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Abstract. Let T or T∗ be an algebraically quasi-paranormal operator acting on Hilbert space. We prove : (i)
Weyl’s theorem holds for f (T) for every f ∈ H(σ(T)); (ii) a-Browder’s theorem holds for f (S) for every S ≺ T
and f ∈ H(σ(S)); (iii) the spectral mapping theorem holds for the Weyl spectrum of T and for the essential
approximate point spectrum of T.

1. Introduction

Throughout this note let B(H) and K(H) denote, respectively, the algebra of bounded linear operators and
the ideal of compact operators acting on an infinite dimensional separable Hilbert spaceH . If T ∈ B(H) we
shall write N(T) and R(T) for the null space and range of T. Also, let α(T) := dimN(T), β(T) := dimN(T∗),
and let σ(T), σa(T), p0(T), and σp(T) denote the spectrum, approximate point spectrum, the set of poles of
the resolvent of T, and point spectrum of T, respectively. For T ∈ B(H), the smallest nonnegative integer
p such that N(Tp) = N(Tp+1) is called the ascent of T and denoted by a(T). If no such integer exists, we
set a(T) = ∞. The smallest nonnegative integer q such that R(Tq) = R(Tq+1) is called the descent of T and
denoted by d(T). If no such integer exists, we set d(T) = ∞. An operator T ∈ B(H) is called Fredholm if it has
closed range, finite dimensional null space, and its range has finite co-dimension. The index of a Fredholm
operator T ∈ B(H) is given by

i(T) := α(T) − β(T).

T ∈ B(H) is called Weyl if it is Fredholm of index zero, and Browder if it is Fredholm of finite ascent and
descent: equivalently ([12, Theorem 7.9.3]) if T is Fredholm and T − λ is invertible for sufficiently small
λ , 0 in C. The essential spectrum σe(T), the Weyl spectrum σw(T) and the Browder spectrum σb(T) of
T ∈ B(H) are defined by ([12],[13])

σe(T) := {λ ∈ C : T − λ is not Fredholm},

σw(T) := {λ ∈ C : T − λ is not Weyl},
and

σb(T) := {λ ∈ C : T − λ is not Browder},
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respectively. Evidently
σe(T) ⊆ σw(T) ⊆ σb(T) = σe(T) ∪ accσ(T),

where we write acc K for the accumulation points of K ⊆ C. If we write iso K = K \ acc K then we let

π00(T) := {λ ∈ iso σ(T) : 0 < α(T − λ) < ∞ },
πa

00(T) := {λ ∈ iso σa(T) : 0 < α(T − λ) < ∞ },
and

p00(T) := σ(T) \ σb(T).

We say that Weyl’s theorem holds for T ∈ B(H) (in symbols, T ∈ W) if

σ(T) \ σw(T) = π00(T), (1.1)

and that Browder’s theorem holds for T ∈ B(H) (in symbols, T ∈ B) if

σ(T) \ σw(T) = p00(T). (1.2)

We consider the sets

Φ+(H) := {T ∈ B(H) : R(T) is closed and α(T) < ∞},

Φ−+(H) := {T ∈ B(H) : T ∈ Φ+(H) and i(T) ≤ 0}.
By definition,

σea(T) := ∩{σa(T + K) : K ∈ K(H)}
is the essential approximate point spectrum, and

σab(T) := ∩{σa(T + K) : TK = KT and K ∈ K(H)}

is the Browder essential approximate point spectrum.

We say that a-Weyl’s theorem holds for T ∈ B(H) (in symbols, T ∈ aW) if

σa(T) \ σea(T) = πa
00(T), (1.3)

and that a-Browder’s theorem holds for T ∈ B(H) (in symbols, T ∈ aB) if

σea(T) = σab(T). (1.4)

It is known ([7],[13],[18]) that the following implications hold:

a-Weyl’s theorem =⇒ a-Browder’s theorem

⇓ ⇓

Weyl’s theorem =⇒ Browder’s theorem

In [20], H. Weyl proved that (1.1) holds for hermitian operators. Weyl’s theorem has been extended
from hermitian operators to hyponormal and Toeplitz operators ([5]), and to several classes of operators
including seminormal operators ([3],[4]). Recently, R.E. Curto and Y.M. Han [6] showed that (1.1) holds
for algebraically paranormal operators, and I.J. An and Y.M. Han [2] proved that every algebraically quasi-
class A operator satisfies (1.1), respectively. On the other hand, V. Rakočević showed that (1.3) holds for
cohyponormal operators ([18]). In this paper, we extend these results to algebraically quasi-paranormal
operators using the local spectral theory.
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2. Weyl’s theorem for algebraically quasi-paranormal operators

Definition 2.1. (1) An operator T is said to be class A if

|T|2 ≤ |T2|.

