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Abstract. In this paper, a class of boundary value problems of nonlinear nth-order differential equations
and inclusions with nonlocal and integral boundary conditions is studied. New existence results are
obtained by means of some fixed point theorems. Examples are given for the illustration of the the results.

1. Introduction

We discuss the existence of solutions for the following boundary value problems of nonlinear nth-order
differential equations and inclusions with nonlocal and integral boundary conditions:



u(n)(t) = f (t,u(t)), t ∈ [0, 1],

u(0) = u0 + 1(u),

u′(0) = 0, u′′(0) = 0, . . . ,u(n−2)(0) = 0,

δ1u(1) + δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds, 0 < ζi < 1,

(1)

2010 Mathematics Subject Classification. Primary 34B10 (mandatory); Secondary 34B15, 34A60
Keywords. Differential equations; differential inclusions; nonlocal conditions; integral boundary conditions; existence; fixed poin
Received: 23 September 2013; Accepted: 12 November 2013
Communicated by Naseer Shahzad
1Members of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King Abdulaziz University, Jeddah,

Saudi Arabia.
Email addresses: bashirahmad−qau@yahoo.com (Bashir Ahmad), sntouyas@uoi.gr (Sotiris K. Ntouyas), hamed9@hotmail.com

(Hamed H. Alsulami )



B. Ahmad, S. Ntouyas, H. Alsulami / Filomat 28:10 (2014), 2149–2162 2150

where f : [0, 1] × R → R, 1 : C([0, 1],R) → R are given continuous functions, δ1, δ2, κi, ζi, (i = 1, 2, . . . ,m)
are real constants and

u(n)(t) ∈ F(t,u(t)), a.e. t ∈ [0, 1],

u(0) = u0 + 1(u),

u′(0) = 0, u′′(0) = 0, . . . ,u(n−2)(0) = 0,

δ1u(1) + δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds, 0 < ζi < 1,

(2)

where F : [0, 1] ×R→ P(R) is a multivalued map, and P(R) is the family of all subsets of R.
The existence results for the problem (1) are based on Banach’s contraction principle and a fixed point
theorem due to D. O’Regan [12], while the results for the problem (2) rely on the Nonlinear Alternative
for contractive maps and a selection theorem due to Bressan and Colombo for lower semicontinuous
multivalued maps with nonempty closed and decomposable values.
Nonlocal conditions were initiated by Bitsadze [1]. As remarked by Byszewski [3–5], a nonlocal condition
can be more useful than a standard initial condition to describe some physical phenomena. For example,
1(x) may be given by 1(x) =

∑p
i=1 cix(ti), where ci are given constants and ti are the interior points of the

interval under consideration. For more details on initial and boundary value problems with nonlocal
conditions, we refer to a survey paper by Ntouyas [11].
The paper is organized as follows. Section 2 is devoted to a lemma which plays a crucial role in the sequel.
Section 3 contains the existence and uniqueness results for the problem (1), while the existence results for
the problem (2) are presented in Section 4.

2. An Auxiliary Lemma

Lemma 2.1. Let δ1 + (n − 1)δ2 ,
m∑

i=1

κiζ
n
i . For any y ∈ C([0, 1],R), the unique solution of the boundary value

problem

u(n)(t) = y(t), t ∈ [0, 1],

u(0) = u0 + 1(u),

u′(0) = 0, u′′(0) = 0, . . . ,u(n−2)(0) = 0,

δ1u(1) + δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds, 0 < ζi < 1,

(3)

is given by

u(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds + Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
y(s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
y(s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
y(s)ds

}
+[1 − δ1Λtn−1][u0 + 1(u)],

(4)

where

Λ =
1

δ1 + (n − 1)δ2 −

m∑
i=1

κiζ
n−1
i

. (5)
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Proof. It is well known that the solution of the differential equation in (3) can be written as

u(t) =

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds + c0 + c1t + c2t2 + . . . + cn−2tn−2 + cn−1tn−1, (6)

where ci, i = 0, 1, . . .n − 1 are arbitrary real constants. Using the boundary condition u(0) = u0 + 1(u), we
get c0 = u0 + 1(u). Using the boundary conditions u′(0) = u′′(0) = . . . = u(n−2)(0) = 0 in (6), we find that

c1 = c2 = . . . = cn−2 = 0 and applying the boundary condition: δ1u(1) +δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds,we obtain

cn−1 = Λ

( m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
y(s)ds − δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
y(s)ds

−δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
y(s)ds

)
− δ1Λ[u0 + 1(u)],

where Λ defined by (5). Substituting the values of c0, c1, c2, . . . , cn−2 and cn−1 in (6), we get (4). �

3. Existence Results - The single-valued Case

We denote by C = C([0, 1],R) the Banach space of all continuous functions from [0, 1] → R endowed
with a topology of uniform convergence with the norm defined by ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.

In view of Lemma 2.1, we define an operator F : C → C by

(Fu)(t) =
(
1 − δ1Λtn−1

)
[u0 + 1(u)] +

∫ t

0

(t − s)n−1

(n − 1)!
f (s,u(s))ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s,u(s))ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s,u(s))ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s,u(s))ds

} (7)

where Λ given by (5). Observe that the problem (1) has solutions if and only if the operator equation Fu = u
has fixed points.

Define two operators from C → C, respectively, by

(F1u)(t) =

∫ t

0

(t − s)n−1

(n − 1)!
f (s,u(s))ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s,u(s))ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s,u(s))ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s,u(s))ds

}
,

(8)

and

(F2u)(t) =
(
1 − δ1Λtn−1

)
[u0 + 1(u)]. (9)

Clearly

(Fu)(t) = (F1u)(t) + (F2u)(t), t ∈ [0, 1]. (10)
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For computational convenience, we set the notations:

p0 :=
1
n!

+ |Λ|

(∑m
i=1 κiζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)
(11)

and

k0 := 1 + |δ1||Λ|. (12)

Theorem 3.1. Let f : [0, 1] ×R→ R be a continuous function. Assume that:

(A1) | f (t, x) − f (t, y)| ≤ L|x − y|,∀t ∈ [0, 1], L > 0, x, y ∈ R;

(A2) there exist a positive constant ` < k−1
0 and a continuous function φ : [0,∞)→ [0,∞) such that φ(z) ≤ `z and

|1(x) − 1(y)| ≤ φ(‖x − y‖) for all x, y ∈ C([0, 1]).

(A3) γ = Lp0 + ` k0 < 1.

Then the boundary value problem (1) has a unique solution.

Proof. For u, v ∈ C and for each t ∈ [0, 1], from the definition of F and assumptions (A1) and (A2),we obtain

|(Fu)(t) − (Fv)(t)| ≤
{∫ t

0

(t − s)n−1

(n − 1)!
| f (s,u(s)) − f (s, v(s))|ds

+|Λtn−1
|

( m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
| f (s,u(s)) − f (s, v(s))|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s,u(s)) − f (s, v(s))|ds

+|δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s,u(s)) − f (s, v(s))|ds

)}
+|1 − δ1Λtn−1

||1(u) − 1(v)|

≤ L
{

1
n!

+ |Λ|

(∑m
i=1 κiζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖u − v‖

+`[1 + |δ1||Λ|]‖x − y‖,

which, in view of (11) and (12) together with (A3), becomes

‖Fu − Fv‖ ≤ γ‖u − v‖.

As γ < 1 by (A3), F is a contraction map from the Banach space C into itself. Thus, the conclusion of the
theorem follows by the contraction mapping principle (Banach fixed point theorem). �

Next, we introduce a fixed point theorem due to O’Regan [12], which will be used to establish the next
main result.

Lemma 3.2. Denote by U an open set in a closed, convex set C of a Banach space E. Assume 0 ∈ U. Also assume
that F(Ū) is bounded and that F : Ū → C is given by F = F1 + F2, in which F1 : Ū → E is continuous and
completely continuous and F2 : Ū → E is a nonlinear contraction (i.e., there exists a nonnegative nondecreasing
function φ : [0,∞)→ [0,∞) satisfying φ(z) < z for z > 0, such that ‖F2(x) − F2(y)‖ ≤ φ(‖x − y‖) for all x, y ∈ Ū).
Then, either

(C1) F has a fixed point u ∈ Ū; or
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(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF(u), where Ū and ∂U, respectively, represent the closure
and boundary of U.

