Weyl's theorem for algebraically quasi-paranormal operators

Young Min Han^a, Won Hee Na^b

^aDepartment of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea ^bDepartment of Mathematics, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea

Abstract. Let *T* or *T*^{*} be an algebraically quasi-paranormal operator acting on Hilbert space. We prove : (i) Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$; (ii) *a*-Browder's theorem holds for f(S) for every S < T and $f \in H(\sigma(S))$; (iii) the spectral mapping theorem holds for the Weyl spectrum of *T* and for the essential approximate point spectrum of *T*.

1. Introduction

Throughout this note let $B(\mathcal{H})$ and $K(\mathcal{H})$ denote, respectively, the algebra of bounded linear operators and the ideal of compact operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . If $T \in B(\mathcal{H})$ we shall write N(T) and R(T) for the null space and range of T. Also, let $\alpha(T) := \dim N(T)$, $\beta(T) := \dim N(T^*)$, and let $\sigma(T)$, $\sigma_a(T)$, $p_0(T)$, and $\sigma_p(T)$ denote the spectrum, approximate point spectrum, the set of poles of the resolvent of T, and point spectrum of T, respectively. For $T \in B(\mathcal{H})$, the smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the *ascent* of T and denoted by a(T). If no such integer exists, we set $a(T) = \infty$. The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the *descent* of T and denoted by d(T). If no such integer exists, we set $d(T) = \infty$. An operator $T \in B(\mathcal{H})$ is called *Fredholm* if it has closed range, finite dimensional null space, and its range has finite co-dimension. The *index* of a Fredholm operator $T \in B(\mathcal{H})$ is given by

$$i(T) := \alpha(T) - \beta(T).$$

 $T \in B(\mathcal{H})$ is called *Weyl* if it is Fredholm of index zero, and *Browder* if it is Fredholm of finite ascent and descent: equivalently ([12, Theorem 7.9.3]) if *T* is Fredholm and $T - \lambda$ is invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C} . The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in B(\mathcal{H})$ are defined by ([12],[13])

 $\sigma_e(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\},\$ $\sigma_w(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},\$

 $\sigma_b(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\},\$

and

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10, 47A53; Secondary 47B20

Keywords. Weyl's theorem, a-Weyl's theorem, algebraically quasi-paranormal operator, polaroid, single valued extension property Received: 14 April 2011; Accepted: 08 October 2011

Communicated by Dragan Djordjevic

Research supported by the Kyung Hee University on sabbatical leave in 2010.

Email addresses: ymhan2004@khu.ac.kr, ymhan2004@khu.ac.kr (Won Hee Na)

respectively. Evidently

$$\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T)$$

where we write acc *K* for the accumulation points of $K \subseteq \mathbb{C}$. If we write iso $K = K \setminus \text{acc } K$ then we let

$$\pi_{00}(T) := \{\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty \},\$$

$$\pi_{00}^{a}(T) := \{\lambda \in \text{iso } \sigma_{a}(T) : 0 < \alpha(T - \lambda) < \infty \},\$$

and

$$p_{00}(T) := \sigma(T) \setminus \sigma_b(T)$$

We say that *Weyl's theorem holds for* $T \in B(\mathcal{H})$ (in symbols, $T \in \mathcal{W}$) if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T), \tag{1.1}$$

and that *Browder's theorem holds for* $T \in B(\mathcal{H})$ (in symbols, $T \in \mathcal{B}$) if

$$\sigma(T) \setminus \sigma_w(T) = p_{00}(T). \tag{1.2}$$

We consider the sets

$$\Phi_+(\mathcal{H}) := \{T \in B(\mathcal{H}) : R(T) \text{ is closed and } \alpha(T) < \infty\},\$$
$$\Phi_+^-(\mathcal{H}) := \{T \in B(\mathcal{H}) : T \in \Phi_+(\mathcal{H}) \text{ and } i(T) \le 0\}.$$

By definition,

$$\sigma_{ea}(T) := \bigcap \{ \sigma_a(T+K) : K \in K(\mathcal{H}) \}$$

is the essential approximate point spectrum, and

$$\sigma_{ab}(T) := \cap \{ \sigma_a(T+K) : TK = KT \text{ and } K \in K(\mathcal{H}) \}$$

is the Browder essential approximate point spectrum.

