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Minimal properties of the Drazin–inverse solution of a matrix equation

Marko Miladinovića, Sladjana Miljkovića, Predrag S. Stanimirovića

aUniversity of Niš, Faculty of Sciences and Mathematics

Abstract. We present the Drazin-inverse solution of the matrix equation AXB = G as a least-squares
solution of a specified minimization problem. Some important properties of the Moore-Penrose inverse are
extended on the Drazin inverse by exploring the minimal norm properties of the Drazin-inverse solution
of the matrix equation AXB = G. The least squares properties of the Drazin-inverse solution lead to new
representations of the Drazin inverse of a given matrix, which are justified by illustrative examples.

1. Introduction

Penrose in his paper [11] was the first who showed the close correlation between the Moore-Penrose
inverse and the least-squares solution of a system of linear equations. Later, based on this result, the least-
square properties of the Moore-Penrose inverse matrix have been investigated and many useful results
have been established.

Some minimal properties of the Drazin-inverse solution of a given system of linear equations have
also presented, recently, in the papers [2, 15, 18]. These properties correspond to analogous properties of
the Moore-Penrose inverse solution. Particularly, it is shown that if b ∈ R(Ap), where p = ind(A), then the
Drazin-inverse solution is the unique solution of the system Ax = b which belongs toR(Ap) [2]. Establishing
a relation between the Drazin inverse and the solutions of a given system of linear equations, naturally
imposed the idea of exploring the minimal properties of the Drazin inverse. Also, Wei et al. in [15, 18] have
shown that the Drazin-inverse solution of the system Ax = b is a solution of minimum P-norm, where P is
the Jordan matrix obtained from the Jordan decomposition of the matrix A.

We assume that A, B, G ∈ Cn×n are given matrices. It is shown that the matrix X = ADGBD is the unique
solution of the restricted matrix equation (see [14])

AXB = G, where R(G) ⊂ R(Ak1 ),N(Bk2 ) ⊂ N(G), k1 = ind(A), k2 = ind(B). (1.1)

The solution is obtained by imposing additional restrictions

R(X) ⊂ R(Ak1 ), N(Bk2 ) ⊂ N(X) (1.2)
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on the matrix equation (1.1). In the sequel we use the term the Drazin-inverse solution of the restricted
matrix equation AXB = G to indicate the matrix ADGBD. As a consequence, it seems reasonable to call the
matrix equation (1.1) the Drazin consistent matrix equation. Although, in the case when R(G) * R(Ak1 ) or
N(Bk2 ) * N(G), the matrix ADGBD is not a solution of the system AXB = G, for convenience we also call it
the Drazin–inverse solution of the matrix equation AXB = G.

The Drazin inverse has many applications in the theory of finite Markov chains, as well as in the study of
differential equations and singular linear difference equations [2], cryptography [7] etc. Taking into account
its importance many computational techniques were developed. The Cramer’s rules derived for general
restricted linear equation [3], as well for restricted matrix equation [4], were generalized for computing the
Drazin-inverse solution of a restricted matrix equation in [14]. However, more common problem in the
literature is to find a solution of the system

Ax = b, b ∈ R(Ak), k = ind(A), (1.3)

i.e., a solution of the form ADb. Many different techniques were developed in order to compute it [13, 16, 19,
20]. An application of gradient iterative methods for computing ADb is presented in [8], regarding general
linear system Ax = b. This application is based on the minimal properties of the Drazin-inverse solution.
Various representations of the Drazin inverse and corresponding computational procedures are given in
[17]. Index splitting methods for computing the Drazin inverse and its relative iterations for the minimal
P-norm solution of singular linear system (1.3) are presented in [15, 18]. Main characteristics of the Drazin
inverse solution ADb are derived in [18]. An application of the Drazin inverse AD in solving singular linear
system Ax = b is presented in [10].

The initial idea of the present paper is to reveal the minimal properties of the Drazin-inverse solution
ADXBD of a given matrix equation

AXB = G, G ∈ Cn×n is an arbitrary matrix, (1.4)

and consequently the Drazin inverse of a matrix, which are analogous to the minimal properties of the
Moore-Penrose inverse. Our goal is achieved by stating the problem of computing the Drazin–inverse
solution of the matrix equation (1.4) as a problem of finding a least–squares solution of appropriately
defined matrix equation. Later, using the obtained results, we derive new representations of the Drazin
inverse of a given square matrix, which involve the Moore-Penrose inverse.

