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Explicit formulas for computing Bernoulli numbers of the second kind
and Stirling numbers of the first kind
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aCollege of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China

Abstract. In the paper, by establishing a new and explicit formula for computing the n-th derivative of
the reciprocal of the logarithmic function, the author presents new and explicit formulas for calculating
Bernoulli numbers of the second kind and Stirling numbers of the first kind. As consequences of these
formulas, a recursion for Stirling numbers of the first kind and a new representation of the reciprocal of the
factorial n! are derived. Finally, the author finds several identities and integral representations relating to
Stirling numbers of the first kind.

1. Introduction

It is general knowledge that the n-th derivative of the logarithmic function ln x for x > 0 is

(ln x)(n) = (−1)n−1 (n − 1)!
xn (1.1)

for n ∈ N, whereN denotes the set of all positive integers. One may ask a question: What is the formula
for the n-th derivative of the reciprocal of the logarithmic function ln x? There have been some literature to
deal with this question. For example, Lemma 2 in [7] reads that for any m ≥ 0 we have[ 1

ln(1 + t)

](m)

=
1

(1 + t)m

m∑
i=0

(−1)ii!
s(m, i)

[ln(1 + t)]i+1
, (1.2)

where s(n, k) are Stirling numbers of the first kind, which may be generated by

[ln(1 + x)]m

m!
=

∞∑
k=m

s(k,m)
k!

xk, |x| < 1. (1.3)

The first aim of this paper is to establish a new and explicit formula for computing the n-th derivative of
the reciprocal of the logarithmic function. As consequences of this formula, a recursion for Stirling numbers
of the first kind and a new representation of the reciprocal of the factorial n! are derived.
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The Bernoulli numbers b0, b1, b2, . . . , bn, . . . of the second kind may be defined by

x
ln(1 + x)

=

∞∑
n=0

bnxn. (1.4)

The first few Bernoulli numbers bn of the second kind are

b0 = 1, b1 =
1
2
, b2 = −

1
12
, b3 =

1
24
, b4 = −

19
720
, b5 =

3
160
.

For more information, please refer to [5, 6] and closely related references therein. By the way, we note that
the so-called Cauchy number of the first kind may be defined by n!bn. See [2, 7] and plenty of references
cited therein. One may also ask a natural question: Can one discover an explicit formula for computing bn
for n ∈ N? There have been several formulas and recurrence relations for computing bn. For example, it is
derived in [8] that

bn =
1
n!

n∑
k=0

s(n, k)
k + 1

, (1.5)

where s(n, k) may also be generated by

n−1∏
k=0

(x − k) =
n∑

k=0

s(n, k)xk. (1.6)

We remark that two definitions of s(n, k) by (1.3) and (1.6) are coincident.
The second aim is to derive a new and explicit formula for calculating Bernoulli numbers bn of the

second kind.
Finally, we will find several identities and integral representations relating to Stirling numbers of the

first kind s(n, k).

2. Explicit formula for derivatives of the logarithmic function

In this section, we establish a new and explicit formula for computing the n-th derivative of the reciprocal
of the logarithmic function, which will be applied in next section to derive an explicit formula for calculating
Bernoulli numbers of the second kind.

Theorem 2.1. For n ∈N, we have

( 1
ln x

)(n)

=
(−1)n

xn

n+1∑
i=2

an,i

(ln x)i , (2.1)

where

an,2 = (n − 1)! (2.2)

and, for n + 1 ≥ i ≥ 3,

an,i = (i − 1)!(n − 1)!
n−1∑
ℓ1=1

1
ℓ1

ℓ1−1∑
ℓ2=1

1
ℓ2
· · ·
ℓi−4−1∑
ℓi−3=1

1
ℓi−3

ℓi−3−1∑
ℓi−2=1

1
ℓi−2
. (2.3)
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Proof. An easy differentiation gives( 1
ln x

)(n+1)

=
[( 1

ln x

)(n)]′
=

[
(−1)n

xn

n+1∑
i=2

an,i

(ln x)i

]′

= (−1)n
n+1∑
i=2

an,i

[ 1
xn(ln x)i

]′
=

(−1)n+1

xn+1

n+1∑
i=2

an,i
i + n ln x
(ln x)i+1

=
(−1)n+1

xn+1

[n+1∑
i=2

ian,i

(ln x)i+1
+

n+1∑
i=2

nan,i

(ln x)i

]

