Degree Distance of Tensor Product and Strong Product of Graphs

V. Sheeba Agnes ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Annamalai University, Annamalainagar, India.

Abstract

In this paper, we determine the degree distance of $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and $G \boxtimes K_{r_{0}, r_{1}, \ldots, r_{n-1}}$, where \times and \boxtimes denote the tensor product and strong product of graphs, respectively, and $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ denotes the complete multipartite graph with partite sets $V_{0}, V_{1}, \ldots, V_{n-1}$ where $\left|V_{j}\right|=r_{j}, \quad 0 \leq j \leq n-1$ and $n \geq 3$. Using the formulae obtained here, we have obtained the exact value of the degree distance of some classes of graphs.

1. Introduction

In this paper, all graphs considered are simple, connected and finite. Let $G=(V(G), E(G))$ be a connected graph of order n. For any $u, v \in V(G)$, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of the shortest (u, v)-path in G. The degree of a vertex $w \in V(G)$ is denoted by $d_{G}(w)$. For $S \subseteq V(G),\langle S\rangle$ denotes the subgraph of G induced by S. For two subsets $S, T \subset V(G)$, by $d_{G}(S, T)$, we mean the sum of the distances, in G, from each vertex of S to every vertex of T, that is, $d_{G}(S, T)=\sum_{u \in S, v \in T} d_{G}(u, v)$. For $S, T \subseteq V(G)$, let $D(S, T)$, denote the sum $\sum_{x \in S, y \in T} d_{G}(x, y)\left[d_{G}(x)+d_{G}(y)\right]$. Let P_{n} and C_{n} denote the path and the cycle on n vertices, respectively. We call K_{3} a triangle. Notation and definitions which are not given here can be found in [1] or [2].

A topological index is a numerical quantity related to a graph that is invariant under graph automorphisms. A topological index related to distance is called a "distance-based topological index". The Wiener index $W(G)$ is the first distance-based topological index defined as $W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)$ with the summation runs over all pairs of vertices of G. The topological indices and graph invariants based on distances between vertices of a graph are widely used in mathematical chemistry[19]. The Wiener index is one of the most used topological indices with high correlation with many physical and chemical indices of molecular compounds. It is used in the study of paraffin boiling points [20].

There are some topological indices based on degrees such as the first and second Zagreb indices of molecular graphs. The first and second kinds of Zagreb indices have been introduced more than 30 years ago by Gutman and Trinajstić in [10] (see also [9]). The developement and uses of these indices can be found in [11] and [14]. The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ of a graph G are defined as $M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]=\sum_{v \in V(G)} d_{G}^{2}(v)$ and $M_{2}(G)=\sum_{u v \in E(G)}\left[d_{G}(u) d_{G}(v)\right]$.

[^0]The degree distance was introduced by Dobrynin and Kochetova [6] and Gutman [8] as a weighted version of the Wiener index. The degree distance of G, denoted by $D D(G)$, is defined as $D D(G)=$
$\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)\left[d_{G}(u)+d_{G}(v)\right]=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)\left[d_{G}(u)+d_{G}(v)\right]$ with the summation runs over all pairs of vertices of G. The degree distance is a structure descriptor based on molecular topology, of quantitative relations between structure and activity. Its physico chemical applications range from the prediction of boiling points to the calculation of velocity of ultrasound in organic materials. In [3], it has been demonstrated that the Wiener index and the degree distance are closely mutually related for certain classes of molecular graphs. In [18], Ioan Tomescu proved one of the conjectures and disproved the other, made by Dobrynin and Kochetova [6] on the minimum and maximum values of the degree distance of a graph.

The tensor product of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, has the vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E\left(G_{1} \times G_{2}\right)=\left\{(u, x)(v, y): u v \in E\left(G_{1}\right)\right.$ and $\left.x y \in E\left(G_{2}\right)\right\}$. The cartesian product of the graphs G_{1} and G_{2}, denoted by $G_{1} \square G_{2}$, has the vertex set $V\left(G_{1} \square G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(u, x)(v, y)$ is an edge of $G_{1} \square G_{2}$ if $u=v$ and $x y \in E\left(G_{2}\right)$ or, $u v \in E\left(G_{1}\right)$ and $x=y$. The strong product of the graphs G_{1} and G_{2}, denoted by $G_{1} \boxtimes G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(u, x)(v, y)$ is an edge whenever (i) $u=v$ and $x y \in E\left(G_{2}\right)$ or, (ii) $u v \in E\left(G_{1}\right)$ and $x=y$ or, (iii) $u v \in E\left(G_{1}\right)$ and $x y \in E\left(G_{2}\right)$. In fact, $G_{1} \boxtimes G_{2}=G_{1} \times G_{2} \oplus G_{1} \square G_{2}$, where \oplus denotes the edge disjoint union of two graphs. The wreath product of the graphs G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(u, x)(v, y)$ is an edge whenever $(i) u v \in E\left(G_{1}\right)$ or (ii) $u=v$ and $x y \in E\left(G_{2}\right)$.

In [16], the degree distance of the graphs $G_{1} \square G_{2}$ and $G_{1} \circ G_{2}$, have been obtained.
In this paper, we obtain the degree distance of the tensor product $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and the strong product $G \boxtimes K_{r_{0}, r_{1}, \ldots, r_{n-1}}$, where $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ is the complete n-partite graph with $r=\sum_{j=0}^{n-1} r_{j}$ and $n \geq 3$. In $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$, if $r_{0}=r_{1}=\ldots=r_{n-1}=s$, then we denote $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ by $K_{n(s)}$. Using the formulae obtained here, we have obtained the exact degree distance of some classes of graphs.

2. Degree Distance of the Tensor Product of Graphs

In this section, we compute the degree distance of $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$.
Let G be a simple nontrivial connected graph with $V(G)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}, m \geq 2$. In $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$, let $r=\sum_{j=0}^{n-1} r_{j}$ and $n \geq 3$. Let $V_{0}, V_{1}, \ldots, V_{n-1}$ be the partite sets of $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and let $\left|V_{j}\right|=r_{j}, 0 \leq j \leq n-1$. In the graph $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$, let $Z_{i j}=u_{i} \times V_{j}, u_{i} \in V(G)$ and $0 \leq j \leq n-1$. We call $Z_{i j}$, the $(i, j)^{\text {th }}$ block of $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ (do not be confused with the block of a graph.) Clearly $S_{i}=\bigcup_{j=0}^{n-1} Z_{i j}$ is an independent set of $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and $V\left(G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}\right)=\bigcup_{i=0}^{m-1} S_{i}$. We call S_{i} a layer of $G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}$. Throughout the paper, we denote $K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ by K and $\epsilon\left(K\left(\widehat{r_{j}}\right)\right)$ denote the number of edges in $K \backslash V_{j}$.

It is clear that the degree of the vertex $(x, y) \in G \times K$ is $d_{G \times K}(x, y)=d_{G}(x) d_{K}(y)$; very often we shall use this fact for our computation.