We say that *a*-Weyl's theorem holds for $T \in B(\mathcal{H})$ (in symbols, $T \in aW$) if

$$\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}^a(T), \tag{1.3}$$

and that *a*-Browder's theorem holds for $T \in B(\mathcal{H})$ (in symbols, $T \in a\mathcal{B}$) if

$$\sigma_{ea}(T) = \sigma_{ab}(T). \tag{1.4}$$

It is known ([7],[13],[18]) that the following implications hold:

a-Weyl's theorem
$$\implies$$
 a-Browder's theorem
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

Weyl's theorem \implies Browder's theorem

In [20], H. Weyl proved that (1.1) holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators ([5]), and to several classes of operators including seminormal operators ([3],[4]). Recently, R.E. Curto and Y.M. Han [6] showed that (1.1) holds for algebraically paranormal operators, and I.J. An and Y.M. Han [2] proved that every algebraically quasiclass *A* operator satisfies (1.1), respectively. On the other hand, V. Rakočević showed that (1.3) holds for cohyponormal operators ([18]). In this paper, we extend these results to algebraically quasi-paranormal operators using the local spectral theory.

2. Weyl's theorem for algebraically quasi-paranormal operators

Definition 2.1. (1) An operator *T* is said to be *class A* if

 $|T|^2 \le |T^2|.$

(2) *T* is called a *quasi-class A* operator if

$$T^*|T|^2T \le T^*|T^2|T.$$

(3) An operator $T \in B(\mathcal{H})$ is said to be *paranormal* if

$$||Tx||^2 \le ||T^2x||||x|| \quad \text{for all } x \in \mathcal{H}.$$

Recently, we introduced [11] the new operator class which is a common generalization of paranormal operators and quasi-class *A* operators.

Definition 2.2. An operator $T \in B(\mathcal{H})$ is said to be *quasi-paranormal* if

 $||T^2x||^2 \le ||T^3x||||Tx|| \quad \text{for all } x \in \mathcal{H}.$

We say that *T* is *algebraically quasi-paranormal* if there exists a nonconstant complex polynomial p such that p(T) is quasi-paranormal.

In general, the following implications hold:

class $A \Longrightarrow$ quasi-class $A \Longrightarrow$ quasi-paranormal;

class A \Longrightarrow paranormal \Longrightarrow quasi-paranormal \Longrightarrow algebraically quasi-paranormal.

The following example shows that there is a big gap between the set of paranormal operators and the set of quasi-paranormal operators. To construct the example which is quasi-paranormal but not paranormal, we need the following lemma.

Lemma 2.3. Let $T \in B(\mathcal{H})$. *T* is quasi-paranormal if and only if

 $T^*(T^{2*}T^2 - 2\lambda T^*T + \lambda^2)T \ge 0 \text{ for all } \lambda > 0.$

Proof. Let α and β be arbitrary nonnegative real numbers. Then $(\lambda^{-\frac{1}{2}}\alpha - \lambda^{\frac{1}{2}}\beta)^2 \ge 0$ for any positive real number λ , and so we have $0 \le 2\alpha\beta \le \lambda^{-1}\alpha^2 + \lambda\beta^2$.

(i) If $\alpha > 0$ and $\beta > 0$, then $\lambda_0 := \frac{\alpha}{\beta} \ge 0$ so that $0 \le 2\alpha\beta = \lambda_0^{-1}\alpha^2 + \lambda_0\beta^2$.

(ii) If $\alpha = 0$ or $\beta = 0$, then $0 = 2\alpha\beta = \inf_{\lambda>0} (\lambda^{-1}\alpha^2 + \lambda\beta^2)$. Therefore by (i) and (ii),

$$\alpha\beta = \inf_{\lambda>0} \frac{1}{2} (\lambda^{-1} \alpha^2 + \lambda \beta^2) \text{ for all } \alpha, \beta \ge 0.$$

Let $x \in \mathcal{H}$ be arbitrary. Put $\alpha := ||T^3x||$ and $\beta := ||Tx||$. Then

$$\begin{split} ||T^{3}x||||Tx|| &= \inf_{\lambda>0} \frac{1}{2} (\lambda^{-1} ||T^{3}x||^{2} + \lambda ||Tx||^{2}) \\ &= \inf_{\lambda>0} \frac{1}{2} (\langle \lambda^{-1}T^{3}x, T^{3}x \rangle + \langle \lambda Tx, Tx \rangle) \\ &= \inf_{\lambda>0} \frac{1}{2} \langle (\lambda^{-1}T^{2*}T^{2} + \lambda)Tx, Tx \rangle. \end{split}$$