Let

Ωr = {u ∈ C([0, 1],R) : ‖u‖ < r},

and denote the maximum number by

Mr = max{| f (t,u)| : (t,u) ∈ [0, 1] × [−r, r]}.

Theorem 3.3. Let f : [0, 1] × R → R be a continuous function. Suppose that (A1) and (A2) hold. In addition we
assume that

(A4) 1(0) = 0;

(A5) there exists a nonnegative function p ∈ C([0, 1],R) and a nondecreasing function ψ : [0,∞) → [0,∞) such
that

| f (t,u)| ≤ p(t)ψ(|u|) for any (t,u) ∈ [0, 1] ×R;

(A6) sup
r∈(0,∞)

r
k0|u0| + p0ψ(r)‖p‖

>
1

1 − k0`
, where p0, k0 are defined by (11) and (12) respectively.

Then the boundary value problem (1) has at least one solution on [0, 1].

Proof. Consider the operator F : C → C defined by (10), that is,

(Fu)(t) = (F1u)(t) + (F2u)(t), t ∈ [0, 1],

where the operators F1 and F2 are defined respectively in (8) and (9).
From (A6) there exists a number r0 > 0 such that

r0

k0|u0| + p0ψ(r0)‖p‖
>

1
1 − k0`

. (13)

We shall prove that the operators F1 and F2 satisfy all the conditions of Lemma 3.2.
Step 1. The operator F1 is continuous and completely continuous. We first show that F1(Ω̄r0 ) is bounded. For

any u ∈ Ω̄r0 we have

‖F1u‖ ≤
∫ t

0

(t − s)n−1

(n − 1)!
| f (s,u(s))|ds

+|Λtn−1
|

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
| f (s,u(s))|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s,u(s))|ds + |δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s,u(s))|ds

}
≤ Mr0

{
1
n!

+ |Λ|

(∑m
i=1 |κi|ζn

i

(n + 1)!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖p‖.

This proves that F1(Ω̄r0 ) is uniformly bounded.
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Next, for any t1, t2 ∈ [0, 1], t1 < t2, we have

|(F1u)(t2) − (F1u)(t1)|

≤

∣∣∣∣∣∣ 1
(n − 1)!

∫ t1

0
[(t2 − s)n−1

− (t1 − s)n−1] f (s,u(s))ds +

∫ t2

t1

(t2 − s)n−1 f (s,u(s))ds

∣∣∣∣∣∣
+|Λ||tn−1

2 − tn−1
1 |

( m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
| f (s,u(s))|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s,u(s))|ds + |δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s,u(s))|ds

)
≤

Mr0

n!
|2(t2 − t1)n + tn

1 − tn
2 |

+Mr0 |Λ||t
n−1
2 − tn−1

1 |

(∑m
i=1 |κi|ζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)
‖p‖,

which is independent of u, and tends to zero as t2 − t1 → 0. Thus, F1 is equicontinuous. Hence, by the
Arzelá-Ascoli Theorem, F1(Ω̄r0 ) is a relatively compact set. Now, let un ⊂ Ω̄r0 with ‖un − u‖ → 0. Then
the limit ‖un(t) − u(t)‖ → 0 uniformly on [0, 1]. From the uniform continuity of f (t,u) on the compact set
[0, 1] × [−r0, r0], it follows that ‖ f (t,un(t)) − f (t,u(t))‖ → 0 is uniformly on [0, 1]. Hence ‖F1un − F1u‖ → 0 as
n→∞which proves the continuity of F1. Hence Step 1 is completely established.