Lemma 2.1. Let G be a nontrivial connected graph. Let $Z_{i j}$ and $Z_{p q}$ be two blocks in $H=G \times K$. Then
(a) $d_{H}\left(Z_{i j}, Z_{i q}\right)= \begin{cases}2 r_{j}\left(r_{j}-1\right), & \text { if } j=q, \\ 2 r_{j} r_{q}, & \text { if } j \neq q,\end{cases}$
(b) if $u_{i} u_{p} \in E(G)$,
$d_{H}\left(Z_{i j}, Z_{p q}\right)= \begin{cases}r_{j} r_{q}, & \text { if } j \neq q, \\ 2 r_{j}^{2}, & \text { if } j=q \text { and } u_{i} u_{p} \text { lies on a triangle of } G, \\ 3 r_{j}^{2}, & \text { if } j=q \text { and } u_{i} u_{p} \text { does not lie on a triangle of } G,\end{cases}$
(c) if $u_{i} u_{p} \notin E(G)$,
$d_{H}\left(Z_{i j}, Z_{p q}\right)= \begin{cases}r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right), & \text { if } j \neq q, \\ r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right), & \text { if } j=q .\end{cases}$
Proof. Let $Z_{i j}$ and $Z_{p q}$ be two blocks in $H=G \times K$.

Proof of (a).

Suppose $i=p, j=q$. By the nature of the graph H and $G \neq K_{1}$, any two vertices of $Z_{i j}$ are at distance 2 . There are $r_{j}\left(r_{j}-1\right)$ pairs of distinct vertices in $Z_{i j}$ and hence $d_{H}\left(Z_{i j}, Z_{i j}\right)=2 r_{j}\left(r_{j}-1\right)$.
Suppose $i=p, j \neq q$. In H, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{i q}$ is 2 . There are $r_{j} r_{q}$ such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{i q}\right)=2 r_{j} r_{q}$.
Proof of (b). $u_{i} u_{p} \in E(G)$.
Suppose $j \neq q$. If $u_{i} u_{p} \in E(G)$, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p q}$ in H is 1 . There are $r_{j} r_{q}$ such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p q}\right)=r_{j} r_{q}$.
Suppose $j=q$ and $u_{i} u_{p}$ lies on a triangle of G.
If $u_{i} u_{p} \in E(G)$ and $u_{i} u_{p}$ lies on a triangle of G, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p j}$ in H is 2 . There are r_{j}^{2} such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p j}\right)=2 r_{j}^{2}$.
Suppose $j=q$ and $u_{i} u_{p}$ does not lie on a triangle of G.
If $u_{i} u_{p} \in E(G)$ and $u_{i} u_{p}$ does not lie on a triangle of G, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p j}$ in H is 3 . There are r_{j}^{2} such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p j}\right)=3 r_{j}^{2}$.
Proof of (c). $u_{i} u_{p} \notin E(G)$.
Suppose $j \neq q$.
If $u_{i} u_{p} \notin E(G)$, distance between u_{i} and u_{p} in G is $d_{G}\left(u_{i}, u_{p}\right)$ and hence the distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p q}$ in H is $d_{G}\left(u_{i}, u_{p}\right)$. There are $r_{j} r_{q}$ such pairs of vertice and hence $d_{H}\left(Z_{i j}, Z_{p q}\right)=r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right)$. Suppose $j=q$.
As above, the distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p j}$ in H is $d_{G}\left(u_{i}, u_{p}\right)$. There are r_{j}^{2} such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p j}\right)=r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right)$.

From the definition of the tensor product, the following lemma follows.
Lemma 2.2. Let G be a nontrivial connected graph. Let $\left(u_{i}, v_{j}\right) \in V(H)$ and let $v_{j} \in V_{j}$. Then the degree of $\left(u_{i}, v_{j}\right)$ is $d_{H}\left(\left(u_{i}, v_{j}\right)\right)=d_{G}\left(u_{i}\right) d_{K}\left(v_{j}\right)=d_{G}\left(u_{i}\right)\left(r-r_{j}\right)$.

Theorem 2.3. Let G be a nontrivial connected graph and let $K=K_{r_{0}, r_{1}, \ldots, r_{n-1}, n \geq 3 \text {, denote the complete } n \text {-partite }}$ graph. Let $E_{1}\left(\right.$ resp. E_{2}) denote the set of edges which lie (resp. do not lie) on a triangle of G. Then $D D(G \times K)=$ $\left\{8(r-1) \epsilon(G)+2 r D D(G)+r M_{1}(G)+r D_{0}(G)\right\} \epsilon(K)-\left\{M_{1}(G)+D_{0}(G)\right\} \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $r=\sum_{j=0}^{n-1} r_{j}, D_{0}(G)=$ $\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]$ and $D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, and $\left.\epsilon\left(K \widehat{r_{j}}\right)\right)$ is the number of edges in $K-V_{j}$.

Proof. Let $H=G \times K_{r_{0}, r_{1}, \ldots, r_{n-1}}=G \times K$. Then

$$
\begin{align*}
D D(H) & =\frac{1}{2}\left\{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)+\sum_{i=0}^{m-1} \sum_{\substack{q=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)+\sum_{j=0}^{n-1} \sum_{\substack{i p=0 \\
i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i p=0 \\
i \neq p}}^{m-1} \sum_{\substack{q=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)\right\} \\
& =\frac{1}{2}\left[A_{1}+A_{2}+A_{3}+A_{4}\right] \tag{1}
\end{align*}
$$

where $A_{1}-A_{4}$ are the sums of the above terms, in order.
We shall calculate A_{1} to A_{4} of (1) separately.
First we compute $A_{1}=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)$. For this, first we calculate $\sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)$. As G is connected and
nontrivial, any pair of distinct vertices in $Z_{i j}$ are at distance 2; also there are $r_{j}\left(r_{j}-1\right)$ such pairs of vertices and we have

$$
\begin{align*}
\sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right) & =\sum_{j=0}^{n-1} 2 r_{j}\left(r_{j}-1\right)\left\{d_{G}\left(u_{i}\right)\left(r-r_{j}\right)+d_{G}\left(u_{i}\right)\left(r-r_{j}\right)\right\}, \quad \text { by Lemmas } 2.1 \text { and 2.2, } \\
& =4 d_{G}\left(u_{i}\right) \sum_{j=0}^{n-1}\left\{r_{j}^{2}\left(r-r_{j}\right)-r_{j}\left(r-r_{j}\right)\right\}=4 d_{G}\left(u_{i}\right)\left\{\sum_{j=0}^{n-1} r_{j}^{2}\left(r-r_{j}\right)-\left(r^{2}-\sum_{j=0}^{n-1} r_{j}^{2}\right)\right\}, \text { as } r=\sum_{j=0}^{n-1} r_{j}, \\
& =4 d_{G}\left(u_{i}\right)\left\{\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right\}, \text { as } r-r_{j}=\sum_{\substack{q=0 \\
q \neq j}}^{n-1} r_{q} \text { and } r^{2}-\sum_{j=0}^{n-1} r_{j}^{2}=\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} . \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Now, by using (2), we have } \quad A_{1}=8 \epsilon(G)\left\{\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j} r_{q}\right\} \text {. } \tag{3}
\end{equation*}
$$