The organization of the remainder of the paper is the following. Preliminary notions for the observed
problem as well as auxiliary results are given in Section 2. The third section is devoted to the construction of
a minimization problem whose solution is the matrix ADGBD, in the general case which does not include any
restrictions, i.e., A, B, G ∈ Cn×n are arbitrary matrices. In this section, we also present a new representation
of the Drazin inverse of an arbitrary square matrix A in terms of its Jordan basis, powers of A and the
Moore–Penrose inverse. Illustrative examples obtained by testing the results explained in Sections 3 are
presented in the last section.

2. Preliminaries

For a given matrix A = (ai j) ∈ Cm×n, we denote a = vec(A) ∈ Cmn to be the vector obtained by stacking
the rows of A into a column vector.

The Kronecker product A⊗B of two matrices A = (ai j) ∈ Cm×n, B ∈ Cp×q is the mp×nq matrix expressible
in partitioned form as

A ⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . . . . . . . .

am1B am2B . . . amnB

 .
Main properties of the Kronecker product are summarized from [1, 6, 9] in the following proposition.
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Proposition 2.1. [1] Let A,B,E,F be matrices of appropriate dimensions. Then the following hold:
1) (A ⊗ B)(E ⊗ F) = AE ⊗ BF,
2) For any q ∈N it holds (A ⊗ I)q = Aq ⊗ I,
3) If ind(A) = k, then ind(A ⊗ I) = k.
4) If A is a square nonsingular matrix, then the matrix A ⊗ I is nonsingular and (A ⊗ I)−1 = A−1 ⊗ I,

An important application of the Kronecker product is the possibility to rewrite the matrix equation (1.4)
into the equivalent vector equation

(A ⊗ BT)vec(X) = vec(G).

For simplicity, we use the notation AB = A ⊗ B.
In order to find a solution of the matrix equation (1.4), the most common approach is to minimize the

functional

∥AXB − G∥2F, (2.1)

where ∥ · ∥F denotes the Frobenious matrix norm. Two important generalized inverses that occur naturally
in solving this problem are presented below.

Definition 2.1. [1] Let A ∈ Cm×n. The matrix X ∈ Cn×m satisfying the equations

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA

is called the Moore-Penrose inverse of A denoted by A†. The matrix X which satisfies only the first and the third
equation is called {1, 3}-inverse of A, denoted by A(1,3).

Despite the Moore-Penrose inverse, it appears that the Drazin inverse also possesses some kind of
least-squares and minimal properties. These properties are mainly explored in the articles [15, 18].

Definition 2.2. Let A ∈ Cn×n and k = ind(A). The matrix X ∈ Cn×n satisfying the conditions

(1k) AkXA = Ak (2) XAX = X (5) AX = XA

is called the Drazin inverse AD of the matrix A.

We use the following usual notations:

N(A) = {x ∈ Cn|Ax = 0}, R(A) = {Ax|x ∈ Cn},

Ñ(A) = {X ∈ Cn×n|AX = 0}, R̃(A) = {AX|X ∈ Cn×n}.
Let

A = PJAP−1 = P
[
CA 0
0 NA

]
P−1, B = QJBQ−1 = Q

[
CB 0
0 NB

]
Q−1

be a Jordan decompositions of matrices A,B ∈ Cn×n. We explore the following matrix and vector norms

∥X∥P,Q = ∥P−1XQ∥F, ∥X∥P = ∥P−1X∥F and ∥x∥P = ∥P−1x∥2,

where X ∈ Cn×n, ∥ · ∥F denotes the Frobenius matrix norm, x ∈ Cn and ∥ · ∥2 denotes the Euclidean vector
norm.

For the sake of completeness we give the proof of the following propositions.

Proposition 2.2. Let A ∈ Cn×n, P be a matrix whose columns are a Jordan basis of the matrix A and let J be a Jordan
matrix of A. Then PI JIP−1

I = AI.Moreover, ∥X∥P = ∥vec(X)∥PI .
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Proof. From the assumptions it follows that A = PJP−1. Now from the first statement of Proposition 2.1, we
obtain

PI JIP−1
I = (PJP−1)I = AI.