(2) T is called a quasi-class A operator if
T∗|T|2T ≤ T∗|T2|T.

(3) An operator T ∈ B(H) is said to be paranormal if

||Tx||2 ≤ ||T2x||||x|| for all x ∈ H .

Recently, we introduced [11] the new operator class which is a common generalization of paranormal
operators and quasi-class A operators.

Definition 2.2. An operator T ∈ B(H) is said to be quasi-paranormal if

||T2x||2 ≤ ||T3x||||Tx|| for all x ∈ H .

We say that T is algebraically quasi-paranormal if there exists a nonconstant complex polynomial p such that
p(T) is quasi-paranormal.

In general, the following implications hold:

class A =⇒ quasi-class A =⇒ quasi-paranormal;
class A =⇒ paranormal =⇒ quasi-paranormal =⇒ algebraically quasi-paranormal.

The following example shows that there is a big gap between the set of paranormal operators and the set
of quasi-paranormal operators. To construct the example which is quasi-paranormal but not paranormal,
we need the following lemma.

Lemma 2.3. Let T ∈ B(H). T is quasi-paranormal if and only if

T∗(T2∗T2 − 2λT∗T + λ2)T ≥ 0 for all λ > 0.

Proof. Let α and β be arbitrary nonnegative real numbers. Then (λ−
1
2α − λ 1

2 β)2 ≥ 0 for any positive real
number λ, and so we have 0 ≤ 2αβ ≤ λ−1α2 + λβ2.

(i) If α > 0 and β > 0, then λ0 := αβ ≥ 0 so that 0 ≤ 2αβ = λ0
−1α2 + λ0β2.

(ii) If α = 0 or β = 0, then 0 = 2αβ = infλ>0 (λ−1α2 + λβ2).
Therefore by (i) and (ii),

αβ = inf
λ>0

1
2

(λ−1α2 + λβ2) for all α, β ≥ 0.

Let x ∈ H be arbitrary. Put α := ||T3x|| and β := ||Tx||. Then

||T3x||||Tx|| = inf
λ>0

1
2

(λ−1||T3x||2 + λ||Tx||2)

= inf
λ>0

1
2

(⟨λ−1T3x,T3x⟩ + ⟨λTx,Tx⟩)

= inf
λ>0

1
2
⟨(λ−1T2∗T2 + λ)Tx,Tx⟩.

Therefore we have

||T2x||2 ≤ ||T3x||||Tx|| ⇐⇒ ||T2x||2 ≤ 1
2
⟨(λ−1T2∗T2 + λ)Tx,Tx⟩ for all λ > 0.

Hence T is quasi-paranormal if and only if T∗(T2∗T2 − 2λT∗T + λ2)T ≥ 0 for all λ > 0.
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Example 2.4. Consider the unilateral weighted shift operators as an infinite dimensional Hilbert space
operator. Recall that given a bounded sequence of positive numbers α : α1, α2, . . . (called weights), the
unilateral weighted shift Wα associated with weight α is the operator on H = ℓ2 defined by Wn := αnen+1
for all n ≥ 1, where {en}∞n=1 is the canonical orthonormal basis for ℓ2. It is well known that the followings are
equivalent:

(1) Wα is hyponormal;
(2) Wα is class A;
(3) Wα is paranormal;
(4) α is monotonically increasing, i.e., αn ≤ αn+1 for all n ≥ 1.

Thus hyponormality, class A, and paranormality coincide for every unilateral weighted shift. However, for
quasi-paranormal operators, Wα has a very useful characterization. Using Lemma 2.3, we have

Wα =



0 0 0 0 · · ·
α1 0 0 0
0 α2 0 0
0 0 α3 0

0 0 0 α4
. . .

