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Abstract. Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean
space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of ∆.
In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient
conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some
special examples.

1. Introduction

Let M be a connected n−dimensional submanifold of a Euclidean space Em equipped with the induced
metric. Denote ∆ by the Laplacian of M acting on smooth functions on M . This Laplacian can be extended
in a natural way to Em valued smooth functions on M. Whenever the position vector x of M in Em can be
decomposed as a finite sum of Em-valued non-constant functions of ∆, one can say that M is of finite type.
More precisely the position vector x of M can be expressed in the form x = x0 +

∑k
i=1 xi, where x0 is a constant

map x1, x2, ..., xk non-constant maps such that ∆x = λixi, λi ∈ R, 1 ≤ i ≤ k. If λ1, λ2, ..., λk are different,
then M is said to be of k-type. Similarly, a smooth map φ of an n-dimensional Riemannian manifold M
of Em is said to be of finite type if φ is a finite sum of Em-valued eigenfunctions of ∆ ([2], [3]). For the
position vector field

−→
H of M it is well known (see eg. [3]) that ∆x = −n

−→
H, which shows in particular that

M is a minimal submanifold in Em if and only if its coordinate functions are harmonic. In [13] Takahasi
proved that an n-dimensional submanifold of Em is of 1-type (i.e., ∆x = λx) if and only if it is either a
minimal submanifold of Em or a minimal submanifold of some hypersphere of Em. As a generalization
of T. Takahashi’s condition, O. Garay considered in [8], submanifolds of Euclidean space whose position
vector field x satisfies the differential equation ∆x = Ax, for some m × m diagonal matrix A with constant
entries. Garay called such submanifolds coordinate finite type submanifolds. Actually coordinate finite type
submanifolds are finite type submanifolds whose type number s are at most m. Each coordinate function
of a coordinate finite type submanifold m is of 1-type, since it is an eigenfunction of the Laplacian [10].

In [7] by G. Ganchev and V. Milousheva considered the surface M generated by a W-curve γ inE4. They
have shown that these generated surfaces are a special type of rotation surfaces which are introduced first
by C. Moore in 1919 (see [12]). Vranceanu surfaces in E4 are the special type of these surfaces [14].
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This paper is organized as follows: Section 2 gives some basic concepts of the surfaces in E4. Section 3
tells about the generalised surfaces in E4. Further this section provides some basic properties of surfaces
in E4 and the structure of their curvatures. In the final section we consider coordinate finite type surfaces
in euclidean spaces. We give necessary and sufficient conditions for generalised rotation surfaces in E4 to
become coordinate finite type.

2. Basic Concepts

Let M be a smooth surface in En given with the patch X(u, v) : (u, v) ∈ D ⊂ E2. The tangent space to M at
an arbitrary point p = X(u, v) of M span {Xu,Xv}. In the chart (u, v) the coefficients of the first fundamental
form of M are given by

E =< Xu,Xu >,F = 〈Xu,Xv〉 ,G = 〈Xv,Xv〉 , (1)

where 〈, 〉 is the Euclidean inner product. We assume that W2 = EG − F2 , 0, i.e. the surface patch X(u, v)
is regular. For each p ∈ M, consider the decomposition TpEn = TpM ⊕ T⊥p M where T⊥p M is the orthogonal

component of TpM in En. Let
∼

∇ be the Riemannian connection of E4. Given orthonormal local vector fields
X1, X2 tangent to M.

Let χ(M) and χ⊥(M) be the space of the smooth vector fields tangent to M and the space of the smooth
vector fields normal to M, respectively. Consider the second fundamental map: h : χ(M) × χ(M)→ χ⊥(M);

h(Xi,X j ) = ∇̃Xi
X j − ∇Xi

X j 1 ≤ i, j ≤ 2. (2)

where ∇̃ is the induced. This map is well-defined, symmetric and bilinear.
For any arbitrary orthonormal normal frame field {N1,N2, ...,Nn−2} of M, recall the shape operator

A : χ⊥(M) × χ(M)→ χ(M);

ANi X j = −(∇̃X j Nk)T, X j ∈ χ(M), 1 ≤ k ≤ n − 2 (3)

This operator is bilinear, self-adjoint and satisfies the following equation:〈
ANk X j,Xi

〉
=

〈
h(Xi,X j),Nk

〉
= hk

i j, 1 ≤ i, j ≤ 2. (4)

The equation (2) is called Gaussian formula, and

h(Xi,X j) =

n−2∑
k=1

hk
i jNk, 1 ≤ i, j ≤ 2 (5)

where ck
i j are the coefficients of the second fundamental form.