Next we compute $A_{2}=\sum_{i=0}^{m-1} \sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)$. For this, first we calculate $\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)$. As there are $r_{j} r_{q}$ pairs of vertices with the first vertex in $Z_{i j}$ and the second vertex in $Z_{i q}, j \neq q$ and they are at distance 2 in H, we have

$$
\begin{align*}
\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right) & =\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} 2 r_{j} r_{q}\left\{d_{G}\left(u_{i}\right)\left(r-r_{j}\right)+d_{G}\left(u_{i}\right)\left(r-r_{q}\right)\right\}, \text { by Lemmas } 2.1 \text { and } 2.2, \\
& =2 d_{G}\left(u_{i}\right) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\left\{2 r-r_{j}-r_{q}\right\}=4 d_{G}\left(u_{i}\right)\left\{r \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}\right\} . \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\text { Now, using (4), we get } \quad A_{2}=8 \epsilon(G)\left\{r \sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j} r_{q}-\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}\right\} \text {. } \tag{5}
\end{equation*}
$$

Next we calculate $A_{3}=\sum_{j=0}^{n-1} \sum_{\substack{i, p=0 \\ i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)$. For this, first we obtain $\sum_{\substack{i, p=0 \\ i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)$.
Let $E_{1}=\left\{u v \in E(G) \mid u v\right.$ is on a K_{3} of $\left.G\right\}$ and $E_{2}=E(G)-E_{1}$ and hence $\left|E_{1} \cup E_{2}\right|=\epsilon(G)$.

$$
\begin{aligned}
\sum_{\substack{i, p=0 \\
i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right) & =\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \notin(G)}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i, p=0 \\
i \neq p \\
i \neq p \\
u_{i} u_{p} \in E(G)}}^{m-1} D\left(Z_{i j}, Z_{p j}\right) \\
& =\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \notin(G)}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \in E_{1}}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \in E_{2}}}^{m-1} D\left(Z_{i j}, Z_{p j}\right) \\
& =\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \notin E(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right) r_{j}^{2}\left[d_{G}\left(u_{i}\right)\left(r-r_{j}\right)+d_{G}\left(u_{p}\right)\left(r-r_{j}\right)\right]+\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \in E_{1}}}^{m-1} 2 r_{j}^{2}\left[d_{G}\left(u_{i}\right)\left(r-r_{j}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+d_{G}\left(u_{p}\right)\left(r-r_{j}\right)\right]+\sum_{\substack{i, p=0 \\
i=p \\
u_{i} u_{p} \in E_{2}}}^{m-1} 3 r_{j}^{2}\left[d_{G}\left(u_{i}\right)\left(r-r_{j}\right)+d_{G}\left(u_{p}\right)\left(r-r_{j}\right)\right], \text { by Lemmas } 2.1 \text { and 2.2, } \\
& =r_{j}^{2}\left(r-r_{j}\right)\left\{\sum_{\substack{i, p=0 \\
\neq p \\
u_{p} \\
u_{i} u_{p} \notin E(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]+\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} \neq p \\
u_{i} u_{p} \in E_{1}}}^{m-1}\left(d_{G}\left(u_{i}, u_{p}\right)+1\right)\left[d_{\mathrm{G}}\left(u_{i}\right)+d_{\mathrm{G}}\left(u_{p}\right)\right]\right. \\
& \left.+\sum_{\substack{i, p=0 \\
i \neq p \\
u_{i}, p}}^{m-1}\left(d_{G}\left(u_{i}, u_{p}\right)+2\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right\}, \text { since } d_{G}\left(u_{i}, u_{p}\right)=1,
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sum_{\substack{i, p=0 \\
i=p \\
u_{i} u_{p} \in E_{2}}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right\}+r_{j}^{2}\left(r-r_{j}\right)\left\{\sum_{\substack{i p=0 \\
i \neq p \\
u_{i} u_{p} \in E_{1}}}^{m-1}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right. \\
& \left.+\sum_{\substack{i, p=0 \\
i=p \\
u_{i} u_{p} \in E_{2}}}^{m-1}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right\}+r_{j}^{2}\left(r-r_{j}\right) \sum_{\substack{i, p=0 \\
i \neq p \\
u_{i} u_{p} \in E_{2}}}^{m-1}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] \\
& =\left(2 D D(G)+2 M_{1}(G)+2 \sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right) r_{j}^{2}\left(r-r_{j}\right) . \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\text { Using (6), we get } \quad A_{3}=\left\{2 D D(G)+2 M_{1}(G)+\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right\} \sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q} \text {. } \tag{7}
\end{equation*}
$$

Finally, we calculate $A_{4}=\sum_{\substack{i, p=0 \\ i \neq p}}^{m-1} \sum_{\substack{, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)$. For this, first we compute $\sum_{\substack{j, q \neq 0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)$. As there are $r_{j} r_{q}$ pairs of vertices of $Z_{i j}$ and $Z_{p q}$ with its first vertex in $Z_{i j}$ and the second vertex in $Z_{p q}$ at distance $d_{G}\left(u_{i}, u_{p}\right)$, we have,

$$
\begin{align*}
\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right) & =\sum_{\substack{, q=0 \\
j \neq q}}^{n-1} d_{G}\left(u_{i}, u_{p}\right) r_{j} r_{q}\left[d_{G}\left(u_{i}\right)\left(r-r_{j}\right)+d_{G}\left(u_{p}\right)\left(r-r_{q}\right)\right], \text { by Lemmas } 2.1 \text { and 2.2, } \\
& =r d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} . \tag{8}
\end{align*}
$$

Using (8), we get $\quad A_{4}=2 D D(G)\left\{r \sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j} r_{q}-\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}\right\}$.

Using (3), (5), (7) and (9) in (1), we have

$$
\begin{aligned}
D D(H)= & 4 \epsilon(G)\left((r-1) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right)+\left(M_{1}(G)+\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}+r D D(G) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} \\
= & (4(r-1) \epsilon(G)+r D D(G)) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+\left(M_{1}(G)+\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right)\left(\frac{r}{2} \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-\frac{1}{2} \sum_{\substack{j, q, k=0 \\
j \neq q \neq k}}^{n-1} r_{j} r_{q} r_{k}\right), \\
& \text { using the identity } 2 \sum_{j, q=0}^{n-1} r_{j}^{2} r_{q}=\left(\sum_{j=0}^{n-1} r_{j}\right)\left(\sum_{j, q=0}^{n-1} r_{j} r_{q}\right)-\sum_{j=q}^{n-1} r_{j} r_{j} r_{q} r_{k} \text { and } r=\sum_{\substack{j \neq q=0}}^{n-1} r_{j}, \\
= & \left\{8(r-1) \epsilon(G)+2 r D D(G)+r M_{1}(G)+r D_{0}(G)\right\} \epsilon(K)-\left\{M_{1}(G)+D_{0}(G)\right\} \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right), \\
& \text { where } D_{0}(G)=\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] .
\end{aligned}
$$

We use the following Remark in the next corollary.
Remark 2.4. The sum $\sum_{\substack{j, q, k=0 \\ j \neq q \neq k}}^{n-1} r_{j} r_{q} r_{k}$, when $r_{0}=r_{1}=\ldots=r_{n-1}=s$, can be given as

$$
\begin{aligned}
\sum_{\substack{j, q, k=0 \\
j \neq q \neq k}}^{n-1} r_{j} r_{q} r_{k} & =2 \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right) \\
& =2 r_{0} \epsilon\left(K-V_{0}\right)+2 r_{1} \epsilon\left(K-V_{1}\right)+\cdots+2 r_{n-1} \epsilon\left(K-V_{n-1}\right) \\
& =2 s\left[n \epsilon\left(K-V_{0}\right)\right], \quad \text { since } K-V_{0} \simeq K-V_{i}, i=1,2, \ldots, n-1 \\
& =n(n-1)(n-2) s^{3} .
\end{aligned}
$$

If $r_{j}=s, 0 \leq j \leq n-1$, in Theorem 2.3, we have the following corollary, using the Remark 2.4.
Corollary 2.5. Let G be a nontrivial connected graph with $|V(G)|=m$. Let E_{1} denote the set of edges of G which lie on a triangle and $E_{2}=E(G)-E_{1}$. Then $D D\left(G \times K_{n(s)}\right)=n(n-1) s^{2}\left[4 \epsilon(G)(n s-1)+n s D D(G)+s M_{1}(G)+s D_{0}(G)\right]$, where $n \geq 3$ and $D_{0}(G)=\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right], D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, respectively.