=
(−1)n+1

xn+1

[n+2∑
i=3

(i − 1)an,i−1

(ln x)i +

n+1∑
i=2

nan,i

(ln x)i

]

=
(−1)n+1

xn+1

[
nan,2

(ln x)2 +

n+1∑
i=3

(i − 1)an,i−1 + nan,i

(ln x)i +
(n + 1)an,n+1

(ln x)n+2

]
.

Equating coefficients of (ln x)i for 2 ≤ i ≤ n + 2 on both sides of

(−1)n+1

xn+1

n+2∑
i=2

an+1,i

(ln x)i =
(−1)n+1

xn+1

[
nan,2

(ln x)2 +

n+1∑
i=3

(i − 1)an,i−1 + nan,i

(ln x)i +
(n + 1)an,n+1

(ln x)n+2

]
yields the recursion formulas of the coefficients an,i satisfying

an+1,2 = nan,2, (2.4)
an+1,n+2 = (n + 1)an,n+1, (2.5)

and

an+1,i = (i − 1)an,i−1 + nan,i (2.6)

for 3 ≤ i ≤ n + 1.
From( 1

ln x

)′
= − 1

x(ln x)2 ,

it follows that

a1,2 = 1. (2.7)

Combining (2.7) with (2.4) and (2.5) respectively results in (2.2) and

an,n+1 = n!. (2.8)

Letting i = 3 in (2.6) and using (2.2) produce

an+1,3 = 2an,2 + nan,3 = 2(n − 1)! + nan,3 (2.9)
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for n ≥ 2. Utilizing (2.8) for n = 2 as an initial value and recurring (2.9) figure out

an,3 = 2!(n − 1)!
n−1∑
k=1

1
k

(2.10)

for n ≥ 2.
Taking i = 4 in (2.6) and employing (2.10) give

an+1,4 = 3an,3 + nan,4 = 3 × 2(n − 1)!
n−1∑
k=1

1
k
+ nan,4 (2.11)

for n ≥ 3. Making use of (2.8) for n = 3 as an initial value and recurring (2.11) reveal

an,4 = 3!(n − 1)!
n−1∑
i=1

1
i

i−1∑
k=1

1
k

(2.12)

for n ≥ 3.
By similar arguments to the deduction of (2.10) and (2.12), we have

an,5 = 4!(n − 1)!
n−1∑
j=1

1
j

j−1∑
i=1

1
i

i−1∑
k=1

1
k

(2.13)

for n ≥ 4 and

an,6 = 5!(n − 1)!
n−1∑
ℓ=1

1
ℓ

ℓ−1∑
j=1

1
j

j−1∑
i=1

1
i

i−1∑
k=1

1
k

(2.14)

for n ≥ 5.
From (2.10), (2.12), (2.13), and (2.14), we inductively conclude the formula (2.3). The proof of Theorem 2.1

is thus completed.

Corollary 2.1. The coefficients an,i in (2.1) satisfies the recursion (2.6) for 3 ≤ i ≤ n + 1.

Proof. This follows from the proof of Theorem 2.1.

Corollary 2.2. For n ∈N, the factorial n! meets

1
n!
=

n∑
ℓ1=1

1
ℓ1

ℓ1−1∑
ℓ2=1

1
ℓ2
· · ·
ℓn−2−1∑
ℓn−1=1

1
ℓn−1

ℓn−1−1∑
ℓn=1

1
ℓn
. (2.15)

Proof. This follows from combining (2.3) and (2.8) and simplifying.

Corollary 2.3. Stirling numbers of the first kind s(n, i) for 1 ≤ i ≤ n may be computed by

s(n, i) = (−1)n+i(n − 1)!
n−1∑
ℓ1=1

1
ℓ1

ℓ1−1∑
ℓ2=1

1
ℓ2
· · ·
ℓi−3−1∑
ℓi−2=1

1
ℓi−2

ℓi−2−1∑
ℓi−1=1

1
ℓi−1
. (2.16)

Proof. This is a direct consequence of comparing the formulas (1.2) and (2.1) and rearranging.