Further, the Gaussian and mean curvature vector of a regular patch X(u, v) are given by

K =

n−2∑
k=1

(hk
11hk

22 − (hk
12)2), (6)

and

H =
1
2

n−2∑
k=1

(hk
11 + hk

22)Nk, (7)

respectively, where h is the second fundamental form of M. Recall that a surface M is said to be minimal if its
mean curvature vector vanishes identically [2]. For any real function f on M the Laplacian of f is defined
by

∆ f = −
∑

i

(∇̃ei∇̃ei f − ∇̃∇ei ei f ). (8)
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3. Generalised Rotation Surfaces in E4

Let γ = γ(s) : I→ E4 be a W-curve in Euclidean 4-space E4 parametrized as follows:

γ(v) = (a cos cv, a sin cv, b cos dv, b sin dv), 0 ≤ v ≤ 2π,

where a, b, c, d are constants (c > 0, d > 0). In [7] G. Ganchev and V. Milousheva considered the surface M
generated by the curve γ with the following surface patch:

X(u, v) = ( f (u) cos cv, f (u) sin cv, 1(u) cos dv, 1(u) sin dv), (9)

where u ∈ J, 0 ≤ v ≤ 2π, f (u) and 1(u) are arbitrary smooth functions satisfying

c2 f 2 + d212 > 0 and ( f ′ )2 + (1 ′ )2 > 0.

These surfaces are first introduced by C. Moore in [12] , called general rotation surfaces. Note that Xu and
Xv are always orthogonal and therefore we choose an orthonormal frame {e1, e2, e3, e4} such that e1, e2 are
tangent to M and e3, e4 normal to M in the following (see, [7]):

e1 =
Xu

‖Xu‖
, e2 =

Xv

‖Xu‖

e3 =
1√

( f ′)2 + (1′)2
(1′ cos cv, 1′ sin cv,− f ′ cos dv,− f ′ sin dv), (10)

e4 =
1√

c2 f 2 + d212
(−d1 sin cv, d1 cos cv, c f sin dv,−c f cos dv).

Hence the coefficients of the first fundamental form of the surface are

E = 〈Xu,Xu〉 = ( f ′)2 + (1′)2

F = 〈Xu,Xv〉 = 0 (11)
G = 〈Xv,Xv〉 = c2 f 2 + d212

where 〈, 〉 is the standard scalar product in E4. Since

EG − F2 =
(
( f ′)2 + (1′)2

) (
c2 f 2 + d212

)
does not vanish, the surface patch X(u, v) is regular. Then with respect to the frame field {e1, e2, e3, e4} , the
Gaussian and Weingarten formulas (2)-(3) of M look like (see, [6]);

∇̃e1 e1 = −A(u)e2 + h1
11e3,

∇̃e1 e2 = A(u)e1 + h2
12e4, (12)

∇̃e2 e2 = h1
22e3,

∇̃e2 e1 = h2
12e4,

and

∇̃e1 e3 = −h1
11e1 + B(u)e4,

∇̃e1 e4 = −h2
12e2 − B(u)e3, (13)

∇̃e2 e3 = −h1
22e2,

∇̃e2 e4 = −h2
12e1,
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where

A(u) =
c2 f f ′ + d211′√

( f ′)2 + (1′)2(c2 f 2 + d212)
,

B(u) =
cd( f f ′ + 11′)√

( f ′)2 + (1′)2(c2 f 2 + d212)
,

h1
11 =

d2 f ′1 − c2 f1′√
( f ′)2 + (1′)2(c2 f 2 + d212)

,

h1
22 =

1′ f ′′ − f ′1′′(
( f ′)2 + (1′)2) 3

2

, (14)

h2
12 =

cd( f ′1 − f1′)√
( f ′)2 + (1′)2(c2 f 2 + d212)

,

h2
11 = h2

22 = h1
12 = 0.

are the differentiable functions. Using (6)-(7) with (14) one can get the following results;

Proposition 3.1. [1] Let M be a generalised rotation surface given by the parametrization (9), then the Gaussian
curvature of M is

K =
(c2 f 2 + d212)(1 ′ f ′′- f ′1 ′′)(d21 f ′-c2 f1 ′)-c2d2(1 f ′- f1 ′)2(( f ′)2 + (1′)2)

(( f ′)2 + (1′)2)2(c2 f 2 + d212)2 .