Step 2. The operator F2 : Ω̄r0 → C([0, 1],R) is contractive. This is a consequence of (A2).
Step 3. The set F(Ω̄r0 ) is bounded. For any u ∈ Ω̄r0 , we find by (A2) and (A4) that

‖F2(u)‖ ≤ (1 + |δ1||Λ|)(|u0| + `r0),

which, together with the boundedness of the set F1(Ω̄r0 ) implies that the set F(Ω̄r0 ) is bounded.
Step 4. Here, it is shown that the case (C2) in Lemma 3.2 does not occur. On the contrary, we suppose that

(C2) holds. Then, there exist λ ∈ (0, 1) and u ∈ ∂Ωr0 such that u = λFu. So, we have ‖u‖ = r0 and

(Fu)(t) = λ
(
1 − δ1Λtn−1

)
[u0 + 1(u)] + λ

∫ t

0

(t − s)n−1

(n − 1)!
f (s,u(s))ds

+λΛtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s,u(s))ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s,u(s))ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s,u(s))ds

}
.

In view of the hypotheses (A4) − (A6), we have

r0 ≤ ψ(r0)
{

1
n!

+ |Λ|

(∑m
i=1 κiζn

i

(n + 1)!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖p‖ + (1 + |δ1||Λ|)(|u0| + `r0),

which implies that
r0 ≤ k0`r0 + k0|u0| + p0ψ(r0)‖p‖.

Thus,
r0

k0|u0| + p0ψ(r0)‖p‖
≤

1
1 − k0`

,

which contradicts (13).
Thus the operators F1 and F2 satisfy all the conditions of Lemma 3.2. Hence, the operator F has at least one
fixed point u ∈ Ω̄r0 , which is the solution of the problem (1). �

Now we present some illustrative examples for our results obtained for the single-valued case.



B. Ahmad, S. Ntouyas, H. Alsulami / Filomat 28:10 (2014), 2149–2162 2155

Example 3.4. Consider the following boundary value problem

u′′′(t) =
1

(t + 2)2 ·
|u|

1 + |u|
+ 1 + sin2 t, 0 < t < 1,

u(0) = 1 +
1

16
u(ξ), u′(0) = 0,

u(1) + u′(1) =

3∑
i=1

κi

∫ ζi

0
u′(s)ds, 0 < ζi < 1.

(14)

Here ` = 1/16, δ1 = 1, δ2 = 1, ζ1 = 1/4, ζ2 = 1/2, ζ3 = 3/4, κ1 = 1, κ2 = 1/3, κ3 = 2/3 and f (t,u) =
1

(t + 2)2 ·
|u|

1 + |u|
+ 1 + sin2 t. As | f (t,u) − f (t, v)| ≤

1
4
|u − v|, therefore (A1) is satisfied with L =

1
4
. Further

γ = L
{

1
n!

+ |Λ|

(∑m
i=1 κiζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
+ `[1 + |δ1||Λ|] =

2311
11424

< 1.

Thus, by Theorem 3.1, problem (14) has a unique solution on [0, 1].

Example 3.5. Let θ > 0 and consider the following boundary value problem

u′′′(t) = θt2 sin2 x, 0 < t < 1,

u(0) =
6
7

+ `u(ξ), u′(0) = 0,

u(1) + u′(1) = 64
∫ 1/4

0
u′(s)ds + 27

∫ 1/3

0
u′(s)ds + 8

∫ 1/2

0
u′(s)ds.

(15)

We shall prove that the problem (15) admits at least one solution provided that |`| < 1 and 0 < θ <
18
13

(
1 −

7
6
|`|

)2

.

In order to show the validity of this claim, we need to verify that all conditions in Theorem 3.3 are
satisfied. Note that here f (t,u) = θt2 sin2 u,u0 = 6/7, 1(u) = `u(ξ), δ1 = 1, δ2 = 1, κ1 = 64, κ2 = 27, κ3 = 8, ζ1 =
1/4, ζ2 = 1/3, ζ3 = 1/2.

The function 1(u) = `u(ξ) is contractive because |1(x)−1(y)| < |`| · ‖x− y‖ for any x, y ∈ C([0, 1]).Moreover
1(0) = 0. Hence the condition (A4) is satisfied. With p(t) = θt and ψ(u) = u2, the condition (A5) is satisfied,
that is,

| f (t,u)| ≤ |θt2 sin2 u| ≤ θtu2, for any (t,u) ∈ [0, 1] ×R.