Therefore we have

$$||T^{2}x||^{2} \le ||T^{3}x||||Tx|| \iff ||T^{2}x||^{2} \le \frac{1}{2} \langle (\lambda^{-1}T^{2*}T^{2} + \lambda)Tx, Tx \rangle \text{ for all } \lambda > 0.$$

Hence T is quasi-paranormal if and only if $T^*(T^{2*}T^2 - 2\lambda T^*T + \lambda^2)T \ge 0$ for all $\lambda > 0$. \Box

Example 2.4. Consider the unilateral weighted shift operators as an infinite dimensional Hilbert space operator. Recall that given a bounded sequence of positive numbers $\alpha : \alpha_1, \alpha_2, \ldots$ (called weights), the unilateral weighted shift W_{α} associated with weight α is the operator on $\mathcal{H} = \ell_2$ defined by $W_n := \alpha_n e_{n+1}$ for all $n \ge 1$, where $\{e_n\}_{n=1}^{\infty}$ is the canonical orthonormal basis for ℓ_2 . It is well known that the followings are equivalent:

- (1) W_{α} is hyponormal;
- (2) W_{α} is class *A*;
- (3) W_{α} is paranormal;
- (4) α is monotonically increasing, i.e., $\alpha_n \leq \alpha_{n+1}$ for all $n \geq 1$.

Thus hyponormality, class *A*, and paranormality coincide for every unilateral weighted shift. However, for quasi-paranormal operators, W_{α} has a very useful characterization. Using Lemma 2.3, we have

$$W_{\alpha} = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ \alpha_1 & 0 & 0 & 0 & \\ 0 & \alpha_2 & 0 & 0 & \\ 0 & 0 & \alpha_3 & 0 & \\ 0 & 0 & 0 & \alpha_4 & \ddots \\ \vdots & & & \ddots \end{pmatrix}$$

is quasi-paranormal if and only if $W_{\alpha}^{*}(W_{\alpha}^{2*}W_{\alpha}^{2} - 2\lambda W_{\alpha}^{*}W_{\alpha} + \lambda^{2})W_{\alpha}$ for all $\lambda > 0$. On the other hand, let diag($\{\alpha_{n}\}_{n=1}^{\infty}$) = diag($\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$) denote an infinite diagonal matrix on ℓ_{2} . Then

$$W_{\alpha}^{*}(W_{\alpha}^{2*}W_{\alpha}^{2} - 2\lambda W_{\alpha}^{*}W_{\alpha} + \lambda^{2})W_{\alpha}$$

= diag({ $\alpha_{n}^{2}\alpha_{n+1}^{2}\alpha_{n+2}^{2}$ } ^{∞} _{n=1}) - 2 λ diag({ $\alpha_{n}^{2}\alpha_{n+1}^{2}$ } ^{∞} _{n=1}) + λ^{2} diag({ α_{n}^{2} } ^{∞} _{n=1})
= diag({ $\alpha_{n}^{2}(\alpha_{n+1}^{2}\alpha_{n+2}^{2} - 2\lambda\alpha_{n+1}^{2} + \lambda^{2})$ } ^{∞} _{n=1}).

From the equality and Lemma 2.3 W_{α} is quasi-paranormal if and only if $\alpha_n^2(\alpha_{n+1}^2\alpha_{n+2}^2 - 2\lambda\alpha_{n+1}^2 + \lambda^2) \ge 0$ for all $\lambda > 0$ and for every $n \ge 1$. Equivalently, $\alpha_{n+1} \le \alpha_{n+2}$ for every $n \ge 1$. Hence W_{α} is quasi-paranormal if and only if $\alpha_n \le \alpha_{n+1}$ for every $n \ge 2$.

We say that $T \in B(\mathcal{H})$ has the single valued extension property (SVEP) if for every open set U of \mathbb{C} the only analytic function $f : U \longrightarrow \mathcal{H}$ which satisfies the equation

$$(T - \lambda)f(\lambda) = 0$$

is the constant function $f \equiv 0$ on U.

