued
function f : V(G) → {−1, 1} is a signed total 2-independence function if f (N(v)) ≤ 1 for each vertex v ∈ V(G),
where N(v) is the neighborhood of the vertex v in the graph G. The sum f (V(G)) is called the weight w( f ) of
f . The maximum of weights w( f ), taken over all signed total 2-independence functions f on G, is called the
signed total 2-independence number of G, denoted by α2

st(G). The signed total 2-independence number is called
negative decision number by Wang [4], and its possible application in social networks was also presented.
This parameter has been studied in [4, 5] and [6]. Detailed information on domination and independence
can be found in the two books by Haynes, Hedetniemi and Slater [1, 2].

Let k ≥ 2 be an integer. A two-valued function f : V(D)→ {−1, 1} is a signed total k-independence function
if f [v] ≤ k − 1 for every v ∈ V(D). The weight of a signed total k-independence function f is defined by
w( f ) = f (V(D)). The maximum of weights w( f ), taken over all signed total k-independence functions f on
D, is called the signed total k-independence number of D, denoted by αk

st(D). A signed total k-independence
function of weight αk

st(D) is called a αk
st(D)-function. If k ≥ n, then obviously αk

st(D) = n. Therefore we assume
throughout this paper that k ≤ n − 1. The signed total k-independence number only exists for digraphs
D with δ−(D) ≥ 1. The signed total 2-independence number of a digraph is a dual to the signed total
domination number in a certain sense. The signed total domination number for digraphs was introduced
by Sheikholeslami in [3].

Throughout this paper, if f is a αk
st(D)-function, then we let P and M denote the sets of those vertices

in D which assigned under f the values 1 and -1, respectively, and we let |P| = p and |M| = m. Thus
w( f ) = |P| − |M| = n − 2m = 2p − n.

We mainly present upper bounds on αk
st(D). In addition, we prove some Nordhaus-Gaddum type in-

equalities. A lot of examples demonstrate the sharpness of the obtained bounds. Some of our results imply
well-known properties on the signed total 2-independence number of graphs given by Wang [4], Wang,
Shan [5] and Wang, Tong, Volkmann [6].

Since N−D(G)(v) = NG(v) for each vertex v ∈ V(G) = V(D(G)), the following useful observation is valid.

Proposition 1.1. Let k ≥ 2 be an integer. If D(G) is the associated digraph of a graph G with δ(G) ≥ 1, then we have
αk

st(D(G)) = αk
st(G).

2. Upper Bounds

Theorem 2.1. If k ≥ 2 is an integer and D a digraph of order n ≥ k + 1 with δ−(D) ≥ 1, then

2k − 2 − n ≤ αk
st(D) ≤ n − 2

⌈
∆−(D) + 1 − k

2

⌉
.

Proof. Let w ∈ V(D) be a vertex of maximum indegree d−(w) = ∆− = ∆−(D), and let f be a αk
st(D)-function.

The condition f [w] ≤ k−1 leads to |E(P,w)|−|E(M,w)| ≤ k−1, and since w is a vertex of maximum indegree,
we have |E(P,w)|+|E(M,w)| = ∆−. Combining the last two inequalities, we deduce that 2|E(M,w)| ≥ ∆−−k+1.
It follows that

m ≥ |E(M,w)| =
2|E(M,w)|

2
≥

∆− + 1 − k
2

and so m ≥ d(∆− + 1 − k)/2e. This yields the upper bound

αk
st(D) = n − 2m ≤ n − 2

⌈
∆− + 1 − k

2

⌉
.
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For the lower bound define the function f : V(D) → {−1, 1} by f (a1) = f (a2) = . . . = f (ak−1) = 1 for an
arbitrary set of k − 1 vertices A = {a1, a2, . . . , ak−1} and f (x) = −1 for each vertex x ∈ V(D) − A. Obviously, f
is a signed total k-independence function on D of weight 2k − 2 − n and thus αk

st(D) ≥ 2k − 2 − n. �

Let K∗n be the complete digraph of order n. If n ≥ 3, then it is straightforward to verify thatαn−1
st (K∗n) = n−4.

Thus the lower bound in Theorem 2.1 is sharp.