An easy consequence of Proposition 3.1 is the following.

Corollary 3.2. [1] The generalised rotation surface given by the parametrization (9) has vanishing Gaussian curva-
ture if and only if the following equation

(c2 f 2 + d212)(1 ′ f ′′- f ′1 ′′)(d21 f ′-c2 f1 ′)-c2d2(1 f ′- f1 ′)2(( f ′)2 + (1′)2) = 0,

holds.

The following results are well-known;

Proposition 3.3. [1] Let M be a generalised rotation surface given by the parametrization (9), then the mean curvature
vector of M is

−→
H =

1
2

(h1
11 + h1

22)e3

=

(
(c2 f 2 + d212)(1 ′ f ′′ − f ′1 ′′) + (d21 f ′ − c2 f1 ′)(( f ′)2 + (1′)2)

2(( f ′)2 + (1′)2)3/2(c2 f 2 + d212)

)
e3.

An easy consequence of Proposition 3.3 is the following.

Corollary 3.4. [1] The generalised rotation surface given by the parametrization (9) is minimal surface in E4 if and
only if the equation

(c2 f 2 + d212)(1 ′ f ′′ − f ′1 ′′) + (d21 f ′ − c2 f1 ′)(( f ′)2 + (1′)2) = 0,

holds.

Definition 3.5. The generalised rotation surface given by the parametrization

f (u) = r(u) cos u, 1 (u) = r(u) sin u, c = 1, d = 1. (15)

is called Vranceanu rotation surface in Euclidean 4-space E4 [14].
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Remark 3.6. Substituting (15) into the equation given in Corollary 3.2 we obtain the condition for Vranceanu
rotation surface which has vanishing Gaussian curvature;

r(u)r′′(u) − (r′(u))2 = 0. (16)

Further, and easy calculation shows that r(u) = λeµu, (λ, µ ∈ R) is the solution is this second degree equation. So, we
get the following result.

Corollary 3.7. [15] Let M is a Vranceanu rotation surface in Euclidean 4-space. If M has vanishing Gaussian
curvature, then r(u) = λeµu, where λ and µ are real constants. For the case, λ = 1, µ = 0, r(u) = 1, the surface M is
a Clifford torus, that is it is the product of two plane circles with same radius.

Corollary 3.8. [1] Let M is a Vranceanu rotation surface in Euclidean 4-space. If M is minimal then

r(u)r′′(u) − 3(r′(u))2
− 2r(u)2 = 0.

holds.

Corollary 3.9. [1] Let M is a Vranceanu rotation surface in Euclidean 4-space. If M is minimal then

r(u) =
±1

√
a sin 2u − b cos 2u

, (17)

where, a and b are real constants.

Definition 3.10. The surface patch X(u, v) is called pseudo-umbilical if the shape operator with respect to H is
proportional to the identity (see, [2]). An equivalent condition is the following:

< h(Xi,X j),H >= λ2 < Xi,X j >, (18)

where, λ = ‖H‖ . It is easy to see that each minimal surface is pseudo-umbilical.

The following results are well-known;

Theorem 3.11. [1] Let M be a generalised rotation surface given by the parametrization (9) is pseudo-umbilical then

(c2 f 2 + d212)(1 ′ f ′′ − f ′1 ′′) − (d21 f ′ − c2 f1 ′)(( f ′)2 + (1′)2) = 0. (19)

The converse statement of Theorem 3.11 is also valid.

Corollary 3.12. [1] Let M be a Vranceanu rotation surface in Euclidean 4-space. If M pseudo-umbilical then
r(u) = λeµu, where λ and µ are real constants.

3.1. Coordinate Finite Type Surfaces in Euclidean Spaces
In the present section we consider coordinate finite type surfaces in Euclidean spaces En+2. A surface

M in Euclidean m-space is called coordinate finite type if the position vector field X satisfies the differential
equation

∆X = AX, (20)

for some m ×m diagonal matrix A with constant entries. Using the Beltrami formula’s ∆X = −2
−→
H, with (7)

one can get

∆X = −

n∑
k=1

(hk
11 + hk

22)Nk. (21)
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So, using (20) with (21) the coordinate finite type condition reduces to

AX = −

n∑
k=1

(hk
11 + hk

22)Nk (22)

For a non-compact surface in E4 O.J.Garay obtained the following:

Theorem 3.13. [9] The only coordinate finite type surfaces in Euclidean 4-space E4 with constant mean curvature
are the open parts of the following surfaces:

i) a minimal surface in E4,
ii) a minimal surface in some hypersphere S3(r),
iii) a helical cylinder,
iv) a flat torus S1(a) × S1(b) in some hypersphere S3(r).