Finally, using Tr(A∗B) = vec(A)∗vec(B) and elementary properties of the Kronecker product from [6], we get

∥X∥P = ∥P−1X∥F = ∥(P−1 ⊗ I)vec(X)∥2 = ∥(P ⊗ I)−1vec(X)∥2
= ∥P−1

I vec(X)∥2 = ∥vec(X)∥PI ,

which completes the proof.

Proposition 2.3. Let A ∈ Cn×n, P be a matrix whose columns are a Jordan basis of the matrix A and k = ind(A).
Then

R̃(Ak) ⊕ Ñ(Ak) = Cn×n.

Moreover, the spaces are orthogonal with respect to the P-norm.

Proof. Let X ∈ Cn×n be an arbitrary matrix. Then AkX ∈ R̃(Ak) = R̃(A2k). Then there exists a matrix V ∈ Cn×n

such that A2kV = AkX. Let U = AkV ∈ R̃(Ak). Then AkU = AkX, i.e., X − U ∈ Ñ(Ak). From X = U + X − U,
Ak(X −U) = 0, and U ∈ R̃(Ak), it follows R̃(Ak) + Ñ(Ak) = Cn×n.

Now let us suppose that X ∈ R̃(Ak) ∩ Ñ(Ak). Then X = AkY for some Y ∈ Cn×n and AkX = 0. From
here, we obtain A2kY = AkX = 0. Consequently, Y ∈ Ñ(A2k) = Ñ(Ak), from which follows X = AkY = 0.
Therefore, we obtain R̃(Ak) ⊕ Ñ(Ak) = Cn×n.

Let X ∈ R̃(Ak) and Y ∈ Ñ(Ak). Then

X = AkZ, for some Z ∈ Cn×n and AkY = 0.

Using the Kronecker product, the previous equalities can be converted to

x = Ak
I z and Ak

I y = 0,

where x = vec(X), y = vec(Y), z = vec(Z). Consequently x ∈ R(Ak
I ) and y ∈ N(Ak

I ). From the second and
third property of Proposition 2.1 follows the orthogonality of the spaces R(Ak

I ) andN(Ak
I ). Thus, it follows

that
∥x + y∥2PI

= ∥x∥2PI
+ ∥y∥2PI

.

Using Proposition 2.2 we obtain

∥X + Y∥2P = ∥x + y∥2PI
= ∥x∥2PI

+ ∥y∥2PI
= ∥X∥2P + ∥Y∥2P.

which completes the proof.

3. Drazin-inverse solution of a general matrix equation

As it is well known, the Drazin inverse always exists for a square matrix, although it provides a solution
of the matrix equation (1.4) only in the case when R(G) ⊂ R(Ak1 ), N(Bk2 ) ⊂ N(G) and the restrictions (1.2)
are imposed. In this section, our purpose is to develop a methodology for finding the matrix of the form
ADGBD, for arbitrary square matrices A, B and G of appropriate dimensions. Observing the particular cases
B = I,G = I and A = I,G = I, as a consequence, we obtain two new representations of the Drazin inverse
of an arbitrary square matrix. In order to achieve this goal, we introduce the modified Drazin normal matrix
equation of the form

A2k1 XB2k2 = Ak1 GBk2 , A,B,G ∈ Cn×n, k1 = ind(A), k2 = ind(B). (3.1)
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Lemma 3.1. Let A,B,G ∈ Cn×n. The set of all solutions of the equation (3.1) is given by

X = (Ak1 )DG(Bk2 )D + Y − ADAYBBD, Y ∈ Cn×n. (3.2)

Proof. First we show that (3.2) is a solution of the system

A2k1 XB2k2 = A2k1 (Ak1 )DG(Bk2 )DB2k2 + A2k1 YB2k2 − A2k1 ADAYBBDB2k2

= Ak1 AADGBDBBk2 + A2k1 YB2k2 − A2k1 YB2k2

= Ak1 GBk2 .