Before we state our main theorem (Theorem 2.8), we need several preliminary results. We begin with the following lemma which follows from Definition 2.2 and some facts about quasi-paranormal operators [11].

Lemma 2.5. Let $T \in B(\mathcal{H})$.

- (1) If *T* is algebraically quasi-paranormal, then so is $T \lambda$ for each $\lambda \in \mathbb{C}$.
- (2) If *T* is algebraically quasi-paranormal and *M* is a closed invariant subspace under *T*, then T|M is also algebraically quasi-paranormal.
- (3) If *T* is algebraically quasi-paranormal, *T* has SVEP.
- (4) Suppose *T* does not have dense range. Then we have:

T is quasi-paranormal $\iff T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$ on $\mathcal{H} = \overline{T(\mathcal{H})} \oplus N(T^*)$,

where $A = T|T(\mathcal{H})$ is paranormal.

In [6], R.E. Curto and Y.M. Han proved that quasinilpotent algebraically paranormal operators are nilpotent. We now establish a similar result for algebraically quasi-paranormal operators.

Lemma 2.6. Let T be a quasinilpotent algebraically quasi-paranormal operator. Then T is nilpotent.

Proof. We first assume that *T* is quasi-paranormal. We consider two cases:

Case(I) : Suppose *T* has dense range. Then clearly, it is paranormal. But every quasinilpotent paranormal operator is a zero operator, hence *T* is nilpotent.

Case(II) : Suppose T does not have dense range. Then by Lemma 2.5, we can represent T as the upper triangular matrix

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \text{ on } \mathcal{H} = \overline{T(\mathcal{H})} \oplus N(T^*),$$

where $A := T|T(\mathcal{H})$ is an paranormal operator. Since *T* is quasinilpotent, $\sigma(T) = \{0\}$. But $\sigma(T) = \sigma(A) \cup \{0\}$, hence $\sigma(A) = \{0\}$. Since *A* is paranormal, A = 0 and therefore *T* is nilpotent. Thus if *T* is a quasinilpotent quasi-paranormal operator, then it is nilpotent. Now, we suppose *T* is algebraically quasi-paranormal. Then there exists a nonconstant polynomial *p* such that p(T) is quasi-paranormal. If p(T) has dense range, then p(T) is paranormal. So *T* is algebraically paranormal, and hence *T* is nilpotent by [6, Lemma 2.2]. If p(T) does not have dense range, then by Lemma 2.5, we can represent p(T) as the upper triangular matrix

$$p(T) = \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = \overline{p(T)(\mathcal{H})} \oplus N(p(T)^*)$,

where $C := p(T)|p(T)(\mathcal{H})$ is paranormal. Since *T* is quasinilpotent, $\sigma(p(T)) = p(\sigma(T)) = \{p(0)\}$. But $\sigma(p(T)) = \sigma(C) \cup \{0\}$, hence $\sigma(C) \cup \{0\} = \{p(0)\}$. So p(0) = 0, and hence p(T) is quasinilpotent. Since p(T) is quasiparanormal, by the previous argument p(T) is nilpotent. On the other hand, since p(0) = 0, $p(z) = cz^m(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$ for some natural number *m*. Therefore $p(T) = cT^m(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n)$. Since p(T) is nilpotent. This completes the proof. \Box

An operator $T \in B(\mathcal{H})$ is called *isoloid* if every isolated point of $\sigma(T)$ is an eigenvalue of T and an operator $T \in B(\mathcal{H})$ is called *polaroid* if iso $\sigma(T) \subseteq p_0(T)$. In general, if T is polaroid then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in B(\ell_2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (\frac{1}{2}x_2, \frac{1}{3}x_3, \cdots).$$

Then *T* is a compact quasinilpotent operator with $\alpha(T) = 1$, and so *T* is isoloid. However, since $a(T) = \infty$, *T* is not polaroid.

It is well known that every algebraically paranormal operator is isoloid. We now extend this result to algebraically quasi-paranormal operators. We can prove more:

Lemma 2.7. Let *T* be algebraically quasi-paranormal operator. Then *T* is polaroid.