Example 2.2. Let k ≥ 2 be an integer, and let K1,∆ be the star with the center w of degree ∆ ≥ k and the leaves
v1, v2, . . . , v∆. Now let D be the associated digraph of K1,∆. Then ∆−(D) = ∆ and δ−(D) = 1.

Assume first that ∆ − k is even. Define the function f : V(D) → {−1, 1} by f (w) = f (v1) = f (v2) = . . . =
f (v(∆+k−2)/2) = 1 and f (x) = −1 otherwise. Then

f [w] =
∆ + k − 2

2
−

∆ + 2 − k
2

= k − 2

and f [x] = 1 ≤ k− 1 for x , w. Therefore f is a signed total k-independence function on D with w( f ) = k− 1. Hence
Theorem 2.1 implies that

k − 1 ≤ αk
st(D) ≤ n(D) − 2

⌈
∆ + 1 − k

2

⌉
= k − 1

and thus αk
st(D) = k − 1.

Assume second that ∆ − k ≥ 1 is odd. Define the function f : V(D)→ {−1, 1} by f (w) = f (v1) = f (v2) = . . . =
f (v(∆+k−1)/2) = 1 and f (x) = −1 otherwise. Then

f [w] =
∆ + k − 1

2
−

∆ + 1 − k
2

= k − 1

and f [x] = 1 ≤ k − 1 for x , w. Therefore f is a signed total k-independence function on D with w( f ) = k. Hence
Theorem 2.1 implies that

k ≤ αk
st(D) ≤ n(D) − 2

⌈
∆ + 1 − k

2

⌉
= k

and thus αk
st(D) = k.

Example 2.2 demonstrates that the upper bound in Theorem 2.1 is sharp.

Corollary 2.3. ([6]) If G is a graph of order n without isolated vertices and maximum degree ∆, then α2
st(G) ≤

n − 2b∆/2c.

Proof. Since ∆ = ∆−(D(G)), it follows from Proposition 1.1 and Theorem 2.1 that

α2
st(G) = α2

st(D(G)) ≤ n − 2
⌈
∆−(D(G)) − 1

2

⌉
= n − 2

⌊
∆

2

⌋
. �

Corollary 2.4. Let k ≥ 2 be an integer. If D is a digraph of order n ≥ k + 1 with δ−(D) ≥ 1, then αk
st(D) = n if and

only if ∆−(D) ≤ k − 1.

Proof. If ∆−(D) ≤ k − 1, then f : V(D) → {−1, 1} with f (v) = 1 for each vertex v ∈ V(D) is a signed total
k-independence function on D of weight n and thus αk

st(D) = n.
Conversely, assume that αk

st(D) = n. If we suppose that ∆−(D) ≥ k, then Theorem 2.1 leads to the
contradiction n = αk

st(D) ≤ n − 2. Therefore ∆−(D) ≤ k − 1, and the proof is complete. �

Theorem 2.5. Let k ≥ 2 be an even integer. If D is a digraph of order n ≥ k + 1 with δ+, δ− ≥ 1, then

αk
st(D) ≤ min

{
n(∆+ + k − 2) + no − |A(D)|

∆+
,

n(k − 2 − δ+) + no + |A(D)|
δ+

}
.
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Proof. Let Vo and Ve be the vertex sets of odd and even indegree, respectively. Now let f be aαk
st(D)-function.

The conditions f [v] ≤ k − 1 and k even imply that f [v] ≤ k − 2 for v ∈ Ve. It follows that∑
v∈V(D)

f [v] =
∑
v∈Vo

f [v] +
∑
v∈Ve

f [v] ≤ no(k − 1) + (n − no)(k − 2) = n(k − 2) + no

and thus

n(k − 2) + no ≥

∑
v∈V(D)

f [v] =
∑

v∈V(D)

d+(v) f (v) =
∑
v∈P

d+(v) −
∑
v∈M

d+(v)

=
∑

v∈V(D)

d+(v) − 2
∑
v∈M

d+(v) = 2
∑
v∈P

d+(v) −
∑

v∈V(D)

d+(v)

= |A(D)| − 2
∑
v∈M

d+(v) = 2
∑
v∈P

d+(v) − |A(D)|.