Moreover, let Y ∈ Cn×n be arbitrary solution of (3.1), i.e., let A2k1 YB2k2 = Ak1 GBk2 . We can write

Y = (Ak1 )DG(Bk2 )D + Y − (Ak1 )DG(Bk2 )D.

Since,

(Ak1 )DG(Bk2 )D = ((Ak1 )D)2Ak1 GBk2 ((Bk2 )D)2

= (A2k1 )DA2k1 YB2k2 (B2k2 )D = ADAYBBD,

we complete the proof.

The following theorem gives the initial idea for finding the Drazin-inverse solution of the matrix equation
(1.4), by using the least–squares properties of the Drazin-inverse solution.

Theorem 3.1. Assume that A,B,G ∈ Cn×n and k1 = ind(A), k2 = ind(B). Let P be a matrix whose columns are a
Jordan basis of the matrix A and Q be a matrix whose columns are Jordan basis of B. If the matrix X̂ is a PQ-norm
least-squares solution of the matrix equation

Ak1 XBk2 = G,

i.e., it satisfies

∥G − Ak1 X̂Bk2∥2P,Q = min
X
∥G − Ak1 XBk2∥2P,Q (3.3)

then X̂ is a solution of the equation (3.1). Moreover, if R(G|N(Bk2 )) ⊂ N(Ak1 ) the converse statement is also valid.

Proof. Let

P−1Ak1 P =
[
Ck1

A 0
0 0

]
:
[
R(Ak1 )
N(Ak1 )

]
→

[
R(Ak1 )
N(Ak1 )

]
; Q−1Bk2 Q =

[
Ck2

B 0
0 0

]
:
[
R(Bk2 )
N(Bk2 )

]
→

[
R(Bk2 )
N(Bk2 )

]
,

be Jordan matrices of Ak1 and Bk2 , respectively. Let

P−1GQ =
[
G1 G2
G3 G4

]
:
[
R(Bk2 )
N(Bk2 )

]
→

[
R(Ak1 )
N(Ak1 )

]
and

P−1XQ =
[
X1 X2
X3 X4

]
:
[
R(Bk2 )
N(Bk2 )

]
→

[
R(Ak1 )
N(Ak1 )

]
.

Since

P−1PR(Ak1 ),N(Ak1 )GPR(Bk2 ),N(Bk2 )Q = P−1ADAGBBDQ = P−1ADAPP−1GQQ−1BBDQ

=

[
I 0
0 0

] [
G1 G2
G3 G4

] [
I 0
0 0

]
=

[
G1 0
0 0

]
:
[
R(Bk2 )
N(Bk2 )

]
→

[
R(Ak1 )
N(Ak1 )

]
,
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we have that,

P−1(G − Ak1 XBk2 )Q =
[
G1 G2
0 0

]
− P−1Ak1 XBk2 Q +

[
0 0

G3 G4

]
= P−1ADAGBBDQ − P−1Ak1 XBk2 Q +

[
0 G2
0 0

]
+

[
0 0

G3 G4

]
.

(3.4)

Since Ak1 P
[

0 0
G3 G4

]
= P

[
Ck1

A 0
0 0

] [
0 0

G3 G4

]
= 0, it follows that

R̃
(
P
[

0 0
G3 G4

])
⊂ Ñ(Ak1 ).

Also, we have Ak1 P
[
C−k1

A 0
0 0

] [
0 G2
0 0

]
= P

[
0 G2
0 0

]
, which implies R̃

(
P
[
0 G2
0 0

])
⊂ R̃(Ak1 ) and consequently

R̃
(
ADAGBBDQ − Ak1 XBk2 Q + P

[
0 G2
0 0

])
⊂ R̃(Ak1 ).

Following the results from Proposition 2.3 and by using (3.4) we get

∥G − Ak1 XBk2∥2P,Q =
∥∥∥∥∥∥P−1ADAGBBDQ − P−1Ak1 XBk2 Q + P−1P

[
0 G2
0 0

]
+ P−1P

[
0 0

G3 G4

]∥∥∥∥∥∥2

F

,

=

∥∥∥∥∥∥ADAGBBDQ − Ak1 XBk2 Q + P
[
0 G2
0 0

]
+ P

[
0 0

G3 G4

]∥∥∥∥∥∥2

P

,

=

∥∥∥∥∥∥ADAGBBDQ − Ak1 XBk2 Q + P
[
0 G2
0 0

]∥∥∥∥∥∥2

P

+

∥∥∥∥∥∥P
[

0 0
G3 G4

]∥∥∥∥∥∥2

P

.