With the given values, it is found that p0 =
13
36
, k0 =

7
6
, ‖p‖ = θ and hence we obtain the estimation:

sup
r∈(0,∞)

r
k0|u0| + p0ψ(r)‖p‖

= sup
r∈(0,∞)

r
1 + 13θ

36 r2
=

1
2

√
36

13θ
>

1
1 − 7

6 |`|
,

provided |`| < 1 and 0 < θ <
9
13

(
1 −

7
6
|`|

)2

. This means that (A6) is satisfied as long as both |`| < 1 and

0 < θ <
9

13

(
1 −

7
6
|`|

)2

hold. Therefore, according to Theorem 3.3, we can conclude that problem (15) has at

least one solution on [0, 1].

4. Existence Results - The Multi-valued Case

We begin this section with some preliminary concepts of multi-valued maps [6, 8].
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For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A multi-valued
map G : X→ P(X) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is bounded
on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset
of X, and if for each open set N of X containing G(x0), there exists an open neighborhoodN0 of x0 such that
G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X). If the
multi-valued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only
if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be denoted by FixG. A
multivalued map G : [0; 1]→ Pcl(R) is said to be measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.
Let L1([0, 1],R) be the Banach space of measurable functions x : [0, 1] → R which are Lebesgue integrable

and normed by ‖x‖L1 =

∫ 1

0
|x(t)|dt.

Definition 4.1. A function u ∈ Cn−1([0, 1],R) is a solution of the problem (2) if u(0) = u0+1(u), u′(0) = 0, u′′(0) =

0, . . . ,u(n−2)(0) = 0, δ1u(1) + δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds, and there exists a function f ∈ L1([0, 1],R) such that

f (t) ∈ F(t,u(t)) a.e. on [0, 1] andi

u(t) =
(
1 − δ1Λtn−1

)
[u0 + 1(u)] +

∫ t

0

(t − s)n−1

(n − 1)!
f (s)ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s)ds

}
.

4.1. The Carathéodory Case
Definition 4.2. A multivalued map F : [0, 1] ×R→ P(R) is said to be Carathéodory if

(i) t 7−→ F(t,u) is measurable for each x ∈ R;

(ii) x 7−→ F(t,u) is upper semicontinuous for almost all t ∈ [0, 1];

Further a Carathéodory function F is called L1
−Carathéodory if

(iii) for each δ1 > 0, there exists ϕδ1 ∈ L1([0, 1],R+) such that

‖F(t,u)‖ = sup{|v| : v ∈ F(t,u)} ≤ ϕδ1 (t)

for all ‖u‖ ≤ δ1 and for a. e. t ∈ [0, 1].

For each u ∈ C([0, 1],R), define the set of selections of F by

SF,u := {v ∈ L1([0, 1],R) : v(t) ∈ F(t,u(t)) for a.e. t ∈ [0, 1]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and recall two results for closed
graphs and upper-semicontinuity.
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Lemma 4.3. ([6, Proposition 1.2]) If G : X → Pcl(Y) is u.s.c., then Gr(G) is a closed subset of X × Y; i.e., for every
sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y, if when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗).
Conversely, if G is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 4.4. ([10]) Let X be a Banach space. Let F : [0, 1]×X→ Pcp,c(X) be an L1
− Carathéodory multivalued map

and let Θ be a linear continuous mapping from L1([0, 1],X) to C([0, 1],X). Then the operator

Θ ◦ SF : C([0, 1],X)→ Pcp,c(C([0, 1],X)), x 7→ (Θ ◦ SF)(x) = Θ(SF,x)

is a closed graph operator in C([0, 1],X) × C([0, 1],X).

To prove our main result in this section we will use the following form of the Nonlinear Alternative for
contractive maps [13, Corollary 3.8].