...
. . .


is quasi-paranormal if and only if W∗

α(W2∗
α W2

α − 2λW∗
αWα + λ2)Wα for all λ > 0.

On the other hand, let diag({αn}∞n=1) = diag(α1, α2, α3, . . .) denote an infinite diagonal matrix on ℓ2. Then

W∗
α(W2∗

α W2
α − 2λW∗

αWα + λ2)Wα

= diag({αn
2αn+1

2αn+2
2}∞n=1) − 2λ diag({αn

2αn+1
2}∞n=1) + λ2 diag({αn

2}∞n=1)
= diag({αn

2(αn+1
2αn+2

2 − 2λαn+1
2 + λ2)}∞n=1).

From the equality and Lemma 2.3 Wα is quasi-paranormal if and only if αn
2(αn+1

2αn+2
2 − 2λαn+1

2 + λ2) ≥ 0
for all λ > 0 and for every n ≥ 1. Equivalently, αn+1 ≤ αn+2 for every n ≥ 1. Hence Wα is quasi-paranormal
if and only if αn ≤ αn+1 for every n ≥ 2.

We say that T ∈ B(H) has the single valued extension property (SVEP) if for every open set U of C the
only analytic function f : U −→ H which satisfies the equation

(T − λ) f (λ) = 0

is the constant function f ≡ 0 on U.

Before we state our main theorem (Theorem 2.8), we need several preliminary results. We begin with
the following lemma which follows from Definition 2.2 and some facts about quasi-paranormal operators
[11].

Lemma 2.5. Let T ∈ B(H).

(1) If T is algebraically quasi-paranormal, then so is T − λ for each λ ∈ C.
(2) If T is algebraically quasi-paranormal and M is a closed invariant subspace under T, then T|M is also

algebraically quasi-paranormal.
(3) If T is algebraically quasi-paranormal, T has SVEP.
(4) Suppose T does not have dense range. Then we have:

T is quasi-paranormal⇐⇒ T =
(
A B
0 0

)
onH = T(H) ⊕N(T∗),

where A = T|T(H) is paranormal.
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In [6], R.E. Curto and Y.M. Han proved that quasinilpotent algebraically paranormal operators are
nilpotent. We now establish a similar result for algebraically quasi-paranormal operators.

Lemma 2.6. Let T be a quasinilpotent algebraically quasi-paranormal operator. Then T is nilpotent.

Proof. We first assume that T is quasi-paranormal. We consider two cases:
Case(I) : Suppose T has dense range. Then clearly, it is paranormal. But every quasinilpotent paranormal
operator is a zero operator, hence T is nilpotent.
Case(II) : Suppose T does not have dense range. Then by Lemma 2.5, we can represent T as the upper
triangular matrix

T =
(
A B
0 0

)
onH = T(H) ⊕N(T∗),

where A := T|T(H) is an paranormal operator. Since T is quasinilpotent, σ(T) = {0}. But σ(T) = σ(A) ∪ {0},
hence σ(A) = {0}. Since A is paranormal, A = 0 and therefore T is nilpotent. Thus if T is a quasinilpotent
quasi-paranormal operator, then it is nilpotent. Now, we suppose T is algebraically quasi-paranormal.
Then there exists a nonconstant polynomial p such that p(T) is quasi-paranormal. If p(T) has dense range,
then p(T) is paranormal. So T is algebraically paranormal, and hence T is nilpotent by [6, Lemma 2.2]. If
p(T) does not have dense range, then by Lemma 2.5, we can represent p(T) as the upper triangular matrix

p(T) =
(
C D
0 0

)
onH = p(T)(H) ⊕N(p(T)∗),

where C := p(T)|p(T)(H) is paranormal. Since T is quasinilpotent, σ(p(T)) = p(σ(T)) = {p(0)}. But σ(p(T)) =
σ(C) ∪ {0}, hence σ(C) ∪ {0} = {p(0)}. So p(0) = 0, and hence p(T) is quasinilpotent. Since p(T) is quasi-
paranormal, by the previous argument p(T) is nilpotent. On the other hand, since p(0) = 0, p(z) = czm(z −
λ1)(z − λ2) · · · (z − λn) for some natural number m. Therefore p(T) = cTm(T − λ1)(T − λ2) · · · (T − λn). Since
p(T) is nilpotent, T is nilpotent. This completes the proof.