As $K_{n} \simeq K_{n(1)}$, we have the following corollary.
Corollary 2.6. Let G be a nontrivial connected graph with $|V(G)|=m$. Let E_{1} denote the set of edges of G which lie on a triangle and $E_{2}=E(G)-E_{1}$. Then $D D\left(G \times K_{n}\right)=n(n-1)\left[4 \epsilon(G)(n-1)+n D D(G)+M_{1}(G)+D_{0}(G)\right]$, where $n \geq 3$ and $D_{0}(G)=\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]$ and $D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, respectively.

A graph is chordal if every cycle of length at least 4 has a chord, that is, an edge joining a pair of nonconsecutive vertices of a cycle of length at least 4 . If G is a 2-edge connected chordal graph, then in the above notation, $E_{2}=\emptyset$ and hence we have $D_{0}(G)=0$; consequently we have the following corollary.

Corollary 2.7. Let G be a 2-edge connected chordal graph. Then $D D(G \times K)=\{8(r-1) \epsilon(G)+2 r D D(G)+$ $\left.r M_{1}(G)\right\} \epsilon(K)-M_{1}(G) \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, respectively.

In particular, if $G=K_{m}, m \geq 3$, then the exact value of $D D(G \times K)$ can be given as $D D\left(K_{m} \times K\right)=$ $m(m-1)\left\{[3 r m+r-4] \epsilon(K)-(m-1) \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)\right\}$. Further, if $r_{0}=r_{1}=\ldots=r_{n-1}=s$, then $D D\left(K_{m} \times K_{n(s)}\right)=$ $m n(m-1)(n-1) s^{2}\{s(m n+m+n-1)-2\}$ and if $s=1$, then $D D\left(K_{m} \times K_{n}\right)=m n(m-1)(n-1)\{m n+m+n-3\}$, where $n \geq 3$.

For a triangle free graph, in the above notation, $E_{1}=\emptyset$ and hence $E_{2}=E(G)$; consequently, $D_{0}(G)=$ $\sum_{u_{i} u_{p} \in E(G)}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]=M_{1}(G)$. Using this in Theorem 2.3 we get the following corollary.

Corollary 2.8. Let G be a nontrivial connected triangle free graph. Then $D D(G \times K)=\{8(r-1) \epsilon(G)+2 r D D(G)+$ $\left.2 r M_{1}(G)\right\} \epsilon(K)-2 M_{1}(G) \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, respectively.

The following lemma is proved in [8].
Lemma 2.9. Let G be a tree on m vertices. Then $D D(G)=4 W(G)-m(m-1)$, where $W(G)$ is the Wiener index of G. If G is a tree on m vertices, by Lemma 2.9, $D D(G \times K)=\left\{2(m-1)[4(r-1)-r m]+2 r\left[4 W(G)+M_{1}(G)\right]\right\} \epsilon(K)-$ $2 M_{1}(G) \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $W(G)$ and $M_{1}(G)$ denote the Wiener index and the first Zagreb index of G, respectively.

If $r_{j}=s, 0 \leq j \leq n-1$, in Corollary 2.8, we have
Corollary 2.10. Let G be a nontrivial connected triangle free graph. Then $D D\left(G \times K_{n(s)}\right)=n(n-1) s^{2}(4 \epsilon(G)(n s-$ $1)+n s D D(G)+2 s M_{1}(G)$, where $n \geq 3$ and $D D(G)$ and $M_{1}(G)$ denote the degree distance and the first Zagreb index of G, respectively.

In particular, if G is a tree on m vertices, by Lemma 2.9, $D D\left(G \times K_{n(s)}\right)=n(n-1) s^{2}\{(m-1)[4 n s-n s m-$ $\left.4]+2 s\left[2 n W(G)+M_{1}(G)\right]\right\}$, where $W(G)$ and $M_{1}(G)$ denote the Wiener index and the first Zagreb index of G, respectively.

If $s=1$ in the Corollary 2.10, we have
Corollary 2.11. Let G be a nontrivial connected triangle free graph. Then $D D\left(G \times K_{n}\right)=n(n-1)[4 \epsilon(G)(n-1)+$ $\left.n D D(G)+2 M_{1}(G)\right]$, where $n \geq 3$ and $M_{1}(G)$ is the first Zagreb index of G.

In particular, if G is a tree on m vertices, by Lemma 2.9, $D D\left(G \times K_{n}\right)=n(n-1)\{(m-1)[4 n-n m-4]+$ $\left.2\left[2 n W(G)+M_{1}(G)\right]\right\}$, where $W(G)$ and $M_{1}(G)$ denote the Wiener index and the first Zagreb index of G, respectively. The following lemma is proved in [7].

Lemma 2.12. Let G be a connected graph with m vertices and diameter two. Then $D D(G)=4(m-1) \epsilon(G)-M_{1}(G)$ where $M_{1}(G)$ is the first Zagreb index of G.
Using Lemma 2.12 in Theorem 2.3, we have the following corollary.

Corollary 2.13. Let G be a connected graph with $m \geq 2$ vertices and diameter two. Let E_{1} denote the set of edges which lie on a triangle and $E_{2}=E(G)-E_{1}$. Then $D D(G \times K)=\left\{8(r m-1) \epsilon(G)-r M_{1}(G)+r D_{0}(G)\right\} \epsilon(K)-\left\{M_{1}(G)+\right.$ $\left.D_{0}(G)\right\} \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $D_{0}(G)=\sum_{u_{i} u_{p} \in E_{2}}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]$ and $M_{1}(G)$ is the first Zagreb index of G.

For our future reference we quote the following Lemmas.
Lemma 2.14. ([17]). Let P_{n} and C_{n} denote the path and the cycle on n vertices, respectively.

1. For $n \geq 2, W\left(P_{n}\right)=\frac{1}{6} n\left(n^{2}-1\right)$.
2. For $n \geq 3, W\left(C_{n}\right)=\left\{\begin{array}{l}\frac{n^{3}}{8}, \text { if } n \text { is even } \\ \frac{n\left(n^{2}-1\right)}{8}, \text { if } n \text { is odd. }\end{array}\right.$

Lemma 2.15. ([7,18]). Let P_{n} and C_{n} denote the path and the cycle on n vertices, respectively.