Theorem 4.5. Let X be a Banach space, and D a bounded neighborhood of 0 ∈ X. Let Z1 : X → Pcp,c(X) and
Z2 : D̄→ Pcp,c(X) two multi-valued operators satisfying

(a) Z1 is contraction, and

(b) Z2 is u.s.c and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or

(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4.6. Assume that

(H1) F : [0, 1] ×R→ Pcp,c(R) is L1
−Carathéodory multivalued map;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈ C([0, 1],R+) such
that

‖F(t,u)‖P := sup{|y| : y ∈ F(t,u)} ≤ p(t)ψ(‖u‖) for each (t,u) ∈ [0, 1] ×R;

(H3) there exists a constant L1 < k−1
0 such that

|1(u) − 1(v)| ≤ L1|u − v|, ∀u, v ∈ R;

(H4) there exists a number M > 0 such that

(1 − L1k0)M
ψ(M|)p0‖p‖ + (1 + |δ1||Λ|)|u0|

> 1, (16)

where p0 and k0 are given by (11) and (12) respectively.

Then the boundary value problem (2) has at least one solution on [0, 1].

Proof. Transform the problem (2) into a fixed point problem. Consider the operatorN : C([0, 1],R) −→
P(C([0, 1],R)) defined by

N(u) =



h ∈ C([0, 1],R) :

h(t) =



(
1 − δ1Λtn−1

)
[u0 + 1(u)] +

∫ t

0

(t − s)n−1

(n − 1)!
f (s)ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s)ds

}
,
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for f ∈ SF,u.
Now, we define an operatorA : C([0, 1],R) −→ C([0, 1],R) as

Au(t) =
(
1 − δ1Λtn−1

)
[u0 + 1(u)], (17)

and a multi-valued operator B : C([0, 1],R) −→ P(C([0, 1],R)) by

B(u) =



h ∈ C([0, 1],R) :

h(t) =



∫ t

0

(t − s)n−1

(n − 1)!
f (s)ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s)ds

−δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s)ds

}
.



(18)

Clearly N = A + B. We shall show that the operators A and B satisfy all the conditions of Theorem 4.5.
The proof consists of a sequence of steps and claims.

Step 1: We show thatA is a contraction on C([0, 1],R). Let u, v ∈ C([0, 1],R). Then

|Au(t) −Av(t)| = |

(
1 − δ1Λtn−1

)
[1(u) − 1(v)]|

≤ L1k0|u − v|.

Taking supremum for t ∈ [0, 1],
‖Au −Av‖ ≤ L1k0‖u − v‖.

This shows thatA is a contraction as L1k0 < 1.

Step 2: We shall show that the operator B is compact and convex valued and it is completely continuous. This
will be given in several claims.

Claim I: B maps bounded sets into bounded sets in C([0, 1],R). To see this, let Br = {u ∈ C([0, 1],R) : ‖u‖ ≤ r} be
a bounded set in C([0, 1],R). Then, for each h ∈ B(u),u ∈ Br, there exists f ∈ SF,u such that

|h(t)| ≤
∫ t

0

(t − s)n−1

(n − 1)!
| f (s)|ds + |Λtn−1

|

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n

(n − 1)!
| f (s)|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s)|ds + |δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s)|ds

}

≤ ψ(‖u‖)
{

tn

n!
+ |Λtn−1

|

(∑m
i=1 |κi|ζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖p‖

which, by taking maximum on the interval [0, 1] together with (11), yields

‖h‖ ≤ ψ(r)p0‖p‖.

Claim II: Next we show that B maps bounded sets into equi-continuous sets. Let t1, t2 ∈ [0, 1] with t1 < t2 and
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u ∈ Br, where Br is a bounded set of C([0, 1],R). For each h ∈ B(u), we obtain

|h(t2) − h(t1)| ≤

∣∣∣∣∣∣ 1
(n − 1)!

∫ t1

0
[(t2 − s)n−1

− (t1 − s)n−1] f (s)ds

+

∫ t2

t1

(t2 − s)n−1 f (s)ds

∣∣∣∣∣∣
+|Λ||tn−1

2 − tn−1
1 |

( m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
| f (s)|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s)|ds + |δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s)|ds

)
≤

ψ(r)
n!
|2(t2 − t1)n + tn

1 − tn
2 |‖p‖

+ψ(r)|Λ||tn−1
2 − tn−1

1 |

(∑m
i=1 |κi|ζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)
‖p‖.