It follows that

n(k − 2) + no ≥ |A(D)| − 2(n − p)∆+ (1)

as well as

n(k − 2) + no ≥ 2pδ+
− |A(D)| (2)

and so

2p ≤
kn + 2n∆+

− |A(D)| + no − 2n
∆+

(3)

and

2p ≤
kn + |A(D)| + no − 2n

δ+
. (4)

Using (3) and (4), we obtain

αk
st(D) = 2p − n ≤

n(∆+ + k − 2) − |A(D)| + no

∆+

and

αk
st(D) = 2p − n ≤

n(k − 2 − δ+) + |A(D)| + no

δ+
,

and the last two inequalities lead to the desired result. �

Corollary 2.6. Let k ≥ 2 be an even integer. If D is a digraph of order n ≥ k + 1 with δ+, δ− ≥ 1, then

αk
st(D) ≤

n(∆+ + 2k − δ+
− 4) + 2no

∆+ + δ+
.

Proof. According to (1) and (2), we have

2p∆+
≤ n(2∆+ + k − 2) − |A(D)| + no

and
2pδ+

≤ n(k − 2) + |A(D)| + no.

Adding these two inequalities, we arrive at

2p ≤
2n(∆+ + k − 2) + 2no

∆+ + δ+
.

and this yields to the desired bound immediately. �
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Corollary 2.7. If k ≥ 2 is an even integer and D an r-outregular digraph of order n ≥ k + 1 with r ≥ 1 and δ− ≥ 1,
then

αk
st(D) ≤

n(k − 2) + no

r
.

Corollary 2.8. Let k ≥ 2 be an even integer and D an r-regular digraph of order n ≥ k + 1. If r ≥ 2 is even, then

αk
st(D) ≤

n(k − 2)
r

.

In the case that k is odd, we obtain the next results analogously to the proofs of Theorem 2.5 and
Corollary 2.6.

Theorem 2.9. Let k ≥ 3 be an odd integer. If D is a digraph of order n ≥ k + 1 with δ+, δ− ≥ 1, then

αk
st(D) ≤ min

{
n(∆+ + k − 2) − |A(D)| + ne

∆+
,

n(k − 2 − δ+) + |A(D)| + ne

δ+

}
.

Corollary 2.10. Let k ≥ 3 be an odd integer. If D is a digraph of order n ≥ k + 1 with δ+, δ− ≥ 1, then

αk
st(D) ≤

n(∆+ + 2k − δ+
− 4) + 2ne

∆+ + δ+
.

Corollary 2.11. Let k ≥ 3 be an odd integer. If D is an r-outregular digraph of order n ≥ k+1 with r ≥ 1 and δ− ≥ 1,
then

αk
st(D) ≤

n(k − 2) + ne

r
.

Corollary 2.12. Let k ≥ 3 be an odd integer and D an r-regular digraph of order n ≥ k + 1. If r ≥ 1 is odd, then

αk
st(D) ≤

n(k − 2)
r

.

Example 2.13. Let u1,u2, . . . ,up and v1, v2, . . . , vp be the partite sets of the complete bipartite digraph K∗p,p, and let k
be an integer such that 2 ≤ k ≤ p.

Assume that k = 2t is even and p = 2s + 1 is odd. Define the function f : V(K∗p,p)→ {−1, 1} by f (u1) = f (u2) =
. . . = f (ut+s) = f (v1) = f (v2) = . . . = f (vt+s) = 1 and f (x) = −1 otherwise. Then f [x] = t + s− (s + 1− t) = 2t− 1 =
k − 1 for each vertex x ∈ V(K∗p,p). Therefore f is a signed total k-independence function on K∗p,p with w( f ) = 2(k − 1).
Hence Corollary 2.7 implies that

2(k − 1) ≤ αk
st(K

∗

p,p) ≤
2p(k − 2) + 2p

p
= 2(k − 1)

and thus αk
st(K

∗
p,p) = 2(k − 1) when k is even and p is odd.

Assume that k = 2t and p = 2s are even. Define f : V(K∗p,p) → {−1, 1} by f (u1) = f (u2) = . . . = f (ut+s−1) =
f (v1) = f (v2) = . . . = f (vt+s−1) = 1 and f (x) = −1 otherwise. Then f [x] = t + s− 1− (s + 1− t) = 2t− 2 = k− 2 for
each vertex x ∈ V(K∗p,p). Therefore f is a signed total k-independence function on K∗p,p with w( f ) = 2(k − 2). Hence
Corollary 2.8 implies that

2(k − 2) ≤ αk
st(K

∗

p,p) ≤
2p(k − 2)

p
= 2(k − 2)

and thus αk
st(K

∗
p,p) = 2(k − 2) when k and p are even.