Proof. Suppose *T* is algebraically quasi-paranormal. Then p(T) is quasi-paranormal for some nonconstant polynomial *p*. Let $\lambda \in iso \sigma(T)$. Using the spectral projection $P = \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$, where *D* is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent *T* as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} \text{ where } \sigma(T_1) = \{\lambda\} \text{ and } \sigma(T_2) = \sigma(T) \setminus \{\lambda\}.$$

Since T_1 is algebraically quasi-paranormal, $T_1 - \lambda$ is algebraically quasi-paranormal. But $\sigma(T_1 - \lambda) = \{0\}$, it follows from Lemma 2.6 that $T_1 - \lambda$ is nilpotent. Therefore $T_1 - \lambda$ has finite ascent and descent. On the other hand, since $T_2 - \lambda$ is invertible, clearly it has finite ascent and descent. Therefore $T - \lambda$ has finite ascent and descent, and hence λ is a pole of the resolvent of T. Thus $\lambda \in iso \sigma(T)$ implies $\lambda \in p_0(T)$, and so iso $\sigma(T) \subseteq p_0(T)$. Hence T is polaroid. \Box

In the following theorem, recall that $H(\sigma(T))$ is the space of functions analytic in an open neighborhood of $\sigma(T)$.

Theorem 2.8. Suppose *T* or *T*^{*} is algebraically quasi-paranormal. Then $f(T) \in W$ for every $f \in H(\sigma(T))$.

Proof. Suppose *T* is algebraically quasi-paranormal. We first show that $T \in \mathcal{W}$. Suppose $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $T - \lambda$ is Weyl but not invertible. We claim that $\lambda \in \partial\sigma(T)$. Assume to the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood *U* of λ such that dim $N(T - \mu) > 0$ for all $\mu \in U$. It follows from [10, Theorem 10] that *T* does not have SVEP. On the other hand, since *T* is algebraically quasi-paranormal, it follows from Lemma 2.5 that *T* has SVEP. This is a contradiction. So $\lambda \in \partial\sigma(T) \setminus \sigma_w(T)$, and it follows from the punctured neighborhood theorem that $\lambda \in \pi_{00}(T)$.

Conversely, suppose $\lambda \in \pi_{00}(T)$. Using the spectral projection $P := \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$, where *D* is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent *T* as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}, \text{ where } \sigma(T_1) = \{\lambda\} \text{ and } \sigma(T_2) = \sigma(T) \setminus \{\lambda\}.$$

Since $\sigma(T_1) = \{\lambda\}$, $T_1 - \lambda$ is quasinipotent. But *T* is algebraically quasi-paranormal, hence T_1 is also algebraically quasi-paranormal. It follows from Lemma 2.6 that $T_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T)$, $T_1 - \lambda$ is a finite dimensional operator. Therefore $T_1 - \lambda$ is Weyl. Since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl. Thus $T \in \mathcal{W}$. Now we claim that $f(\sigma_w(T)) = \sigma_w(f(T))$ for all $f \in H(\sigma(T))$. Let $f \in H(\sigma(T))$. Since $\sigma_w(f(T)) \subseteq f(\sigma_w(T))$ with no other restriction on *T*, it suffices to show that $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Suppose that $\lambda \notin \sigma_w(f(T))$. Then $f(T) - \lambda$ is Weyl and

$$f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2) \cdots (T - \alpha_n)g(T),$$
(2.8)

where $c, \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ and g(T) is invertible. Since the operators in the right side of (2.8) commute, every $T - \alpha_i$ is Fredholm. Since T is algebraically quasi-paranormal, T has SVEP by Lemma 2.5. Therefore by [1, Corollary 3.19] $i(T - \alpha_i) \leq 0$ for each $i = 1, 2, \dots, n$. Therefore $\lambda \notin f(\sigma_w(T))$, and hence $f(\sigma_w(T)) = \sigma_w(f(T))$. Now recall ([1, Lemma 3.89]) that if T is isoloid then

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T)) \text{ for every } f \in H(\sigma(T)).$$

Since *T* is isoloid by Lemma 2.7 and $T \in \mathcal{W}$,

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\sigma_w(T)) = \sigma_w(f(T)),$$

which implies that $f(T) \in \mathcal{W}$.