Obviously the right hand side of the above inequality tends to zero independently of u ∈ B as t2− t1 → 0.As
B satisfies the above two assumptions, therefore it follows by the Arzelá-Ascoli theorem that the operator
B : C([0, 1],R)→ P(C([0, 1],R)) is completely continuous.

By Lemma 4.3, Bwill be upper semi-continuous (u.s.c.) if we prove that it has a closed graph since B is
already shown to be completely continuous.

Claim III (B has a closed graph.) Let un → u∗, hn ∈ B(un) and hn → h∗. Then we need to show that h∗ ∈ B(u∗).
Associated with hn ∈ B(un), there exists fn ∈ SF,un such that for each t ∈ [0, 1],

hn(t) =

∫ t

0

(t − s)n−1

(n − 1)!
fn(s)ds + Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
fn(s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
fn(s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
fn(s)ds

}
.

Thus we have to show that there exists f∗ ∈ SF,u∗ such that for each t ∈ [0, 1],

h∗(t) =

∫ t

0

(t − s)n−1

(n − 1)!
f∗(s)ds + Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f∗(s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f∗(s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f∗(s)ds

}
.

Let us consider the continuous linear operator Θ : L1([0, 1],R)→ C([0, 1],R) given by

f 7→ Θ( f )(t) =

∫ t

0

(t − s)n−1

(n − 1)!
f (s)ds + Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s)ds

}
.
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Observe that

‖hn(t) − h∗(t)‖ =

∣∣∣∣∣∣
∫ t

0

(t − s)n−1

(n − 1)!
( fn(s) − f∗(s))ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
( fn(s) − f∗(s))ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
( fn(s) − f∗(s))ds

−δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f ( fn(s) − f∗(s))ds

}∣∣∣∣∣∣→ 0,

as n → ∞. Thus, it follows by Lemma 4.4 that Θ ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ Θ(SF,xn ). Since un → u∗, therefore, we have

h∗(t) =

∫ t

0

(t − s)n−1

(n − 1)!
f∗(s)ds + Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f∗(s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f∗(s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f∗(s)ds

}
,

for some f∗ ∈ SF,u∗ . Hence B has a closed graph (and therefore has closed values). In consequence, the
operator B is compact valued.

Therefore the operators A and B satisfy all the conditions of Theorem 4.5. Thus, the conclusion of
Theorem 4.5 yields either condition (i) or condition (ii) holds. We show that the conclusion (ii) is not
possible. If u ∈ λA(u) + λB(u) for λ ∈ (0, 1), then there exists f ∈ SF,u such that

u(t) = λ
(
1 − δ1Λtn−1

)
[u0 + 1(u)] + λ

∫ t

0

(t − s)n−1

(n − 1)!
f (s)ds

+λΛtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (s)ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (s)ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (s)ds

}
.

(19)

Consequently, we have

|u(t)| ≤
∫ t

0

(t − s)n−1

(n − 1)!
| f (s)|ds + |Λtn−1

|

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
| f (s)|ds

+|δ1|

∫ 1

0

(1 − s)n−1

(n − 1)!
| f (s)|ds + |δ2|

∫ 1

0

(1 − s)n−2

(n − 2)!
| f (s)|ds

}
+(1 + |δ1||Λ|)(|u0| + L1‖u‖)

≤ ψ(‖u‖)
{

tn

n!
+ |Λtn−1

|

(∑m
i=1 |κi|ζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖p‖

+(1 + |δ1||Λ|)(|u0| + L1‖u‖)

≤ ψ(‖u‖)
{

1
n!

+ |Λ|

(∑m
i=1 |κi|ζn

i

n!
+
|δ1|

n!
+
|δ2|

(n − 1)!

)}
‖p‖

+(1 + |δ1||Λ|)(|u0| + L1‖u‖). (20)
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If condition (ii) of Theorem 4.5 holds, then there exists λ ∈ (0, 1) and u ∈ ∂BM such that u = λN(u). Then, u
is a solution of (19) with ‖u‖ = M and hence the inequality (20) implies that

(1 − L1k0)M
ψ(M)p0‖p‖ + (1 + |δ1||Λ|)|u0|

≤ 1

which contradicts (16). Hence,N has a fixed point in [0, 1] by Theorem 4.5, and consequently the problem
(2) has a solution. This completes the proof. �

4.2. The Lower Semi-continuous Case

This section deals with the case when F is not necessarily convex valued. The combination of the
nonlinear alternative of Leray-Schauder type and the selection theorem due to Bressan and Colombo [2]
for lower semi-continuous maps with decomposable values is applied to establish the existence result for
this case.