Or equivalently,

∥G − Ak1 XBk2∥2P,Q =
∥∥∥∥∥∥ADAGBBD − Ak1 XBk2 + P

[
0 G2
0 0

]
Q−1

∥∥∥∥∥∥2

P,Q

+

∥∥∥∥∥∥P
[

0 0
G3 G4

]
Q−1

∥∥∥∥∥∥2

P,Q

.

Evidently ∥G − Ak1 XBk2∥2P,Q attains minimal value in the case

Ak1 XBk2 = ADAGBBD + P
[
0 G2
0 0

]
Q−1. (3.5)

Therefore, we prove that each solution of the problem (3.3) is also a solution of the equation (3.5).
In what follows we show that from equation (3.5) follows the equation (3.1). If X satisfies (3.5), evidently,

multiplying the equation (3.5) by Ak1 from the left and by Bk2 on the right, on the both hand sides, we obtain

A2k1 XB2k2 = Ak1 ADAGBBDBk2 + P
[
Ck1

A 0
0 0

]
P−1P

[
0 G2
0 0

]
Q−1Q

[
Ck2

B 0
0 0

]
Q−1 = Ak1 GBk2 ,

which proves that it satisfies (3.1).
Let us suppose that R(G|N(Bk2 )) ⊂ N(Ak1 ). Then, since G2 : N(Bk2 )→ R(Ak1 ), it follows that G2 = 0, which

implies that the equality (3.5) becomes

Ak1 XBk2 = ADAGBBD. (3.6)

Let X satisfies (3.1), i.e., A2k1 XB2k2 = Ak1 GBk2 . By multiplying with (Ak1 )D from the left and with (Bk2 )D on
the right and using the facts (Ak1 )DAk1 = ADA, (Bk2 )DBk2 = BDB, ADAk1+1 = Ak1 and BDBk2+1 = Bk2 , we obtain
(3.6).
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Corollary 3.1. Let A,B,G ∈ Cn×n, where k1 = ind(A), k2 = ind(B). Let P be a matrix whose columns are a Jordan
basis of the matrix A and Q be a matrix whose columns are a Jordan basis of matrix B. If X̂ satisfies (3.3) then

Ak1−1X̂Bk2−1 = ADGBD + Ak1−1YBk2−1 − ADAk1 YBk2 BD, Y ∈ Cn×n.

Moreover, if
R(X̂) ⊂ R(Ak1 ), N(Bk2 ) ⊂ N(X̂)

then
Ak1−1X̂Bk2−1 = ADGBD.

Proof. If X̂ satisfies (3.3), then it is a solution of the equation (3.1). Therefore, according to Lemma 3.1, it is
of the form

X̂ = (Ak1 )DG(Bk2 )D + Y − ADAYBBD, Y ∈ Cn×n.

Then

Ak1−1X̂Bk2−1 = Ak1−1(Ak1 )DG(Bk2 )DBk2−1 + Ak1−1YBk2−1 − Ak1−1ADAYBBDBk2−1

= ADGBD + Ak1−1YBk2−1 − ADAk1 YBk2 BD
(3.7)

Additionally, let R(X̂) ⊂ R(Ak1 ) andN(Bk2 ) ⊂ N(X̂). Then we have

R(Ak1−1X̂Bk2−1) ⊂ R(Ak1 ),

N(Bk2 ) ⊂ N(Ak1−1X̂BDBBk2−1) = N(Ak1−1X̂Bk2−1),
(3.8)

respectively.
Following (3.7) and (3.8) it can be easily deduced that

R(Ak1−1YBk2−1) ⊂ R(Ak1 ),

N(Bk2 ) ⊂ N(Ak1−1YBk2−1)

hold. Applying the well known result from [1] (page 62, Ex. 20), we get

PR(Ak1 ),N(Ak1 )A
k1−1YBk2−1 = Ak1−1YBk2−1

and
Ak1−1YBk2−1PR(Bk2 ),N(Bk2 ) = Ak1−1YBk2−1.