Assume that k = 2t + 1 and p = 2s + 1 are odd. Define f : V(K∗p,p)→ {−1, 1} by f (u1) = f (u2) = . . . = f (ut+s) =
f (v1) = f (v2) = . . . = f (vt+s) = 1 and f (x) = −1 otherwise. Then f [x] = t + s − (s + 1 − t) = 2t − 1 = k − 2 for
each vertex x ∈ V(K∗p,p). Therefore f is a signed total k-independence function on K∗p,p with w( f ) = 2(k − 2). Hence
Corollary 2.12 implies that

2(k − 2) ≤ αk
st(K

∗

p,p) ≤
2p(k − 2)

p
= 2(k − 2)
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and thus αk
st(K

∗
p,p) = 2(k − 2) when k and p are odd.

Assume that k = 2t + 1 is odd and p = 2s is even. Define f : V(K∗p,p) → {−1, 1} by f (u1) = f (u2) = . . . =
f (ut+s) = f (v1) = f (v2) = . . . = f (vt+s) = 1 and f (x) = −1 otherwise. Then f [x] = t + s − (s − t) = 2t = k − 1 for
each vertex x ∈ V(K∗p,p). Therefore f is a signed total k-independence function on K∗p,p with w( f ) = 2(k − 1). Hence
Corollary 2.11 implies that

2(k − 1) ≤ αk
st(K

∗

p,p) ≤
2p(k − 2) + 2p

p
= 2(k − 1)

and thus αk
st(K

∗
p,p) = 2(k − 1) when k is odd and p is even.

Example 2.13 shows that Corollaries 2.7, 2.8, 2.11 and 2.12 and therefore Theorems 2.5 and 2.9 as well as
Corollaries 2.6 and 2.10 are sharp.

Corollary 2.14. ([5]) Let G be a graph of order n without isolated vertices, maximum degree ∆ and minimum degree
δ. If n0(G) is the number of vertices of odd degree, then

α2
st(G) ≤

n(∆ − δ) + 2n0(G)
∆ + δ

.

Proof. Since δ = δ+(D(G)), ∆ = ∆+(D(G)), n = n(D(G)) and n0 = n0(G), it follows from Corollary 2.6 and
Proposition 1.1 that

α2
st(G) = α2

st(D(G)) ≤
n(∆+(D(G)) − δ+(D(G))) + 2n0

∆+(D(G)) + δ+(D(G))
=

n(∆ − δ) + 2n0(G)
∆ + δ

. �

Corollary 2.15. ([4, 5]) If G is an r-regular graph of order n with r ≥ 1, then α2
st(G) ≤ n/r when r is odd and

α2
st(G) ≤ 0 when r is even.

Theorem 2.16. k ≥ 2 be an integer. If D is a digraph of order n ≥ k + 1 and minimum indegree δ− ≥ k − 1, then

αk
st(D) ≤

n
∆+

(
∆+
− 2

⌈
δ− + 1 − k

2

⌉)
.

Proof. Let f be a αk
st(D)-fuction. As f [x] ≤ k − 1, we deduce that |E(P, x)| − |E(M, x)| ≤ k − 1 for each vertex

x ∈ V(D). It follows that

δ− ≤ d−(x) = |E(P, x)| + |E(M, x)| ≤ 2|E(M, x)| + k − 1

and so |E(M, x)| ≥ d(δ− + 1 − k)/2e for each vertex x ∈ V(D). This leads to

n
⌈
δ− + 1 − k

2

⌉
≤

∑
x∈V(D)

|E(M, x)| =
∑
x∈M

|E(M, x)| +
∑
x∈P

|E(M, x)|

=
∑
x∈M

|E(x,M)| +
∑
x∈M

|E(x,P)| =
∑
x∈M

d+(x) ≤ m∆+

and thus

m ≥
n

∆+

⌈
δ− + 1 − k

2

⌉
.