Let us mention some auxiliary facts. Let X be a nonempty closed subset of a Banach space E and
G : X → P(E) be a multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {y ∈ X : G(y) ∩ B , ∅} is open for any open set B in E. Let A be a subset of [0, 1] × R. A is L ⊗ B
measurable if A belongs to the σ−algebra generated by all sets of the form J × D, where J is Lebesgue
measurable in [0, 1] and D is Borel measurable in R. A subset A of L1([0, 1],R) is decomposable if for all
u, v ∈ A and measurableJ ⊂ [0, 1] = J, the function uχJ +vχJ−J ∈ A, where χJ stands for the characteristic
function of J .

Definition 4.7. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R)) be a multivalued operator. We
say N has a property (BC) if N is lower semi-continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1] ×R → P(R) be a multivalued map with nonempty compact values. Define a multivalued
operator F : C([0, 1] ×R)→ P(L1([0, 1],R)) associated with F as

F (u) = {w ∈ L1([0, 1],R) : w(t) ∈ F(t,u(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 4.8. Let F : [0, 1] × R → P(R) be a multivalued function with nonempty compact values. We say F is
of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator F is lower semi-continuous and has
nonempty closed and decomposable values.

Lemma 4.9. ([7]) Let Y be a separable metric space and let N : Y → P(L1([0, 1],R)) be a multivalued operator
satisfying the property (BC). Then N has a continuous selection, that is, there exists a continuous function (single-
valued) 1 : Y→ L1([0, 1],R) such that 1(u) ∈ N(u) for every u ∈ Y.

Theorem 4.10. Assume that (H2), (H3), (H4) and the following condition holds:

(H5) F : [0, 1] ×R→ P(R) is a nonempty compact-valued multivalued map such that

(a) (t,u) 7−→ F(t,u) is L ⊗B measurable,

(b) u 7−→ F(t,u) is lower semicontinuous for each t ∈ [0, 1].

Then the boundary value problem (2) has at least one solution on [0, 1].

Proof. It follows from (H2) and (H5) that F is of l.s.c. type. Then, by Lemma 4.9, there exists a continuous
function f : C([0, 1],R)→ L1([0, 1],R) such that f (u) ∈ F (u) for all u ∈ C([0, 1],R).
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Consider the problem

u(n)(t) = f (u(t)), 0 < t < 1,

u(0) = u0 + 1(u),

u′(0) = 0, u′′(0) = 0, . . . ,u(n−2)(0) = 0,

δ1u(1) + δ2u′(1) =

m∑
i=1

κi

∫ ζi

0
u′(s)ds, 0 < ζi < 1.

(21)

Observe that if u ∈ Cn−1([0, 1],R) is a solution of (21), then x is a solution to the problem (2). Now, we
define operatorsA′ : C([0, 1],R) −→ C([0, 1],R) and B′ : C([0, 1],R) −→ C([0, 1],R) by

A
′u(t) =

(
1 − δ1Λtn−1

)
[u0 + 1(u)], (22)

B
′u(t) =



∫ t

0

(t − s)n−1

(n − 1)!
f (u(s))ds

+Λtn−1

{ m∑
i=1

κi

∫ ζi

0

(ζi − s)n−1

(n − 1)!
f (u(s))ds

−δ1

∫ 1

0

(1 − s)n−1

(n − 1)!
f (u(s))ds − δ2

∫ 1

0

(1 − s)n−2

(n − 2)!
f (u(s))ds

}
.

(23)

It is obvious that the operatorsA′ and B′ are continuous. Also the argument used in the proof of Theorem
3.1 guarantees that A′ and B′ satisfy all the conditions of the Nonlinear Alternative for contractive maps
in the single valued setting [9] and hence the problem (21) has a solution.
�
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