Corollary 2.4. For 1 ≤ i ≤ n, Stirling numbers of the first kind s(n, i) satisfies the recursion

s(n + 1, i) = s(n, i − 1) − ns(n, i). (2.17)
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Proof. Comparing formulas (1.2) and (2.1) reveals that

an,i = (−1)n+i−1(i − 1)!s(n, i − 1) (2.18)

for 2 ≤ i ≤ n + 1. Substituting this into (2.6) and simplifying lead to (2.17).

Remark 2.1. The recursion (2.17) is called in [1, p. 101] the “triangular” relation which is the most basic
recurrence. Corollary 2.4 recovers this triangular relation.

Remark 2.2. It is helps to include a table of concrete values of the coefficients an,i for small n. See Table 1.
Basing on the data listed in Table 1, we conjecture that the sequence an,i for n ∈ N and 2 ≤ i ≤ n + 1 is

Table 1: The coefficients an,i

an,i i = 2 i = 3 i = 4 i = 5 i = 6
n = 1 1
n = 2 1! 2!
n = 3 2! 6 3!
n = 4 3! 22 36 4!
n = 5 4! 100 210 240 5!
n = 6 5! 548 1350 2040 1800
n = 7 6! 3528 9744 17640 21000
n = 8 7! 26136 78792 162456 235200
n = 9 8! 219168 708744 1614816 2693880
n = 10 9! 2053152 7036200 17368320 32319000
n = 11 10! 21257280 76521456 201828000 410031600

an,i i = 7 i = 8 i = 9 i = 10 i = 11
n = 6 6!
n = 7 15120 7!
n = 8 231840 141120 8!
n = 9 3265920 2751840 1451520 9!
n = 10 45556560 47628000 35078400 16329600 10!
n = 11 649479600 795175920 731808000 479001600 199584000

increasing with respect to n while it is unimodal with respect to i.

Remark 2.3. The elementary method and idea in the proof of Theorem 2.1 has been employed in [10] to
establish an explicit formula for computing the n-th derivatives of the tangent and cotangent functions.
This explicit formula for the n-th derivative of the cotangent function has been applied in [12] to build the
limit formulas for ratios of two polygamma functions at their singularities.

3. Explicit formula for Bernoulli numbers of the second kind

In this section, basing on Theorem 2.1, we establish a new and explicit formula for calculating Bernoulli
numbers bi of the second kind for i ∈N.

Theorem 3.1. For n ≥ 2, Bernoulli numbers bn of the second kind can be computed by

bn = (−1)n 1
n!

(
1

n + 1
+

n∑
k=2

an,k − nan−1,k

k!

)
, (3.1)

where an,k are defined by (2.2) and (2.3).



F. Qi / Filomat 28:2 (2014), 319–327 324

Proof. Differentiating the left-hand side of (1.4) and making use of Theorem 2.1 give[ x
ln(1 + x)

](i)

= x
[ 1
ln(1 + x)

](i)

+ i
[ 1
ln(1 + x)

](i−1)

=
(−1)ix
(1 + x)i

i+1∑
k=2

ai,k

[ln(1 + x)]k
+

(−1)i−1i
(1 + x)i−1

i∑
k=2

ai−1,k

[ln(1 + x)]k

=
(−1)i

(1 + x)i

{
x

i+1∑
k=2

ai,k

[ln(1 + x)]k
− i(1 + x)

i∑
k=2

ai−1,k

[ln(1 + x)]k

}

=
(−1)i

(1 + x)i

1
[ln(1 + x)]i+1

{
x

i+1∑
k=2

ai,k[ln(1 + x)]i−k+1 − i(1 + x)
i∑

k=2

ai−1,k[ln(1 + x)]i−k+1

}
.