An operator T ∈ B(H) is called isoloid if every isolated point of σ(T) is an eigenvalue of T and an operator
T ∈ B(H) is called polaroid if iso σ(T) ⊆ p0(T). In general, if T is polaroid then it is isoloid. However, the
converse is not true. Consider the following example. Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (
1
2

x2,
1
3

x3, · · · ).

Then T is a compact quasinilpotent operator with α(T) = 1, and so T is isoloid. However, since a(T) = ∞, T
is not polaroid.

It is well known that every algebraically paranormal operator is isoloid. We now extend this result to
algebraically quasi-paranormal operators. We can prove more:

Lemma 2.7. Let T be algebraically quasi-paranormal operator. Then T is polaroid.

Proof. Suppose T is algebraically quasi-paranormal. Then p(T) is quasi-paranormal for some nonconstant
polynomial p. Let λ ∈ iso σ(T). Using the spectral projection P = 1

2πi

∫
∂D(µ − T)−1dµ, where D is a closed

disk of center λ which contains no other points of σ(T), we can represent T as the direct sum

T =
(
T1 0
0 T2

)
where σ(T1) = {λ} and σ(T2) = σ(T) \ {λ}.

Since T1 is algebraically quasi-paranormal, T1 − λ is algebraically quasi-paranormal. But σ(T1 − λ) = {0},
it follows from Lemma 2.6 that T1 − λ is nilpotent. Therefore T1 − λ has finite ascent and descent. On the
other hand, since T2 − λ is invertible, clearly it has finite ascent and descent. Therefore T − λ has finite
ascent and descent, and hence λ is a pole of the resolvent of T. Thus λ ∈ iso σ(T) implies λ ∈ p0(T), and so
iso σ(T) ⊆ p0(T). Hence T is polaroid.
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In the following theorem, recall that H(σ(T)) is the space of functions analytic in an open neighborhood
of σ(T).

Theorem 2.8. Suppose T or T∗ is algebraically quasi-paranormal. Then f (T) ∈ W for every f ∈ H(σ(T)).

Proof. Suppose T is algebraically quasi-paranormal. We first show that T ∈ W. Suppose λ ∈ σ(T) \ σw(T).
Then T − λ is Weyl but not invertible. We claim that λ ∈ ∂σ(T). Assume to the contrary that λ is an
interior point of σ(T). Then there exists a neighborhood U of λ such that dim N(T − µ) > 0 for all µ ∈ U.
It follows from [10, Theorem 10] that T does not have SVEP. On the other hand, since T is algebraically
quasi-paranormal, it follows from Lemma 2.5 that T has SVEP. This is a contradiction. So λ ∈ ∂σ(T) \ σw(T),
and it follows from the punctured neighborhood theorem that λ ∈ π00(T).
Conversely, suppose λ ∈ π00(T). Using the spectral projection P := 1

2πi

∫
∂D(µ − T)−1dµ, where D is a closed

disk of center λ which contains no other points of σ(T), we can represent T as the direct sum

T =
(
T1 0
0 T2

)
, where σ(T1) = {λ} and σ(T2) = σ(T) \ {λ}.

Since σ(T1) = {λ}, T1 − λ is quasinilpotent. But T is algebraically quasi-paranormal, hence T1 is also
algebraically quasi-paranormal. It follows from Lemma 2.6 that T1 −λ is nilpotent. Since λ ∈ π00(T), T1 −λ
is a finite dimensional operator. Therefore T1−λ is Weyl. Since T2−λ is invertible, T−λ is Weyl. Thus T ∈ W.
Now we claim that f (σw(T)) = σw( f (T)) for all f ∈ H(σ(T)). Let f ∈ H(σ(T)). Since σw( f (T)) ⊆ f (σw(T)) with
no other restriction on T, it suffices to show that f (σw(T)) ⊆ σw( f (T)). Suppose that λ < σw( f (T)). Then
f (T) − λ is Weyl and

f (T) − λ = c(T − α1)(T − α2) · · · (T − αn)1(T), (2.8)

where c, α1, α2, · · · , αn ∈ C and 1(T) is invertible. Since the operators in the right side of (2.8) commute, every
T − αi is Fredholm. Since T is algebraically quasi-paranormal, T has SVEP by Lemma 2.5. Therefore by [1,
Corollary 3.19] i(T − αi) ≤ 0 for each i = 1, 2, · · · ,n. Therefore λ < f (σw(T)), and hence f (σw(T)) = σw( f (T)).
Now recall ([1, Lemma 3.89]) that if T is isoloid then

f
(
σ(T) \ π00(T)

)
= σ( f (T)) \ π00( f (T)) for every f ∈ H(σ(T)).