1. For $n \geq 2, D D\left(P_{n}\right)=\frac{1}{3} n(n-1)(2 n-1)$.
2. For $n \geq 3, D D\left(C_{n}\right)=\left\{\begin{array}{l}\frac{n^{3}}{2}, \text { if } n \text { is even } \\ \frac{n\left(n^{2}-1\right)}{2}, \text { if } n \text { is odd. }\end{array}\right.$

From [16], we have $D D\left(K_{n(s)}\right)=n(n-1)(n s+s-2) s^{2}$ and $D D\left(Q_{k}\right)=2^{2 k-1} k^{2}$, where $Q_{k}, k \geq 1$ is the hypercube of dimension k. It can be easily verified that $D D\left(K_{n}\right)=n(n-1)^{2}$, and $W\left(K_{n}\right)=\frac{1}{2} n(n-1)$ and $W\left(K_{n, n}\right)=n(3 n-2)$. From [13], we have $M_{1}\left(C_{n}\right)=4 n, n \geq 3, M_{1}\left(P_{n}\right)=4 n-6, n>1, M_{1}\left(P_{1}\right)=0$ and $M_{1}\left(K_{n}\right)=n(n-1)^{2}$. Also from [13], we have $M_{1}\left(Q_{k}\right)=2^{k} k^{2}, k \geq 1$ and $M_{1}\left(K_{r_{0}, r_{1}, \ldots, r_{n-1}}\right)=\left(\sum_{j=0}^{n-1} r_{j}\right)^{3}+\left(\sum_{j=0}^{n-1} r_{j}^{3}\right)-2\left(\sum_{j=0}^{n-1} r_{j}\right)\left(\sum_{j=0}^{n-1} r_{j}^{2}\right)$. Using Theorem 2.3, Lemmas 2.14 and 2.15, we obtain the exact degree distance of the following graphs.

1. For $m \geq 2, n \geq 3, D D\left(P_{m} \times K_{n(s)}\right)=\frac{n(n-1) s^{2}}{3}\{(m-1)[12(n s-1)+n s m(2 m-1)]+12 s(2 m-3)\}$.
2. For $m \geq 2, n \geq 3, D D\left(P_{m} \times K_{n}\right)=\frac{n(n-1)}{3}\left\{2 n m^{3}-3 n m^{2}+13 m n+12 m-12 n-24\right\}$.
3. For $m \geq 3, n \geq 3$,
$D D\left(C_{m} \times K_{n(s)}\right)= \begin{cases}\frac{m n(n-1) s^{2}}{2}\left[n s m^{2}+8 n s+16 s-8\right], & \text { if } m \text { is even, } \\ \frac{m n(n-1) s^{2}}{2}\left[n s m^{2}+7 n s+16 s-8\right], & \text { if } m \text { is odd } .\end{cases}$
4. For $m \geq 3, n \geq 3$,

$$
D D\left(C_{m} \times K_{n}\right)= \begin{cases}\frac{m n(n-1)}{2}\left[n m^{2}+8 n+8\right], & \text { if } m \text { is even } \\ \frac{m n(n-1)}{2}\left[n m^{2}+7 n+8\right], & \text { if } m \text { is odd }\end{cases}
$$

5. For $m \geq 2, n \geq 3, D D\left(K_{m} \times K_{n(s)}\right)=m n(m-1)(n-1) s^{2}[s(m n+m+n-1)-2]$.
6. For $m \geq 2, n \geq 3, D D\left(K_{m} \times K_{n}\right)=m n(m-1)(n-1)[m n+m+n-3]$.
7. For $m \geq 1, n \geq 3, D D\left(K_{m, m} \times K_{n(s)}\right)=2 n(n-1) m^{2} s^{2}[3 m n s+m s-2]$.
8. For $m \geq 1, n \geq 3, D D\left(K_{m, m} \times K_{n}\right)=2 n(n-1) m^{2}[3 m n+m-2]$.
9. For $m \geq 1, n \geq 3, D D\left(Q_{m} \times K_{n(s)}\right)=2^{m} m n(n-1) s^{2}\left[2(n s-1)+2^{m-1} s m n+2 m s\right]$.
10. For $m \geq 1, n \geq 3, D D\left(Q_{m} \times K_{n}\right)=2^{m+1} m n(n-1)\left[m+n-1+2^{m-2} m n\right]$.

3. Degree Distance of the Strong Product of Graphs

In this section, we compute the degree distance of $G \boxtimes K_{r_{0}, r_{1}, \ldots, r_{n-1}}$.
Let $V(G)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}, m \geq 2 . K_{r_{0}, r_{1}, \ldots, r_{n-1}}, V_{j}, Z_{i j}, \epsilon\left(K\left(\widehat{r}_{j}\right)\right)$ are as defined in the Section 2.
The proof of the following lemmas follow easily from the properties and structure of $G \boxtimes K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and hence we give them without proof.
Lemma 3.1. Let G be a nontrivial connected graph. Let $Z_{i j}$ be the $(i, j)^{\text {th }}$ block in $H=G \boxtimes K$. Then the degree of a vertex $\left(u_{i}, v_{j}\right)$ in $Z_{i j}$ in H is

$$
d_{H}\left(\left(u_{i}, v_{j}\right)\right)=d_{G}\left(u_{i}\right)+\left(r-r_{j}\right)+\left(r-r_{j}\right) d_{G}\left(u_{i}\right) .
$$