Now suppose that T^* is algebraically quasi-paranormal. We first show that $T \in W$. Suppose that $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Observe that $\sigma(T^*) = \overline{\sigma(T)}$ and $\sigma_w(T^*) = \overline{\sigma_w(T)}$. So $\overline{\lambda} \in \sigma(T^*) \setminus \sigma_w(T^*)$. Since $T^* \in W$, $\overline{\lambda} \in \pi_{00}(T^*)$. Therefore λ is an isolated point of $\sigma(T)$, and so $\lambda \in \pi_{00}(T)$. Conversely, suppose that $\lambda \in \pi_{00}(T)$. Then λ is an isolated point of $\sigma(T)$ and $0 < \alpha(T - \lambda) < \infty$. Since $\overline{\lambda}$ is an isolated point of $\sigma(T^*)$ and T^* is algebraically quasi-paranormal, it follows from Lemma 2.7 that $\overline{\lambda} \in p_0(T^*)$. So $\lambda \in p_0(T)$, and hence $T - \lambda$ is Weyl. Consequently, $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Thus $T \in W$. Now we show that $f(\sigma_w(T)) = \sigma_w(f(T))$ for each $f \in H(\sigma(T))$. Let $f \in H(\sigma(T))$. It is sufficient to show that $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Suppose that $\lambda \notin \sigma_w(f(T))$. Then $f(T) - \lambda$ is Weyl. Since T^* is algebraically quasi-paranormal, it has SVEP. It follows from [1, Corollary 3.19] that $i(T - \alpha_i) \ge 0$ for each $i = 1, 2, \dots, n$.

$$0 \leq \sum_{i=1}^{n} i(T-\alpha_i) = i(f(T)-\lambda) = 0,$$

 $T - \alpha_i$ is Weyl for each $i = 1, 2, \dots, n$. Hence $\lambda \notin f(\sigma_w(T))$, and so $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$. Thus $f(\sigma_w(T)) = \sigma_w(f(T))$ for each $f \in H(\sigma(T))$. Since $T \in W$ and T is isoloid, $f(T) \in W$ for every $f \in H(\sigma(T))$. This completes the proof. \Box

From the proof of Theorem 2.8, we obtain the following useful consequence.

Corollary 2.9. Suppose *T* or *T*^{*} is algebraically quasi-paranormal. Then

$$\sigma_w(f(T)) = f(\sigma_w(T))$$
 for every $f \in H(\sigma(T))$.

3. a-Weyl's theorem for algebraically quasi-paranormal operators

Let $T \in B(\mathcal{H})$. It is well known that the inclusion $\sigma_{ea}(f(T)) \subseteq f(\sigma_{ea}(T))$ holds for every $f \in H(\sigma(T))$ with no restriction on T ([19, Theorem 3.3]). The next theorem shows that the spectral mapping theorem holds for the essential approximate point spectrum for algebraically quasi-paranormal operators.

Theorem 3.1. Suppose *T* or *T*^{*} is algebraically quasi-paranormal. Then

$$\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$$
 for every $f \in H(\sigma(T))$.

Proof. Suppose first that *T* is algebraically quasi-paranormal and let $f \in H(\sigma(T))$. It suffices to show that $f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T))$. Suppose that $\lambda \notin \sigma_{ea}(f(T))$. Then $f(T) - \lambda \in \Phi^-_+(\mathcal{H})$ and

$$f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2) \cdots (T - \alpha_n)g(T), \tag{3.1}$$

where $c, \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$, and g(T) is invertible. Since *T* is algebraically quasi-paranormal, it has SVEP by Lemma 2.5. It follows from [1, Corollary 3.19] that $i(T - \alpha_i) \leq 0$ for each $i = 1, 2, \dots, n$. Therefore $\lambda \notin f(\sigma_{ea}(T))$, and hence $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$. Suppose now that T^* is algebraically quasi-paranormal. Then T^* has SVEP. Therefore by [1, Corollary 3.19] $i(T - \alpha_i) \geq 0$ for each $i = 1, 2, \dots, n$. Since

$$0 \leq \sum_{i=1}^{n} i(T - \alpha_i) = i(f(T) - \lambda) \leq 0,$$

 $T - \alpha_i$ is Weyl for each $i = 1, 2, \dots, n$. Hence $\lambda \notin f(\sigma_{ea}(T))$, and so $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$. This completes the proof. \Box