3.2. Surface of Revolution of Coordinate Finite Type
A surface in E3 is called a surface of revolution if it is generated by a curve C on a plane Π when Π is

rotated around a straight line L in Π. By choosing Π to be the xz-plane and line L to be the x axis the surface
of revolution can be parameterized by

X(u, v) =
(

f (u), 1(u) cos v, 1(u) sin v
)
, (23)

where f (u) and 1(u) are arbitrary smooth functions. We choose an orthonormal frame {e1, e2, e3} such that
e1, e2 are tangent to M and e3 normal to M in the following:

e1 =
Xu

‖Xu‖
, e2 =

Xv

‖Xv‖
, e3 =

1√
( f ′)2 + (1′)2

(1′,− f ′ cos v,− f ′ sin v), (24)

By covariant differentiation with respect to e1, e2 a straightforward calculation gives

∇̃e1 e1 = h1
11e3,

∇̃e2 e2 = −A(u)e1 + h2
22e3, (25)

∇̃e2 e1 = A(u)e2,

∇̃e1 e2 = 0,

where

A(u) =
1′

1
√

( f ′)2 + (1′)2
,

h1
11 =

1′ f ′′ − f ′1′′(
( f ′)2 + (1′)2) 3

2

, (26)

h1
22 =

f ′

1
√

( f ′)2 + (1′)2
,

h1
12 = 0.

are the differentiable functions. Using (6)-(7) with (26) one can get

−→
H =

1
2

(
h1

11 + h1
22

)
e3 (27)

where h1
11 and h1

22 are the coefficients of the second fundamental form given in (26).
A surface of revolution defined by (23) is said to be of polynomial kind if f (u) and 1(u) are polynomial

functions in u and it is said to be of rational kind if f is a rational function in 1, i.e., f is the quotient of two
polynomial functions in 1 [4].

For finite type surfaces of revolution B.Y. Chen and S. Ishikawa obtained in [5] the following results;
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Theorem 3.14. [5] Let M be a surface of revolution of polynomial kind. Then M is a surface of finite type if and only
if either it is an open portion of a plane or it is an open portion of a circular cylinder.

Theorem 3.15. [5] Let M be a surface of revolution of rational kind. Then M is a surface of finite type if and only if
M is an open portion of a plane.

T. Hasanis and T. Vlachos proved the following.

Theorem 3.16. [10] Let M be a surface of revolution. If M has constant mean curvature and is of finite type then M
is an open portion of a plane, of a sphere or of a circular cylinder.

We proved the following result;

Lemma 3.17. Let M be a surface of revolution given with the parametrization (23). Then M is a surface of coordinate
finite type if and only if diagonal matrix A is of the form

A =

 a11 0 0
0 a22 0
0 0 a33

 (28)

where

a11 =
−1′(1

(
1′ f ′′ − f ′1′′) + f ′

(
( f ′)2 + (1′)2

))
f1

(
( f ′)2 + (1′)2)2 (29)

a22 = a33 =
f ′

(
1(1′ f ′′ − f ′1′′) + f ′

(
( f ′)2 + (1′)2

))
12 (

( f ′)2 + (1′)2)2

are constant functions.

Proof. Assume that the surface of revolution M given with the parametrization (23). Then, from the equality
(21)

∆X = −(h1
11 + h1

22)e3. (30)

Further, substituting (26) into (30) and using (24) we get the

∆X = ψ

 1′

− f ′ cos v
− f ′ sin v

 (31)

where

ψ = −
1(1′ f ′′ − f ′1′′) + f ′

(
( f ′)2 + (1′)2

)
1
(
( f ′)2 + (1′)2)2

is differentiable function. Similarly, using (23) we get

AX =

 a11 f
a221 cos v
a331 sin v

 . (32)

Since, M is coordinate finite type then from the definition it satisfies the equality AX = ∆X. Hence, using
(31) and (32) we get the result.
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Remark 3.18. If the diagonal matrix A is equivalent to a zero matrix then M becomes minimal. So the surface of
revolution M is either an open portion of a plane or an open portion of a catenoid.

Minimal rotational surfaces are of coordinate finite type.
For the non-minimal case we obtain the following result;

Theorem 3.19. Let M be a non-minimal surface of revolution given with the parametrization (23). If M is coordinate
finite type surface then

f f ′ + λ11′ = 0 (33)

holds, where λ is a nonzero constant.