Finally we obtain,

ADAk1 YBk2 BD = AADAk1−1YBk2−1BBD = PR(Ak1 ),N(Ak1 )A
k1−1YBk2−1PR(Bk2 ),N(Bk2 )

= Ak1−1YBk2−1

and thus, Ak1−1X̂Bk2−1 = ADGBD, which completes the proof.

Considering these results, we are moving to the problem of computing the matrix ADGBD in terms of
expressing the matrix as a least-squares solution of a given problem. For that purpose let us focus on the
minimization problem

min
X

f (X) = min
X
∥A2k1 XB2k2 − G∥2P,Q, (3.9)

in order to find its solution. The characterization of the Drazin-inverse solution of the matrix equation (1.4),
given in terms of the solution of the problem (3.9), is stated in the following theorem.
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Theorem 3.2. Let A,B,G ∈ Cn×n, where k1 = ind(A), k2 = ind(B). Let P be a matrix whose columns are a Jordan
basis of the matrix A and Q be a matrix whose columns are a Jordan basis of the matrix B. If X̂ is a minimizer of the
functional

f (X) = ∥A2k1 XB2k2 − G∥2P,Q, (3.10)

then the following holds

A2k1−1X̂B2k2−1 = ADGBD. (3.11)

Proof. Let the matrix X̂ be a minimizer of the functional f (X), then it is a PQ-norm least-squares solution of
the system A2k1 XB2k2 = G. Thus Ŷ = Ak1 X̂Bk2 is the solution of the minimization problem

min
Y
∥Ak1 YBk2 − G∥2P,Q

which satisfies the conditions R(Ŷ) ⊂ R(Ak1 ) andN(Bk2 ) ⊂ N(Ŷ). According to Corollary 3.1, it follows that

ADGBD = Ak1−1ŶBk2−1 = Ak1−1Ak1 X̂Bk2 Bk2−1 = A2k1−1X̂B2k2−1,

which completes the proof.

Therefore, in order to find the Drazin inverse solution of the system AXB = G, stated by (1.4), we are moving
to the problem of computing the PQ-norm least-square solution of the matrix equation

A2k1 XB2k2 = G. (3.12)

In the following corollary we present some particular cases of the initial problem given by (1.4) and thus
the same particular cases of the matrix equation (3.12) as a direct consequence of Theorem 3.2. By I we
denote the identity matrix of an appropriate order.

Corollary 3.2. Let us consider A,B ∈ Cn×n whose indices are k1 = ind(A), k2 = ind(B). Let P be a matrix whose
columns are a Jordan basis of the matrix A and Q be a matrix whose columns are a Jordan basis of B.

a) If X̂ ∈ Cn×n is a minimizer of the functional

f (X) = ∥A2k1 X − I∥2P = ∥P−1A2k1 X − P−1∥2F,

then the Drazin inverse of A possesses the representation

AD = A2k1−1X̂. (3.13)

b) If X̂ ∈ Cn×n is a minimizer of the functional

f (X) = ∥XB2k2 − I∥2I,Q,

then the Drazin inverse of B can be represented as

BD = X̂B2k2−1. (3.14)

c) If X̂ be the minimizer of the functional
f (X) = ∥A2k1 XB2k2 − I∥2P,Q.

Then

ADBD = A2k1−1X̂B2k2−1. (3.15)
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Proposition 3.1. [12] Let S ∈ Cm×n, T ∈ Ck×s and Q ∈ Cm×s. Then the matrix S†QT† is the best–approximate
solution of the matrix equation SXT = Q, i.e. it is a minimizer of the function

1(X) = ∥SXT −Q∥2F (3.16)

of the minimal norm.

The following result provides two new representations of the Drazin inverse of an arbitrary square
matrix as well as the representation of the Drazin inverse solution of the initial problem (1.4).