 $X \in B(\mathcal{H})$ is called a quasiaffinity if it has trivial kernel and dense range. $S \in B(\mathcal{H})$ is said to be a quasiaffine transform of $T \in B(\mathcal{H})$ (notation: S < T) if there is a quasiaffinity $X \in B(\mathcal{H})$ such that XS = TX. If both S < T and T < S, then we say that S and T are quasisimilar. In general, we cannot expect that Weyl's theorem holds for operators having SVEP. Consider the following example: let $T \in B(\ell_2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (\frac{1}{2}x_2, \frac{1}{3}x_3, \cdots).$$

Then *T* is quasinilpotent, and so *T* has SVEP. But $\sigma(T) = \sigma_w(T) = \{0\}$ and $\pi_{00}(T) = \{0\}$, hence $T \notin W$. However, we have the following theorem.

Theorem 3.2. Suppose *T* is algebraically quasi-paranormal and that $S \prec T$. Then $f(S) \in a\mathcal{B}$ for every $f \in H(\sigma(S))$.

Proof. Suppose *T* is algebraically quasi-paranormal and that S < T. We first show that *S* has SVEP. Let *U* be any open set and let $f : U \longrightarrow \mathcal{H}$ be any analytic function such that $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$. Since S < T, there exists a quasiaffinity *X* such that XS = TX. So $X(S - \lambda) = (T - \lambda)X$ for all $\lambda \in U$. Since $(S - \lambda)f(\lambda) = 0$ for all $\lambda \in U$, $0 = X(S - \lambda)f(\lambda) = (T - \lambda)Xf(\lambda)$ for all $\lambda \in U$. But *T* is algebraically quasi-paranormal, hence *T* has SVEP. Therefore $Xf(\lambda) = 0$ for all $\lambda \in U$. Since *X* is a quasiaffinity, $f(\lambda) = 0$ for all $\lambda \in U$. Therefore *S* has SVEP. Now we show that $S \in a\mathcal{B}$. It is well known that $\sigma_{ea}(S) \subseteq \sigma_{ab}(S)$. Conversely, suppose that $\lambda \in \sigma_a(S) \setminus \sigma_{ea}(S)$. Then $S - \lambda \in \Phi^-_+(\mathcal{H})$ and $S - \lambda$ is not bounded below. Since *S* has SVEP and $S - \lambda \in \Phi^-_+(\mathcal{H})$, it follows from [1, Theorem 3.16] that $a(S - \lambda) < \infty$. Therefore by [19, Theorem 2.1], $\lambda \in \sigma_a(S) \setminus \sigma_{ab}(S)$.

417

Thus $S \in a\mathcal{B}$. Let $f \in H(\sigma(S))$ be arbitrary. Since *S* has SVEP, it follows from the proof of Theorem 3.1 that $\sigma_{ea}(f(S)) = f(\sigma_{ea}(S))$. Therefore

$$\sigma_{ab}(f(S)) = f(\sigma_{ab}(S)) = f(\sigma_{ea}(S)) = \sigma_{ea}(f(S)),$$

and hence $f(S) \in a\mathcal{B}$. \Box

An operator $T \in B(\mathcal{H})$ is called *a-isoloid* if every isolated point of $\sigma_a(T)$ is an eigenvalue of *T*. Clearly, if *T* is *a*-isoloid then it is isoloid. However, the converse is not true. Consider the following example: let $T = U \oplus Q$, where *U* is the unilateral forward shift on ℓ_2 and *Q* is an injective quasinilpotent operator on ℓ_2 , respectively. Then $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ and $\sigma_a(T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\} \cup \{0\}$. Therefore *T* is isoloid but not *a*-isoloid.

Suppose that T^* is algebraically quasi-paranormal. Then we can prove more: **Theorem 3.3.** Suppose T^* is algebraically quasi-paranormal. Then $f(T) \in aW$ for every $f \in H(\sigma(T))$.