It follows that

αk
st(D) = n − 2m ≤

n
∆+

(
∆+
− 2

⌈
δ− + 1 − k

2

⌉)
. �

Counting the arcs from P to M, we obtain the next theorem analogously to the proof of Theorem 2.16.
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Theorem 2.17. Let k ≥ 2 be an integer. If D is a digraph of order n ≥ k + 1 with δ+, δ− ≥ 1, then

αk
st(D) ≤

n
δ+

(
2
⌊
∆− + k − 1

2

⌋
− δ+

)
.

Note that Theorems 2.16 and 2.17 also imply Corollaries 2.8 and 2.12 immediately.

Theorem 2.18. Let k ≥ 2 be an integer and D a digraph of order n ≥ k + 1 with δ− ≥ 1. If δ+
− b(∆− + k− 1)/2c ≥ 0,

then

αk
st(D) ≤ n + k − 2 + δ+

−

⌊
∆− + k − 1

2

⌋
−

√(
k − 2 + δ+ −

⌊
∆− + k − 1

2

⌋)2

+ 4n
(
δ+ −

⌊
∆− + k − 1

2

⌋)
.

Proof. Let f be a αk
st(D)-function. The condition f [x] ≤ k− 1 implies that |E(P, x)|+ 1− k ≤ |E(M, x)| for each vertex

x ∈ P. It follows that
∆− ≥ d−(x) = |E(P, x)| + |E(M, x)| ≥ 2|E(P, x)| + 1 − k

and so |E(P, x)| ≤ b(∆− + k − 1)/2c for each x ∈ P. Hence we deduce that

|E(D[P])| =
∑
x∈P

|E(P, x)| ≤ p
⌊
∆− + k − 1

2

⌋
and thus

|E(P,M)| =
∑
x∈P

d+(x) − |E(D[P])| ≥ pδ+
− p

⌊
∆− + k − 1

2

⌋
= (n −m)

(
δ+
−

⌊
∆− + k − 1

2

⌋)
. (5)

Because of f [x] ≤ k − 1, each vertex of M has most m + k − 2 in-neighbors in P. and so |E(P,M)| ≤ m(m + k − 2).
Using (5), we conclude that

(n −m)
(
δ+
−

⌊
∆− + k − 1

2

⌋)
≤ |E(P,M)| ≤ m(m + k − 2)

and therefore

m2 + m
(
k − 2 + δ+

−

⌊
∆− + k − 1

2

⌋)
− n

(
δ+
−

⌊
∆ + k − 1

2

⌋)
≥ 0.

This leads to

m ≥ −
1
2

(
k − 2 + δ+

−

⌊
∆+ + k − 1

2

⌋)
+

√
1
4

(
k − 2 + δ+ −

⌊
∆+ + k − 1

2

⌋)2

+ n
(
δ+ −

⌊
∆+ + k − 1

2

⌋)
,

and we obtain the desired bound as follows

αk
s(D) = n − 2m ≤ n + k − 2 + δ+

−

⌊
∆+ + k − 1

2

⌋
−

√(
k − 2 + δ+ −

⌊
∆+ + k − 1

2

⌉)2

+ 4n
(
δ+ −

⌊
∆+ + k − 1

2

⌋)
. �

3. Nordhaus-Gaddum Type Results

The complement D of a digraph D is the digraph with vertex set V(D) such that for any two distinct
vertices u, v the arc uv belongs to D if and only if uv does not belong to D. As an application of Theorem 2.1
and Corollaries 2.4, 2.7, 2.8, 2.11 and 2.12, we shall prove some Nordhaus-Gaddum type results.
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Theorem 3.1. Let k ≥ 2 be an integer. If D is a digraph of order n ≥ k + 1 such that δ−(D), δ−(D) ≥ 1, then

αk
st(D) + αk

st(D) ≤ n + 2k − 1

with equality only if D is inregular.