Theorem 3.3. Let A,B,G ∈ Cn×n, where k1 = ind(A), k2 = ind(B). If P is a matrix whose columns are a Jordan
basis of A and Q is a matrix whose columns are a Jordan basis of B then the following representations are valid:

a) AD = A2k1−1(P−1A2k1 )†P−1,

b) BD = Q(B2k2 Q)†B2k2−1,

c) ADGBD = A2k1−1(P−1A2k1 )†P−1GQ(B2k2 Q)†B2k2−1.

Proof. a) The minimum-norm solution of the functional

f (X) = ∥A2k1 X − I∥2P = ∥P−1A2k1 X − P−1∥2F,

is the matrix
X̂ = (P−1A2k1 )†P−1.

The representation of the AD follows from Corollary 3.2, part a).

b) The minimum-norm least-squares solution of the function

f (X) = ∥XB2k2 − I∥2I,Q = ∥XB2k2 Q −Q∥2F

is the matrix
X̂ = Q(B2k2 Q)†.

The rest is obvious from Corollary 3.2, part b).

c) This part of the proof is implied by Theorem 3.2 and Proposition 3.1.

From the results exposed previously, it is obvious that the intentions and methodology for finding the
general solution of a system of matrix equation lead us to a new representation of the Drazin inverse
of a given matrix. A natural question arises: Whether the representations given with Theorem 3.3 are
valid in more general case, or whether the Drazin inverse can be represented, for example, in the form
AD = Al−1(P−1Al)†P−1, where l belongs to some set of numbers. Although the presented theory cannot
result with the answer to this question, in the sequel, we provide an alternative proof of Theorem 3.3 which
is stated in more general form.

Theorem 3.4. Let A,G ∈ Cn×n and l ≥ k + 1, where k = ind(A). If P is a matrix whose columns are a Jordan basis
of A then the following representations are valid:

a) AD = Al−1(P−1Al)†P−1,

b) AD = P(AlP)†Al−1,

Proof. a) Let

P−1 =

[
P1 P2
P3 P4

]
:
[
R(Ak)
N(Ak)

]
→

[
R(Ak)
N(Ak)

]
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then we have[
Cl

A 0
0 0

]
P−1 =

[
Cl

AP1 Cl
AP2

0 0

]
:
[
R(Ak)
N(Ak)

]
→

[
R(Ak)
N(Ak)

]
. (3.17)

Since k = ind(A) and l ≥ k + 1 we know that Al can be represented on the following way

Al = P
[
Cl

A 0
0 0

]
P−1.

From here it follows that([
Cl

A 0
0 0

]
P−1

)
|N(Ak)= 0, (3.18)

since if we suppose that x ∈ N(Al) = N(Ak), x , 0 we obtain the following equivalences

Alx = 0⇐⇒ P
[
Cl

A 0
0 0

]
P−1x = 0⇐⇒

[
Cl

A 0
0 0

]
P−1x = 0.

From (3.17) and (3.18) it follows that Cl
AP2 = 0. Finally, the last equality with simple calculations reveals

that ([
Cl

A 0
0 0

]
P−1

)†
=

[
P−1

1 C−l
A 0

0 0

]
:
[
R(Ak)
N(Ak)

]
→

[
R(Ak)
N(Ak)

]
.

If we multiply the last equality with the matrix P
[
Cl−1

A 0
0 0

]
P−1 from the left-hand side and with the matrix

P−1 from the right-hand side, we obtain

P
[
Cl−1

A 0
0 0

]
P−1

([
Cl

A 0
0 0

]
P−1

)†
P−1 = P

[
C−1

A 0
0 0

]
P−1

⇐⇒ Al−1(P−1Al)†P−1 = AD,

completing the proof.

b) Similarly.

4. Examples

In this section we report some results as an illustration for the theory obtained in the previous section.
The test matrices which are presented in the following examples are taken from the papers [5, 17]. MATLAB

programming package is used for the matrix computation. In order ro provide some auxiliary result which
we need for the computation of the Drazin inverse we use MATLAB built-in function pinv.