Applying L’Hôspital rule consecutively and by induction, we have

lim
x→0

x
∑i+1

k=2 ai,k[ln(1 + x)]i−k+1 − i(1 + x)
∑i

k=2 ai−1,k[ln(1 + x)]i−k+1

[ln(1 + x)]i+1

= lim
u→0

(eu − 1)
∑i+1

k=2 ai,kui−k+1 − ieu ∑i
k=2 ai−1,kui−k+1

ui+1

= lim
u→0

ai,i+1(eu − 1) −∑i
k=2 ai,kui−k+1 +

∑i
k=2(ai,k − iai−1,k)

(
euui−k+1

)
ui+1

=
1

(i + 1)!
lim
u→0

[
ai,i+1(eu − 1)(i+1) −

i∑
k=2

ai,k

(
ui−k+1

)(i+1)
+

i∑
k=2

(ai,k − iai−1,k)
(
euui−k+1

)(i+1)
]

=
1

(i + 1)!
lim
u→0

[
ai,i+1eu +

i∑
k=2

(ai,k − iai−1,k)
(
euui−k+1

)(i+1)
]

=
1

(i + 1)!

[
ai,i+1 + lim

u→0

i∑
k=2

(ai,k − iai−1,k)
i+1∑

m=0

(
i + 1

m

)
eu

(
ui−k+1

)(m)
]

=
1

(i + 1)!

[
i! +

i∑
k=2

(ai,k − iai−1,k)
(

i + 1
i − k + 1

)
(i − k + 1)!

]

=
1

(i + 1)!

[
i! +

i∑
k=2

(ai,k − iai−1,k)
(i + 1)!

k!

]

=
1

i + 1
+

i∑
k=2

ai,k − iai−1,k

k!
.

This means that

lim
t→0

[ x
ln(1 + x)

](i)

= (−1)i
(

1
i + 1

+

i∑
k=2

ai,k − iai−1,k

k!

)
. (3.2)

Differentiating the right-hand side of (1.4) and taking limit generate

lim
x→0

[( ∞∑
n=0

bnxn
)(i)]
= lim

x→0

∞∑
n=i

bn
n!

(n − i)!
xn−i = i!bi. (3.3)

Equating (3.2) and (3.3) leads to (3.1). The proof of Theorem 3.1 is complete.
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Corollary 3.1. For i ∈N, we have

[ x
ln(1 + x)

](i)

=
(−1)i

(1 + x)i

i+1∑
k=2

xai,k − i(1 + x)ai−1,k

[ln(1 + x)]k
(3.4)

and [ x
ln(1 + x)

](i)

=
(−1)i

(1 + x)i

i∑
k=1

(−1)i+kk![xs(i, k) + i(1 + x)s(i − 1, k)]
[ln(1 + x)]k+1

, (3.5)

where ai−1,i+1 = 0 and s(i − 1, i) = 0.

Proof. The formula (3.4) can be deduced from the proof of Theorem 3.1. Substituting (2.18) into (3.4) and
simplifying result in (3.5). The proof is complete.

Remark 3.1. The formula (3.5) is a recovery and reformulation of [7, (10), Lemma 2].

4. Integral representations of Stirling numbers of the first kind

In this section, we will find several identities and integral representations relating to Stirling numbers
of the first kind s(n, k).

Theorem 4.1. For 1 ≤ k ≤ n + 1, we have

n∑
i=k−1

(−1)n+i i!(i + 1)!s(n, i)
(i − k + 1)!

=

∫ ∞

0

Γ(u + n)
Γ(u)

[ k−1∑
ℓ=0

(−1)ℓck,ℓuk−ℓ
]
e−u du, (4.1)

where Γ(u) is the classical Euler gamma function which may be defined by

Γ(z) =
∫ ∞

0
tz−1e−t d t (4.2)

forℜz > 0 and

ck,ℓ =

(
k
ℓ

)(
k − 1
ℓ

)
ℓ! (4.3)

for all 0 ≤ ℓ ≤ k − 1.

Proof. In [15], it was obtained that

1
ln(1 + x)

=

∫ ∞

0

1
(1 + x)u du, x > 0. (4.4)

Utilizing this integral representation in (1.2) gives∫ ∞

0

(−1)mΓ(u +m)
Γ(u)

1
(1 + t)u+m du =

1
(1 + t)m

m∑
i=0

(−1)ii!
s(m, i)

[ln(1 + t)]i+1
.