Proof. Suppose T^* is algebraically quasi-paranormal. We first show that $T \in aW$. Suppose that $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Then $T - \lambda$ is upper semi-Fredholm and $i(T - \lambda) \leq 0$. Since T^* is algebraically quasiparanormal, T^* has SVEP. Therefore by [1, Corollary 3.19] $i(T - \lambda) \geq 0$, and hence $T - \lambda$ is Weyl. Since T^* has SVEP, it follows from [10, Corollary 7] that $\sigma(T) = \sigma_a(T)$. Also, since $T \in W$ by Theorem 2.8, $\lambda \in \pi_{00}^a(T)$. Conversely, suppose that $\lambda \in \pi_{00}^a(T)$. Since T^* has SVEP, $\sigma(T) = \sigma_a(T)$. Therefore λ is an isolated point of $\sigma(T)$, and hence $\overline{\lambda}$ is an isolated point of $\sigma(T^*)$. But T^* is algebraically quasi-paranormal, hence by Lemma 2.7 that $\overline{\lambda} \in p_0(T^*)$. Therefore $\lambda \in p_0(T)$, and hence $T - \lambda$ is Weyl. So $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Thus $T \in aW$. Now we show that T is *a*-isoloid. Let λ be an isolated point of $\sigma_a(T)$. Since T^* has SVEP, λ is an isolated point of $\sigma(T)$. But T^* is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_p(T)$. Thus Tis *a*-isoloid. Finally, we shall show that $f(T) \in aW$ for every $f \in H(\sigma(T))$. Let $f \in H(\sigma(T))$. Since $T \in aW$, $\sigma_{ea}(T) = \sigma_{ab}(T)$. It follows from Theorem 3.1 that

$$\sigma_{ab}(f(T)) = f(\sigma_{ab}(T)) = f(\sigma_{ea}(T)) = \sigma_{ea}(f(T)),$$

and hence $f(T) \in a\mathcal{B}$. So $\sigma_a(f(T)) \setminus \sigma_{ea}(f(T)) \subseteq \pi_{00}^a(f(T))$.

Conversely, suppose $\lambda \in \pi_{00}^a(f(T))$. Then λ is an isolated point of $\sigma_a(f(T))$ and $0 < \alpha(f(T) - \lambda) < \infty$. Since λ is an isolated point of $f(\sigma_a(T))$, if $\alpha_i \in \sigma_a(T)$ then α_i is an isolated point of $\sigma_a(T)$ by (3.1). Since T is a-isoloid, $0 < \alpha(T - \alpha_i) < \infty$ for each $i = 1, 2, \dots, n$. Since $T \in aW$, $T - \alpha_i$ is upper semi-Fredholm and $i(T - \alpha_i) \le 0$ for each $i = 1, 2, \dots, n$. Therefore $f(T) - \lambda$ is upper semi-Fredholm and $i(f(T) - \lambda) = \sum_{i=1}^n i(T - \alpha_i) \le 0$. Hence $\lambda \in \sigma_a(f(T)) \setminus \sigma_{ea}(f(T))$, and so $f(T) \in aW$ for each $f \in H(\sigma(T))$. This completes the proof. \Box

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004.
- [2] I.J. An and Y.M. Han, Weyl's theorem holds for algebraically quasi-class A operators, Integral Equations Operator Theory 62 (2008), 1–10.
- [3] S.K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279.
- [4] S.K. Berberian, *The Weyl spectrum of an operator*, Indiana Univ. Math. J. **20** (1970), 529–544.
- [5] L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.
- [6] R.E. Curto and Y.M. Han, Weyl's theorem holds for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), 307–314.
- [7] S.V. Djordjević and Y.M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479–486.
- [8] B.P. Duggal, Polaroid operators satisfying Weyl's theorem, Linear Algebra Appl. 414 (2006), 271–277.
- [9] B.P. Duggal, In Ho Jeon, and In Hyoun Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc. 43 (2006), 899–909.
- [10] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69.
- [11] Y.M. Han and W.H. Na, A note on quasi-paranormal operators, Mediterranean Journal of Mathematics. 10 (2013) 383-393.
- [12] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [13] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. **349** (1997), 2115–2124.
- [14] In Ho Jeon and In Hyoun Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl. **418** (2006), 854–862.
- [15] C.S. Kubrusly, Hilbert Space Operators A Problem Solving Approach, Birkhäuser, Boston, 2003.

- [16] K.B. Laursen, *Operators with finite ascent*, Pacific J. Math. **152** (1992), 323–336.
 [17] K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
- [18] V. Rakočević, On the essential approximate point spectrum II, Mat. Vesnik. 36 (1984), 89–97.
 [19] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193–198.
- [20] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392.