Proof. Since the entries a11, a22 and a33 of the diagonal matrix A are real constants then from the equality (29)
one can get the following differential equations

−1′
(
1(1′ f ′′ − f ′1′′) + f ′

(
( f ′)2 + (1′)2

))
f1

(
( f ′)2 + (1′)2)2 = c1

f ′
(
1(1′ f ′′ − f ′1′′) + f ′

(
( f ′)2 + (1′)2

))
12 (

( f ′)2 + (1′)2)2 = c2.

where c1, c2 are nonzero real constants. Further, substituting one into another we obtain the result.

Example 3.20. The round sphere given with the parametrization f (u) = r cos u, 1(u) = r sin u satisfies the equality
(33). So it is a coordinate finite type surface.

Example 3.21. The cone f (u) = 1(u) satisfies the equality (33). So it is a coordinate finite type surface.

3.3. Generalised Rotation Surfaces of Coordinate Finite Type

In the present section we consider generalised rotation surfaces of coordinate finite type surfaces in
Euclidean 4-spaces E4.

We proved the following result;

Lemma 3.22. Let M be a generalised rotation surface given with the parametrization (9). Then M is a surface of
coordinate finite type if and only if diagonal matrix A is of the form

A =


a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

 (34)

where

a11 = a22 =
−1′((d2 f ′1−c2 f1′)(( f ′)2+(1′)2)+(1′ f ′′− f ′1′′)(c2 f 2+d212))

f(( f ′)2+(1′)2)2(c2 f 2+d212)
,

a33 = a44 =
f ′((d2 f ′1−c2 f1′)(( f ′)2+(1′)2)+(1′ f ′′− f ′1′′)(c2 f 2+d212))

1(( f ′)2+(1′)2)2(c2 f 2+d212)
,

(35)

are constant functions.
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Proof. Assume that the generalised rotation surface given with the parametrization (9). Then, from the
equality (21)

∆X = −(h1
11 + h1

22)e3 − (h2
11 + h2

22)e4. (36)

Further, substituting (14) into (36) and using (10) we get the

∆X = ϕ


1′ cos cv
1′ sin cv
− f ′ cos dv
− f ′ sin dv

 (37)

where

ϕ = −

(
d2 f ′1 − c2 f1′

) (
( f ′)2 + (1′)2

)
+

(
1′ f ′′ − f ′1′′

) (
c2 f 2 + d212

)
(
( f ′)2 + (1′)2)2 (

c2 f 2 + d212)
is differentiable function. Also using (9) we get

AX =


a11 f cos cv
a22 f sin cv
a331 cos dv
a441 sin dv

 . (38)

Since, M is coordinate finite type then from the definition it satisfies the equality AX = ∆X. Hence, using
(37) and (38) we get the result.

If he matrix A is a zero matrix then M becomes minimal. So minimal rotational surfaces are of coordinate
finite type.

For the non-minimal case we obtain the following result;

Theorem 3.23. Let M be a generalised rotation surface given by the parametrization (9). If M is a coordinate finite
type then

f f ′ = µ11′

holds, where, µ is a real constant.

Proof. Since the entries a11, a22, a33 and a44 of the diagonal matrix A are real constants then from the equality
(29) one can get the following differential equations

−1′((d2 f ′1−c2 f1′)(( f ′)2+(1′)2)+(1′ f ′′− f ′1′′)(c2 f 2+d212))
f(( f ′)2+(1′)2)2(c2 f 2+d212)

= d1,

f ′((d2 f ′1−c2 f1′)(( f ′)2+(1′)2)+(1′ f ′′− f ′1′′)(c2 f 2+d212))
1(( f ′)2+(1′)2)2(c2 f 2+d212)

= d2,

where d1, d2 are nonzero real constants. Further, substituting one into another we obtain the result.

An easy consequence of Theorem 3.23 is the following.

Corollary 3.24. Let M be a Vranceanu rotation surface in Euclidean 4-space. If M is a coordinate finite type, then

rr ′
(
cos2 u − c sin2 u

)
= r2 cos u sin u(1 + c)

holds, where, c is a real constant.

In [11] C. S. Houh investigated Vranceanu rotation surfaces of finite type and proved the following

Theorem 3.25. [11] A flat Vranceanu rotation surface in E4 is of finite type if and only if it is the product of two
circles with the same radius, i.e. it is a Clifford torus.
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