Example 4.1. In this example we consider the given real matrix A ∈ R4×4

A =


2 4 6 5
1 4 5 4
0 −1 −1 0
−1 −2 −3 −3

 ,
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with index k = 2, in order to compute the Drazin inverse AD. According to the formula given by Theorem 3.3 a) we
obtain

AD = A2k−1(P−1A2k)†P−1

=


3 11 14 14
2 9 11 11
−1 −4 −5 −5
−1 −4 −5 −5

 ·


0 0 −3/5 17/5
0 0 2/5 −13/5
0 0 −1/5 4/5
0 0 −1/5 4/5

 ·


1 1 3 2
1 1 2 3
−1 −1 −2 −2

0 −1 −1 −1


=


3 −1 2 2
2 1 3 3
−1 0 −1 −1
−1 0 −1 −1

 ,
which is the exact value of AD.

Theorem 3.4 a) produces the same result for all values l ≥ k + 1. Particularly, in the case l = k + 1 we obtain

AD = Ak(P−1Ak+1)†P−1

=


3 8 11 11
2 7 9 9
−1 −3 −4 −4
−1 −3 −4 −4

 ·


0 0 −3/5 14/5
0 0 2/5 −11/5
0 0 −1/5 3/5
0 0 −1/5 3/5

 ·


1 1 3 2
1 1 2 3
−1 −1 −2 −2

0 −1 −1 −1


=


3 −1 2 2
2 1 3 3
−1 0 −1 −1
−1 0 −1 −1

 .
Example 4.2. Let us compute the Drazin inverse of the given matrix

B =


1 −1 2 2 2
0 0 −2 −2 −2
1 1 0 1 −1
0 0 0 1 0
−1 −1 0 −1 1


with index k = 2 in order to confirm the formula given by Theorem 3.3 b). Thus we have

BD = Q(B2kQ)†B2k−1

=
1
4


4 0 0 −4 −1
4 −8 0 0 2
−8 −2 −4 0 0

0 0 0 0 −1
8 0 4 0 0

 ·
1
10


0 0 0 0 0
0 0 0 0 0

40 176 −5 −88 5
−10 −68 0 34 0

0 16 0 −8 0

 ·


1 −1 4 10 4
0 0 0 −2 0
3 −1 4 7 3
0 0 0 1 0
−3 1 −4 −7 −3


=


1 −1 4 −6 4
0 0 0 −2 0
−1 3 −12 11 −13

0 0 0 1 0
1 −3 12 −11 13


which is the exact Drazin inverse BD.

Example 4.3. In this test example we compute the Drazin inverse solution for the matrix equation

AXB = G,
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where the matrices are given as follows

A =

 2 −3 −5
−1 4 5

1 −3 −4

 , B =

 −1 −1 −1
−1 1/3 −1
−1 −1 −1

 , G =

 0 −24 16
−8 8 −8

0 −16 16

 ,
k1 = ind(A) = 3, k2 = ind(B) = 1. Based on the formulae presented by Theorem 3.3 c)

ADGBD = A2k1−1(P−1A2k1 )†P−1GQ(B2k2 Q)†B2k2−1

=

 2 −3 −5
−1 4 5

1 −3 −4

 ·
 0 −24 16
−8 8 −8

0 −16 16

 · 1
16

 −1 −6 −1
−6 12 −6
−1 −6 −1


=

 −3 6 −3
9 −18 9
−6 12 −6

 ,
which presents the exact Drazin–inverse solution of the matrix equation AXB = G.

5. Conclusion

In the present article, we show that the Drazin inverse of a given matrix, and more generally the Drazin
inverse solution ADGBD of the matrix equation AXB = G possesses similar properties. Namely, we establish
the minimal properties of the Drazin-inverse solution with respect to PQ-norm, which are similar to those
of the Moore-Penrose inverse with respect to the Frobenius norm.

On that way, the technique presented in the article also leads us to new representation of the Drazin
inverse expressible via the Moore-Penrose inverse and a Jordan basis of the matrix A. Later, we generalize
the obtained result to get a whole set of representations of the Drazin inverse of a matrix.

The advantages of the presented ideas can be summarized as follows:

– obtained results may help us to further understand the matrix equation AXB = D for arbitrary square
matrices A, B, G ∈ Cn×n;

– the least-square properties of the Drazin inverse, and more generally the Drazin inverse solution of
the matrix equation AXB = D, are established;

– a new relationship between the Drazin inverse and the Moore-Penrose inverse is introduced, which
enables more closely to analyze the similar minimization properties of both inverses.
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