Proof. As ∆−(D) + ∆−(D) ≥ n − 1, Theorem 2.1 implies that

αk
st(D) + αk

st(D) ≤ n − 2
⌈
∆−(D) + 1 − k

2

⌉
+ n − 2

⌈
∆−(D) + 1 − k

2

⌉
(6)

≤ n − ∆−(D) + k − 1 + n − ∆−(D) + k − 1
= 2n + 2k − 2 − ∆−(D) − ∆−(D) (7)
≤ n + 2k − 1

and this is the desired Nordhaus-Gaddum bound. Let d−D(u) = δ−(D). If D is not inregular, then δ−(D) <
∆−(D) and therefore

∆−(D) + ∆−(D) ≥ ∆−(D) + d−
D

(u) = ∆−(D) + d−
D

(u) + d−D(u) − d−D(u)

= ∆−(D) + n − 1 − d−D(u) = ∆−(D) + n − 1 − δ−(D) ≥ n.

Using this inequality chain and (7), we obtain in the case that D is not inregular the better bound
αk

st(D) + αk
st(D) ≤ n + 2k − 2. This completes the proof. �

For regular digraphs we shall improve the Nordhaus-Gaddum bound given in Theorem 3.1.

Theorem 3.2. Let k ≥ 2 be an integer, and let D be an r-regular digraph of order n ≥ k + 1 such that r ≥ 1 and
n − r − 1 ≥ 1. If r ≥ k or n − r − 1 ≥ k, then

αk
st(D) + αk

st(D) ≤ n + 2k − 3.

Proof. Note that D is (n − r − 1)-regular.
Case 1. Assume that k ≥ 2 is even.
Subcase 1.1. Assume that r and n − r − 1 are even. Then (6) implies that

αk
st(D) + αk

st(D) ≤ n − (r + 2 − k) + n − (n − r − 1 + 2 − k) = n + 2k − 3.

Subcase 1.2. Assume that r ≥ k and n − r − 1 ≥ k. Furthermore, assume that r or n − r − 1 is odd, say r
is odd. Since k is even and r ≥ k, we observe that k + 1 ≤ r ≤ n − k − 1 and thus n ≥ 2k + 2. Corollary 2.7
implies that

αk
st(D) + αk

st(D) ≤ n(k − 1)
(1

r
+

1
n − r − 1

)
≤ n(k − 1) max

{ 1
k + 1

+
1

n − k − 2
,

1
n − k − 1

+
1
k

}
≤ n(k − 1)

( 1
n − k − 1

+
1
k

)
. (8)

Now we show that

n(k − 1)
( 1

n − k − 1
+

1
k

)
< n + 2k − 2. (9)

Inequality (9) is equivalent to

nk2 + n2 + 2k > n + 2k3 + 2kn. (10)
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Since n ≥ 2k + 2, we deduce that

nk2 + n2 + 2k ≥ (2k + 2)k2 + n(2k + 2) + 2k = 2k3 + 2k2 + 2kn + 2n + 2k > 2k3 + 2kn + n.

Therefore (10) and so (9) are proved. The inequalities (8) and (9) show that αk
st(D) + αk

st(D) ≤ n + 2k − 3 in
that case.

Subcase 1.3. Assume that r ≥ k and n − r − 1 ≤ k − 1 or r ≤ k − 1 and n − r − 1 ≥ k, say r ≥ k and
n − r − 1 ≤ k − 1. Note that n = (n − r − 1) + r + 1 ≤ k − 1 + r + 1 = r + k.

Subcase 1.3.1. Assume that r is even. It follows from Corollaries 2.4 and 2.8 that

αk
st(D) + αk

st(D) ≤
n(k − 2)

r
+ n. (11)

Since n ≤ r + k and r ≥ k, we observe that

n(k − 2) ≤ (r + k)(k − 2) = r(k − 2) + k(k − 2) ≤ r(k − 2) + r(k − 1) = r(2k − 3).

Using this inequality chain and (11), we obtain

αk
st(D) + αk

st(D) ≤
n(k − 2)

r
+ n ≤ n + 2k − 3.

Subcase 1.3.2. Assume that r is odd. Since k is even, we see that r ≥ k + 1. It follows from Corollaries 2.4
and 2.7 that

αk
st(D) + αk

st(D) ≤
n(k − 1)

r
+ n. (12)

Since n ≤ r + k and r ≥ k + 1, we observe that

n(k − 1) ≤ (r + k)(k − 1) = r(k − 1) + k(k − 1) < r(k − 1) + r(k − 1) = r(2k − 2).