Lemma 3.2. Let G be a nontrivial connected graph. Let $H=G \boxtimes K$. Let $Z_{i j}$ and $Z_{p q}$ be as defined above. Then
(a) $d_{H}\left(Z_{i j}, Z_{i q}\right)= \begin{cases}2 r_{j}\left(r_{j}-1\right), & \text { if } j=q, \\ r_{j} r_{q}, & \text { if } j \neq q,\end{cases}$
(b) if $u_{i} u_{p} \in E(G)$,
$d_{H}\left(Z_{i j}, Z_{p q}\right)= \begin{cases}\left(2 r_{j}-1\right) r_{j}, & \text { if } j=q, \\ r_{j} r_{q}, & \text { if } j \neq q,\end{cases}$
(c) if $u_{i} u_{p} \notin E(G)$,
$d_{H}\left(Z_{i j}, Z_{p q}\right)= \begin{cases}r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right), & \text { if } j=q, \\ r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right), & \text { if } j \neq q .\end{cases}$
Proof. Let $Z_{i j}$ and $Z_{p q}$ be two blocks in $H=G \boxtimes K$.
Proof of (a).
Suppose $i=p, j=q$. By the nature of the graph H, any two vertices of $Z_{i j}$ are at distance 2 . There are $r_{j}\left(r_{j}-1\right)$ pairs of distinct vertices in $Z_{i j}$. Hence $d_{H}\left(Z_{i j}, Z_{i j}\right)=2 r_{j}\left(r_{j}-1\right)$.
Suppose $i=p, j \neq q$. In H, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{i q}$ is 1 . There are $r_{j} r_{q}$ such pairs of vertices. Hence $d_{H}\left(Z_{i j}, Z_{i q}\right)=r_{j} r_{q}$.
Proof of (b). $u_{i} u_{p} \in E(G)$.
Suppose $j=q$. If $u_{i} u_{p} \in E(G)$, distance in H, between a vertex of $Z_{i j}$ and its corresponding vertex in $Z_{p j}$ in H is 1 and for the rest of the $\left(r_{j}-1\right)$ vertices of $Z_{p j}$ in H is 2 . Therefore the sum of the distances from a vertex of $Z_{i j}$ to every vertex of $Z_{p j}$ in H is $2\left(r_{j}-1\right)+1=2 r_{j}-1$. There are r_{j} vertices in $Z_{i j}$. Hence $d_{H}\left(Z_{i j}, Z_{p j}\right)=\left(2 r_{j}-1\right) r_{j}$. Suppose $j \neq q$. If $u_{i} u_{p} \in E(G)$, distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p q}$ in H is 1 . There are $r_{j} r_{q}$ such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p q}\right)=r_{j} r_{q}$.
Proof of (c). $u_{i} u_{p} \notin E(G)$.
Suppose $j=q$. As $u_{i} u_{p} \notin E(G)$, the distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p j}$ in H is $d_{G}\left(u_{i}, u_{p}\right) \geq 2$. There are r_{j}^{2} such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p j}\right)=r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right)$.
Suppose $j \neq q$. If $u_{i} u_{p} \notin E(G)$, distance between u_{i} and u_{p} in G is $d_{G}\left(u_{i}, u_{p}\right)$ and hence the distance between a vertex of $Z_{i j}$ and a vertex of $Z_{p q}$ in H is $d_{G}\left(u_{i}, u_{p}\right)$. There are $r_{j} r_{q}$ such pairs of vertices and hence $d_{H}\left(Z_{i j}, Z_{p q}\right)=$ $r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right)$.
Theorem 3.3. Let G be a nontrivial connected graph with $|V(G)|=m$ and let $K_{r_{0}, r_{1}, \ldots, r_{n-1}, n \geq 3 \text {, denote the complete }}$ n-partite graph. Then $D D\left(G \boxtimes K_{r_{0}, r_{1}, \ldots, r_{n-1}}\right)=\left\{4 \epsilon(G)+D D(G)+M_{1}(G)\right\} r^{2}-\left\{4 \epsilon(G)+M_{1}(G)\right\} r+\{8(r-2) \epsilon(G)+$ $\left.m(3 r-4)+(r-4) M_{1}(G)+2 r D D(G)+4 r W(G)\right\} \epsilon(K)-\left\{m+4 \epsilon(G)+M_{1}(G)\right\} \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r_{j}}\right)\right)$, where $r=\sum_{j=0}^{n-1} r_{j}$ and $D D(G), W(G)$ and $M_{1}(G)$ are the degree distance, the Wiener index and the first Zagreb index of G, respectively.

Proof. Let $K=K_{r_{0}, r_{1}, \ldots, r_{n-1}}$ and let $H=G \boxtimes K$.

$$
D D(H)=\frac{1}{2}\left\{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)+\sum_{i=0}^{m-1} \sum_{\substack{, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)+\sum_{j=0}^{n-1} \sum_{\substack{i, p=0 \\ i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i, p=0 \\ i \neq p}}^{m-1} \sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)\right\}
$$

$$
\begin{equation*}
=\frac{1}{2}\left[A_{1}+A_{2}+A_{3}+A_{4}\right] \tag{10}
\end{equation*}
$$

where $A_{1}-A_{4}$ are the sums of the above terms, in order.
We shall calculate A_{1} to A_{4} of (10) separately.
First we calculate $A_{1}=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)$. For this, first we compute $\sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right)$. Any pair of distinct vertices in $Z_{i j}$ are at distance 2 and we can find $r_{j}\left(r_{j}-1\right)$ such pairs of vertices. Consequently, we have

$$
\begin{align*}
\sum_{j=0}^{n-1} D\left(Z_{i j}, Z_{i j}\right) & =\sum_{j=0}^{n-1} 2 r_{j}\left(r_{j}-1\right)\left\{2\left[d_{G}\left(u_{i}\right)+\left(r-r_{j}\right)+d_{G}\left(u_{i}\right)\left(r-r_{j}\right)\right]\right\}, \text { by Lemmas 3.1 and 3.2, } \\
& =4\left\{d_{G}\left(u_{i}\right) \sum_{j=0}^{n-1} r_{j}\left(r_{j}-1\right)+\left(1+d_{G}\left(u_{i}\right)\right) \sum_{j=0}^{n-1}\left[r_{j}^{2}\left(r-r_{j}\right)-r_{j}\left(r-r_{j}\right)\right]\right\} \\
& =4 d_{G}\left(u_{i}\right) \sum_{j=0}^{n-1} r_{j}\left(r_{j}-1\right)+4\left(1+d_{G}\left(u_{i}\right)\right)\left\{\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right\}, \text { as } r-r_{j}=\sum_{\substack{q=0 \\
q \neq j}}^{n-1} r_{q} . \tag{11}
\end{align*}
$$

Using (11), we get

$$
\begin{align*}
A_{1} & =8 \epsilon(G)\left(r(r-1)-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right)+4(m+2 \epsilon(G))\left[\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right], \\
& \text { since } \sum_{j=0}^{n-1} r_{j}=r \text { and } \sum_{j=0}^{n-1} r_{j}^{2}=r^{2}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} \\
= & 8 \epsilon(G) r(r-1)-(16 \epsilon(G)+4 m) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+4(m+2 \epsilon(G)) \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} . \tag{12}
\end{align*}
$$

Next we calculate $A_{2}=\sum_{i=0}^{m-1} \sum_{\substack{q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)$. For this, first we compute $\sum_{\substack{j, q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)$. As there are $r_{j} r_{q}$ pairs of vertices with the first vertex in $Z_{i j}$ and the second vertex in $Z_{i q}$ and they are at distance 1 in H, we have

$$
\begin{align*}
\sum_{\substack{j q=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{i q}\right)= & \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\left\{\left[d\left(u_{i}\right)+\left(r-r_{j}\right)+d\left(u_{i}\right)\left(r-r_{j}\right)\right]+\left[d\left(u_{i}\right)+\left(r-r_{q}\right)+d\left(u_{i}\right)\left(r-r_{q}\right)\right]\right\}, \\
& \text { since }\left\langle Z_{i j} \cup Z_{i q}\right\rangle \text { is a complete bipartite graph } \\
= & 2 d\left(u_{i}\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+2 r\left(d\left(u_{i}\right)+1\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-2\left(d\left(u_{i}\right)+1\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} \\
= & 2\left((r+1) d\left(u_{i}\right)+r\right) \sum_{\substack{j=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-2\left(d\left(u_{i}\right)+1\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} \tag{13}
\end{align*}
$$

Using (13), we get $\quad A_{2}=(4(r+1) \epsilon(G)+2 r m) \sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j} r_{q}-2(2 \epsilon(G)+m) \sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}$.