Since T is isoloid by Lemma 2.7 and T ∈ W,

σ( f (T)) \ π00( f (T)) = f
(
σ(T) \ π00(T)

)
= f (σw(T)) = σw( f (T)),

which implies that f (T) ∈ W.
Now suppose that T∗ is algebraically quasi-paranormal. We first show that T ∈ W. Suppose that λ ∈
σ(T) \ σw(T). Observe that σ(T∗) = σ(T) and σw(T∗) = σw(T). So λ ∈ σ(T∗) \ σw(T∗). Since T∗ ∈ W, λ ∈ π00(T∗).
Therefore λ is an isolated point of σ(T), and so λ ∈ π00(T). Conversely, suppose that λ ∈ π00(T). Then λ is
an isolated point of σ(T) and 0 < α(T − λ) < ∞. Since λ is an isolated point of σ(T∗) and T∗ is algebraically
quasi-paranormal, it follows from Lemma 2.7 that λ ∈ p0(T∗). So λ ∈ p0(T), and hence T − λ is Weyl.
Consequently, λ ∈ σ(T) \ σw(T). Thus T ∈ W. Now we show that f (σw(T)) = σw( f (T)) for each f ∈ H(σ(T)).
Let f ∈ H(σ(T)). It is sufficient to show that f (σw(T)) ⊆ σw( f (T)). Suppose that λ < σw( f (T)). Then f (T) − λ
is Weyl. Since T∗ is algebraically quasi-paranormal, it has SVEP. It follows from [1, Corollary 3.19] that
i(T − αi) ≥ 0 for each i = 1, 2, · · · ,n. Since

0 ≤
n∑

i=1

i(T − αi) = i( f (T) − λ) = 0,

T − αi is Weyl for each i = 1, 2, · · · ,n. Hence λ < f (σw(T)), and so f (σw(T)) ⊆ σw( f (T)). Thus f (σw(T)) =
σw( f (T)) for each f ∈ H(σ(T)). Since T ∈ W and T is isoloid, f (T) ∈ W for every f ∈ H(σ(T)). This completes
the proof.
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From the proof of Theorem 2.8, we obtain the following useful consequence.

Corollary 2.9. Suppose T or T∗ is algebraically quasi-paranormal. Then

σw( f (T)) = f (σw(T)) for every f ∈ H(σ(T)).

3. a-Weyl’s theorem for algebraically quasi-paranormal operators

Let T ∈ B(H). It is well known that the inclusion σea( f (T)) ⊆ f (σea(T)) holds for every f ∈ H(σ(T)) with
no restriction on T ([19, Theorem 3.3]). The next theorem shows that the spectral mapping theorem holds
for the essential approximate point spectrum for algebraically quasi-paranormal operators.

Theorem 3.1. Suppose T or T∗ is algebraically quasi-paranormal. Then

σea( f (T)) = f (σea(T)) for every f ∈ H(σ(T)).

Proof. Suppose first that T is algebraically quasi-paranormal and let f ∈ H(σ(T)). It suffices to show that
f (σea(T)) ⊆ σea( f (T)). Suppose that λ < σea( f (T)). Then f (T) − λ ∈ Φ−+(H) and

f (T) − λ = c(T − α1)(T − α2) · · · (T − αn)1(T), (3.1)

where c, α1, α2, · · · , αn ∈ C, and 1(T) is invertible. Since T is algebraically quasi-paranormal, it has SVEP
by Lemma 2.5. It follows from [1, Corollary 3.19] that i(T − αi) ≤ 0 for each i = 1, 2, · · · ,n. Therefore
λ < f (σea(T)), and hence σea( f (T)) = f (σea(T)). Suppose now that T∗ is algebraically quasi-paranormal. Then
T∗ has SVEP. Therefore by [1, Corollary 3.19] i(T − αi) ≥ 0 for each i = 1, 2, · · · ,n. Since

0 ≤
n∑

i=1

i(T − αi) = i( f (T) − λ) ≤ 0,

T − αi is Weyl for each i = 1, 2, · · · ,n. Hence λ < f (σea(T)), and so σea( f (T)) = f (σea(T)). This completes the
proof.