Using this inequality chain and (12), we obtain

αk
st(D) + αk

st(D) ≤
n(k − 1)

r
+ n <

r(2k − 2)
r

+ n = n + 2k − 2

and thus αk
st(D) + αk

st(D) ≤ n + 2k − 3.

Case 2. Assume that k ≥ 3 is odd.
Subcase 2.1. Assume that r and n − r − 1 are odd. Then (6) implies as in Subcase 1.1 that

αk
st(D) + αk

st(D) ≤ n + 2k − 3.

Subcase 2.2. Assume that r ≥ k and n − r − 1 ≥ k. Furthermore, assume that r or n − r − 1 is even, say r
is even. Since k is odd and r ≥ k, we observe that k + 1 ≤ r ≤ n − k − 1 and thus n ≥ 2k + 2. Corollary 2.11
implies that

αk
st(D) + αk

st(D) ≤ n(k − 1)
(1

r
+

1
n − r − 1

)
Now we obtain αk

st(D) + αk
st(D) ≤ n + 2k − 3 as in Subcase 1.2.

Subcase 2.3. Assume that r ≥ k and n − r − 1 ≤ k − 1 or r ≤ k − 1 and n − r − 1 ≥ k, say r ≥ k and
n − r − 1 ≤ k − 1. Note that n ≤ r + k.

Subcase 2.3.1. Assume that r is odd. Then n(k − 2) ≤ r(2k − 3), and it follows from Corollaries 2.4 and
2.12 that

αk
st(D) + αk

st(D) ≤
n(k − 2)

r
+ n ≤ n + 2k − 3.
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Subcase 2.3.2. Assume that r is even. Since k is odd, we see that r ≥ k + 1. Then n(k − 1) < r(2k − 2), and
we deduce from from Corollaries 2.4 and 2.11 that

αk
st(D) + αk

st(D) ≤
n(k − 1)

r
+ n <

r(2k − 2)
r

+ n = n + 2k − 2

and thus αk
st(D) + αk

st(D) ≤ n + 2k − 3. �

Example 3.3. Let k ≥ 3 be an odd integer, and let H be the graph of order n = 2k + 1 with vertex set

{w, z,u1,u2, . . . ,uk, v1, v2, . . . , vk−1}

such that w is adjacent to z,u1,u2, . . . ,uk, z is adjacent to v1, v2, . . . , vk−1, each vertex ui is adjacent to each vertex v j
for 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1, ui is adjacent to ui+1 for each i ∈ {2, 4, . . . , k − 1} and u1 is adjacent to z. Now let
D(H) be the associated digraph of H. It is evident that D(H) is (k + 1)-regular and so D(H) is (k − 1)-regular. Define
f : V(D(H)) → {−1, 1} by f (w) = f (z) = −1 and f (x) = 1 for x ∈ V(D(H)) − {w, z}. Since every vertex x of D(H)
has at least one in-neighbor in {w, z}, we observe that f [x] ≤ k − 1 for each vertex x. Therefore f is a signed total
k-independence function on D(H) with w( f ) = 2k − 3. Hence Corollary 2.11 leads to

2k − 3 ≤ αk
st(D(H)) ≤

⌊
n(k − 1)

k + 1

⌋
=

⌊
(2k + 1)(k − 1)

k + 1

⌋
=

⌊
(2k − 3)(k + 1) + 2

k + 1

⌋
= 2k − 3

and thus αk
st(D(H)) = 2k − 3. Applying Corollary 2.4, we obtain

αk
st(D(H)) + αk

st(D(H)) = n + 2k − 3.

Example 3.3 demonstrates that Theorem 3.2 is sharp, at least for k odd. If ∆(D) ≤ k− 1 and ∆(D) ≤ k− 1,
then Corollary 2.4 implies that αk

st(D) + αk
st(D) = 2n. The next example will show that in this case the

Nordhaus-Gaddum bound αk
st(D) + αk

st(D) ≤ n + 2k − 3 in Theorem 3.2 is not valid in general.

Example 3.4. Let k ≥ 3 be an integer. If D is a (k−1)-regular digraph of order n = 2(k−1), then D is (k−2)-regular.
It follows from Corollary 2.4 that

αk
st(D) + αk

st(D) = 2n = n + 2k − 2.

.
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