Next we calculate $A_{3}=\sum_{j=0}^{n-1} \sum_{\substack{p=0 \\ i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)$. For this, initially we compute $\sum_{\substack{i p=0 \\ i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)$. Since the sum of the distances in H from each vertex of $Z_{i j}$ to every vertex of $Z_{p j}$ is $\left(2 r_{j}-1\right) r_{j}$, if $u_{i} u_{p} \in E(G)$ and the sum of the distances in H from each vertex of $Z_{i j}$ to every vertex of $Z_{p j}$ is $r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right)$, if $u_{i} u_{p} \notin E(G)$, we have

$$
\begin{aligned}
\sum_{\substack{i p=0 \\
i \neq p}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)= & \sum_{\substack{i p=0 \\
i \neq p \\
u_{i} u_{p} \in E(G)}}^{m-1} D\left(Z_{i j}, Z_{p j}\right)+\sum_{\substack{i p=0 \\
i \neq p \\
u_{i} u_{p} \notin E(G)}}^{m-1} D\left(Z_{i j}, Z_{p j}\right) \\
& =\sum_{\substack{i p=0 \\
i \neq p \\
u_{i} u_{p} \in E(G)}}^{m-1}\left(2 r_{j}-1\right) r_{j}\left\{\left[d_{G}\left(u_{i}\right)+\left(r-r_{j}\right)+d_{G}\left(u_{i}\right)\left(r-r_{j}\right)\right]+\left[d_{G}\left(u_{p}\right)+\left(r-r_{j}\right)+d_{G}\left(u_{p}\right)\left(r-r_{j}\right)\right]\right\} \\
& +\sum_{\substack{i p=0 \\
i \neq p \\
u_{i} u_{p} \notin E(G)}}^{m-1} r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right)\left\{\left[d_{G}\left(u_{i}\right)+\left(r-r_{j}\right)+d_{G}\left(u_{i}\right)\left(r-r_{j}\right)\right]+\left[d_{G}\left(u_{p}\right)+\left(r-r_{j}\right)+d_{G}\left(u_{p}\right)\left(r-r_{j}\right)\right]\right\},
\end{aligned}
$$

$$
\text { by Lemmas } 3.1 \text { and 3.2, }
$$

$$
=\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} u_{p} \in E(G)}}^{m-1}\left(\left[1+d_{G}\left(u_{i}, u_{p}\right)\right] r_{j}-1\right) r_{j}\left\{\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]+2\left(r-r_{j}\right)+\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\left(r-r_{j}\right)\right\}
$$

$$
+\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} \neq E \\ u_{i} u_{p} E(G)}}^{m-1} r_{j}^{2} d_{G}\left(u_{i}, u_{p}\right)\left\{\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]+2\left(r-r_{j}\right)+\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\left(r-r_{j}\right)\right\},
$$

$$
\text { since } 2=d_{G}\left(u_{i}, u_{p}\right)+1, \text { when } u_{i} u_{p} \in E(G)
$$

$$
=2 M_{1}(G)\left(r_{j}^{2}-r_{j}\right)\left[1+\left(r-r_{j}\right)\right]+\left(r_{j}^{2}+r_{j}^{2}\left(r-r_{j}\right)\right)\left(\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} u_{p} \in E(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right.
$$

$$
\left.+\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} u_{p} \notin E(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right)+2 r_{j}^{2}\left(r-r_{j}\right)\left(\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} u_{p} \in E(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)+\sum_{\substack{i p=0 \\ i \neq p \\ u_{i} \neq E \\ u_{p} \notin(G)}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\right)
$$

$$
+4\left[r_{j}^{2}\left(r-r_{j}\right)-r_{j}\left(r-r_{j}\right)\right] \epsilon(G), \text { since } M_{1}(G)=\sum_{u_{i} u_{p} \in E(G)}\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]
$$

$$
=2\left[r_{j}^{2}-r_{j}+r_{j}^{2}\left(r-r_{j}\right)-r_{j}\left(r-r_{j}\right)\right] M_{1}(G)+2\left[r_{j}^{2}+r_{j}^{2}\left(r-r_{j}\right)\right] D D(G)
$$

$$
\begin{equation*}
+4 r_{j}^{2}\left(r-r_{j}\right) W(G)+4\left[r_{j}^{2}\left(r-r_{j}\right)-r_{j}\left(r-r_{j}\right)\right] \epsilon(G) \tag{15}
\end{equation*}
$$

Using (15), we get

$$
A_{3}=2\left(\sum_{j=0}^{n-1} r_{j}^{2}-r+\sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j} r_{q}\right) M_{1}(G)+2\left(\sum_{j=0}^{n-1} r_{j}^{2}+\sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q}\right) D D(G)+4 \sum_{\substack{j q=0 \\ j \neq q}}^{n-1} r_{j}^{2} r_{q} W(G)
$$

$$
\begin{align*}
& +4\left(\sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right) \epsilon(G), \quad \text { as } r=\sum_{j=0}^{n-1} r_{j} \text { and } r-r_{j}=\sum_{\substack{q=0 \\
j \neq q}}^{n-1} r_{q} \\
= & 2 r^{2}\left(D D(G)+M_{1}(G)\right)-2 r M_{1}(G)+2\left(M_{1}(G)+D D(G)+2 W(G)+2 \epsilon(G)\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} \\
& -2\left(D D(G)+2 M_{1}(G)+2 \epsilon(G)\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} \text { as } \sum_{j=0}^{n-1} r_{j}^{2}=r^{2}-\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} . \tag{16}
\end{align*}
$$

Next we calculate $A_{4}=\sum_{\substack{i p=0 \\ i \neq p}}^{m-1} \sum_{\substack{q=0 \\ j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)$. For this, initially we compute $\sum_{\substack{j q=0 \\ j=q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)$. Since the sum of the distances in H from each vertex of $Z_{i j}$ to every vertex of $Z_{p q}$ is $r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right)$, we have

$$
\begin{align*}
\sum_{\substack{j, g=0 \\
j \neq q}}^{n-1} D\left(Z_{i j}, Z_{p q}\right)= & \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} d_{G}\left(u_{i}, u_{p}\right)\left\{\left[d_{G}\left(u_{i}\right)+\left(r-r_{j}\right)+\left(r-r_{j}\right) d_{G}\left(u_{i}\right)\right]+\left[d_{G}\left(u_{p}\right)+\left(r-r_{q}\right)\right.\right. \\
& \left.\left.+\left(r-r_{q}\right) d_{G}\left(u_{p}\right)\right]\right\}, \quad \text { by Lemmas 3.1 and 3.2, } \\
= & (1+r) d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+2 r d_{G}\left(u_{i}, u_{p}\right) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q} \\
& -2 d_{G}\left(u_{i}, u_{p}\right) \sum_{\substack{j=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}-d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right] \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} . \tag{17}
\end{align*}
$$

Using (17), we get

$$
\begin{align*}
A_{4}= & \left\{(1+r) \sum_{\substack{i, p=0 \\
i \neq p}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]+2 r \sum_{\substack{i p=0 \\
i \neq p}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\right\} \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-\left\{2 \sum_{\substack{i p=0 \\
i \neq p}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\right. \\
& \left.+\sum_{\substack{i, p=0 \\
i \neq p}}^{m-1} d_{G}\left(u_{i}, u_{p}\right)\left[d_{G}\left(u_{i}\right)+d_{G}\left(u_{p}\right)\right]\right\} \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} \\
= & (2(1+r) D D(G)+4 r W(G)) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-(4 W(G)+2 D D(G)) \sum_{\substack{j q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} . \tag{18}
\end{align*}
$$