Simplifying this yields∫ ∞

0

Γ(u +m)
Γ(u)

1
(1 + t)u du =

m∑
i=0

(−1)m+ii!
s(m, i)

[ln(1 + t)]i+1
. (4.5)
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Substituting t for 1
ln(1+t) in (4.5) brings out∫ ∞

0

Γ(u +m)
Γ(u)

e−u/t du =
m∑

i=0

(−1)m+ii!s(m, i)ti+1. (4.6)

Differentiating 1 ≤ k ≤ m + 1 times with respect to t on both sides of (4.6) generates∫ ∞

0

Γ(u +m)
Γ(u)

(
e−u/t

)(k)
du =

m∑
i=k−1

(−1)m+ii!s(m, i)
(i + 1)!

(i − k + 1)!
ti−k+1.

Further letting t→ 1 in the above equality produces

m∑
i=k−1

(−1)m+ii!s(m, i)
(i + 1)!

(i − k + 1)!
=

∫ ∞

0

Γ(u +m)
Γ(u)

lim
t→1

[(
e−u/t

)(k)]
du. (4.7)

In [13, 14, 16] and [17, Theorem 2.2], it was obtained that

(
e−1/t

)(i)
=

1
e1/tt2i

i−1∑
k=0

(−1)kci,ktk (4.8)

for i ∈N and t , 0, where ci,k is defined by (4.3). Combining this with

d i f (ut)
d ti = ui f (i)(ut)

turns out(
e−u/t

)(k)
=

uk

eu/tt2k

k−1∑
ℓ=0

(−1)ℓ
ck,ℓ

uℓ
tℓ

which tends to

uk

eu

k−1∑
ℓ=0

(−1)ℓ
ck,ℓ

uℓ
= e−u

k−1∑
ℓ=0

(−1)ℓck,ℓuk−ℓ

as t→ 1. Substituting this into (4.7) builds (4.1). Theorem 4.1 is proved.

Theorem 4.2. For 1 ≤ k ≤ m + 1, we have

m∑
i=k−1

(−1)m+ii!(i + 1)!s(m, i)
(i − k + 1)!

= m!
{

lim
t→1

d k

d tk

[ em/t

(e1/t − 1)m+1

]
+

∫ ∞

1

1
[ln(u − 1)]2 + π2 lim

t→1

d k

d tk

[ em/t

(e1/t − 1 + u)m+1

]
du

}
. (4.9)

Proof. In [15], it was recited that

1
ln(1 + z)

=
1
z
+

∫ ∞

1

1
[ln(t − 1)]2 + π2

d t
z + t

, z ∈ C \ (−∞, 0]. (4.10)

Here we remark that this formula corrects an error appeared in the proof of [3, Theorem 1.3, p. 2130].
Therefore, by (1.2), it is easy to see that

(−1)mm!
[ 1
tm+1 +

∫ ∞

1

1
[ln(u − 1)]2 + π2

du
(t + u)m+1

]
=

1
(1 + t)m

m∑
i=0

(−1)ii!
s(m, i)

[ln(1 + t)]i+1
.
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Further replacing 1
ln(1+t) by t and rearranging reduce to

m∑
i=0

(−1)m+ii!s(m, i)ti+1 = m!
[ em/t

(e1/t − 1)m+1
+

∫ ∞

1

1
[ln(u − 1)]2 + π2

em/t du
(e1/t − 1 + u)m+1

]
.

Differentiating 1 ≤ k ≤ m + 1 times with respect to t on both sides of the above equation creates

m∑
i=k−1

(−1)m+ii!s(m, i)
(i + 1)!

(i − k + 1)!
ti−k+1

= m!
{ d k

d tk

[ em/t

(e1/t − 1)m+1

]
+

∫ ∞

1

1
[ln(u − 1)]2 + π2

d k

d tk

[ em/t

(e1/t − 1 + u)m+1

]
du

}
.

Further letting t→ 1 leads to Theorem 4.2.

Remark 4.1. For some new results about Bernoulli and Stirling numbers of the first and second kinds, please
refer to [4, 11, 15] and closely related references therein.

Remark 4.2. This is a slightly modified version of the preprint [9] which has been referenced in [11, 16].
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