Using (12), (14), (16) and (18) in (10), we have

$$
\begin{aligned}
& D D(H)=\left\{4 \epsilon(G)+D D(G)+M_{1}(G)\right\} r^{2}-\left\{4 \epsilon(G)+M_{1}(G)\right\} r+\left\{2(r-4) \epsilon(G)+m(r-2)-2 M_{1}(G)+r D D(G)\right. \\
&+2 r W(G)\} \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+\left\{m+4 \epsilon(G)+M_{1}(G)\right\} \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q} \\
&=\left\{4 \epsilon(G)+D D(G)+M_{1}(G)\right\} r^{2}-\left\{4 \epsilon(G)+M_{1}(G)\right\} r+\left\{2(r-4) \epsilon(G)+m(r-2)-2 M_{1}(G)+r D D(G)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad+2 r W(G)\} \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}+\left\{m+4 \epsilon(G)+M_{1}(G)\right\}\left(\frac{r}{2} \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}-\frac{1}{2} \sum_{\substack{j, q, k=0 \\
j \neq q \neq k}}^{n-1} r_{j} r_{q} r_{k}\right), \\
& \quad \text { using the identity } 2 \sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j}^{2} r_{q}=\left(\sum_{j=0}^{n-1} r_{j}\right)\left(\sum_{\substack{j, q=0 \\
j \neq q}}^{n-1} r_{j} r_{q}\right)-\sum_{\substack{j, q, k=0 \\
j \neq q \neq k}}^{n-1} r_{j} r_{q} r_{k} \text { and } r=\sum_{j=0}^{n-1} r_{j}, \\
& =\left\{4 \epsilon(G)+D D(G)+M_{1}(G)\right\} r^{2}-\left\{4 \epsilon(G)+M_{1}(G)\right\} r+\{8(r-2) \epsilon(G)+m(3 r-4) \\
& \left.\quad+(r-4) M_{1}(G)+2 r D D(G)+4 r W(G)\right\} \epsilon(K)-\left\{m+4 \epsilon(G)+M_{1}(G)\right\} \sum_{j=0}^{n-1} r_{j} \epsilon\left(K\left(\widehat{r}_{j}\right)\right),
\end{aligned}
$$

where m denote the number of vertices of G.
If $r_{j}=s, 0 \leq j \leq n-1$, in Theorem 3.3, we have the following corollary.
Corollary 3.4. Let G be a nontrivial connected graph with $|V(G)|=m$. Then $D D\left(G \otimes K_{n(s)}\right)=(4 \epsilon(G)+D D(G)+$ $\left.M_{1}(G)\right) n^{2} s^{2}-\left(4 \epsilon(G)+M_{1}(G)\right) n s+\left[2(n s+2 s-4) \epsilon(G)+n s D D(G)+2 n s W(G)+(s-2) M_{1}(G)+m(n s+s-2)\right] n(n-1) s^{2}$, where $n \geq 3$ and $D D(G), W(G)$ and $M_{1}(G)$ are the degree distance, the Wiener index and the first Zagreb index of G, respectively.

In the above corollary, if $s=1$, then we have the following corollary.
Corollary 3.5. Let G be a be a nontrivial connected graph with $|V(G)|=m$. Then $D D\left(G \otimes K_{n}\right)=n^{3} D D(G)+2 n^{2}(n-$ 1) $\epsilon(G)+2 n^{2}(n-1) W(G)+m n(n-1)^{2}$, where $n \geq 3$ and $D D(G)$ and $W(G)$ are the degree distance and the Wiener index of G, respectively.

From [4], we have $W\left(Q_{k}\right)=k 4^{k-1}, k \geq 1$. Using Theorem 3.3, Lemmas 2.14 and 2.15, we obtain the exact degree distance of the following graphs.

1. For $m \geq 2, n \geq 3, D D\left(P_{m} \boxtimes K_{n}\right)=\frac{m(m-1) n^{2}}{3}\{3 m n-m-1\}+n(n-1)\{3 m n-2 n-m\}$.
2. For $m \geq 3, n \geq 3$,

$$
D D\left(C_{m} \boxtimes K_{n}\right)= \begin{cases}\frac{m n(3 n-1)}{4}\left[n\left(m^{2}+4\right)-4\right], & \text { if } m \text { is even }, \\ \frac{m n(3 n-1)}{4}\left[n\left(m^{2}+3\right)-4\right], & \text { if } m \text { is odd } .\end{cases}
$$

3. For $m \geq 1, n \geq 3, D D\left(K_{m, m} \boxtimes K_{n}\right)=2(3 m-2) m^{2} n^{3}+2 m n(n-1)[4 m n-n-1]$.
4. For $m \geq 1, n \geq 3, D D\left(Q_{m} \boxtimes K_{n}\right)=2^{2 m-1} n^{2}\left[n m^{2}+m(n-1)\right]+2^{m} n(n-1)[m n+n-1]$.

References

[1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Second edition, Springer, New York, 2012.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, GTM 244, 2008.
[3] S. Chen and Z. Guo, A Lower Bound on the Degree Distance in a Tree, Int. J. Contemp. Math. Sci. 9 (2011) 327-335.
[4] S. Daneshvar, G. Izbirak and M. M. Kaleibar, Topological Indices of Hypercubes, J. Basic. Appl. Sci. Res. 2 (2012) 11501-11505.
[5] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, On the Degree Distance of a Graph, Discrete Appl. Math. 157(2009) 2773-2777.
[6] A. A. Dobrynin and A. A. Kochetova, Degree Distance of a Graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34(1994) 1082-1086.
[7] M. Essalih, M. El Marraki and G. El Hagri, Calculation of Some Topological Indices of Graphs, J. Theoretical and Applied Information Technology 30 (2011) 122-127.
[8] I. Gutman, Selected Properties of the Schultz Molecular Topological Index, J. Chem. Inf. Comput. Sci. 34(1994) 1087-1089.
[9] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.
[10] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total i ϕ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[11] I. Gutman and K. C. Das, The First Zagreb Index 30 Years After, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[12] R. Hammack, W. Imrich and S. Klažar, Handbook of Product Graphs, CRC Press, New York, 2011.
[13] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The First and Second Zagreb Indices of Some Graph Operations, Discrete Appl. Math. 157(2009) 804-811.
[14] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb Indices 30 Years After, Croat. Chem. Acta 76 (2003) 113-124.
[15] K. Pattabiraman and P. Paulraja, On Some Topological Indices of the Tensor Products of Graphs, Discrete Appl. Math. 160 (2012) 267-279.
[16] P. Paulraja and V. Sheeba Agnes, Degree Distance of Product Graphs, Discrete Math. Algorithm. Appl. 06 (2014) 1450003 (19 pages).
[17] B. E. Sagan, Y. N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Int. J. Quant. Chem. 60 (1996) 959-969.
[18] I. Tomescu, Some Extremal Properties of the Degree Distance of a Graph, Discrete Appl. Math. 98(1999) 159-163.
[19] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1983.
[20] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20.

[^0]: 2010 Mathematics Subject Classification. 05C76, 05C12
 Keywords. Tensor product, Strong product, Degree distance, Wiener index, Zagreb index.
 Received: 29 September 2013; Accepted: 04 March 2014
 Communicated by Francesco Belardo
 Email address: juddish.s@gmail.com (V. Sheeba Agnes)