X ∈ B(H) is called a quasiaffinity if it has trivial kernel and dense range. S ∈ B(H) is said to be a
quasiaffine transform of T ∈ B(H) (notation: S ≺ T) if there is a quasiaffinity X ∈ B(H) such that XS = TX.
If both S ≺ T and T ≺ S, then we say that S and T are quasisimilar. In general, we cannot expect that Weyl’s
theorem holds for operators having SVEP. Consider the following example: let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (
1
2

x2,
1
3

x3, · · · ).

Then T is quasinilpotent, and so T has SVEP. But σ(T) = σw(T) = {0} and π00(T) = {0}, hence T <W.
However, we have the following theorem.

Theorem 3.2. Suppose T is algebraically quasi-paranormal and that S ≺ T. Then f (S) ∈ aB for every
f ∈ H(σ(S)).

Proof. Suppose T is algebraically quasi-paranormal and that S ≺ T. We first show that S has SVEP. Let U be
any open set and let f : U −→ H be any analytic function such that (S−λ) f (λ) = 0 for all λ ∈ U. Since S ≺ T,
there exists a quasiaffinity X such that XS = TX. So X(S − λ) = (T − λ)X for all λ ∈ U. Since (S − λ) f (λ) = 0
for all λ ∈ U, 0 = X(S − λ) f (λ) = (T − λ)X f (λ) for all λ ∈ U. But T is algebraically quasi-paranormal, hence
T has SVEP. Therefore X f (λ) = 0 for all λ ∈ U. Since X is a quasiaffinity, f (λ) = 0 for all λ ∈ U. Therefore
S has SVEP. Now we show that S ∈ aB. It is well known that σea(S) ⊆ σab(S). Conversely, suppose that
λ ∈ σa(S) \σea(S). Then S−λ ∈ Φ−+(H) and S−λ is not bounded below. Since S has SVEP and S−λ ∈ Φ−+(H),
it follows from [1, Theorem 3.16] that a(S − λ) < ∞. Therefore by [19, Theorem 2.1], λ ∈ σa(S) \ σab(S).
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Thus S ∈ aB. Let f ∈ H(σ(S)) be arbitrary. Since S has SVEP, it follows from the proof of Theorem 3.1 that
σea( f (S)) = f (σea(S)). Therefore

σab( f (S)) = f (σab(S)) = f (σea(S)) = σea( f (S)),

and hence f (S) ∈ aB.

An operator T ∈ B(H) is called a-isoloid if every isolated point of σa(T) is an eigenvalue of T. Clearly,
if T is a-isoloid then it is isoloid. However, the converse is not true. Consider the following example: let
T = U ⊕Q, where U is the unilateral forward shift on ℓ2 and Q is an injective quasinilpotent operator on ℓ2,
respectively. Then σ(T) = {λ ∈ C : |λ| ≤ 1} and σa(T) = {λ ∈ C : |λ| = 1} ∪ {0}. Therefore T is isoloid but not
a-isoloid.

Suppose that T∗ is algebraically quasi-paranormal. Then we can prove more:
Theorem 3.3. Suppose T∗ is algebraically quasi-paranormal. Then f (T) ∈ aW for every f ∈ H(σ(T)).

Proof. Suppose T∗ is algebraically quasi-paranormal. We first show that T ∈ aW. Suppose that λ ∈
σa(T) \ σea(T). Then T − λ is upper semi-Fredholm and i(T − λ) ≤ 0. Since T∗ is algebraically quasi-
paranormal, T∗ has SVEP. Therefore by [1, Corollary 3.19] i(T − λ) ≥ 0, and hence T − λ is Weyl. Since T∗

has SVEP, it follows from [10, Corollary 7] that σ(T) = σa(T). Also, since T ∈ W by Theorem 2.8, λ ∈ πa
00(T).

Conversely, suppose that λ ∈ πa
00(T). Since T∗ has SVEP, σ(T) = σa(T). Therefore λ is an isolated point of

σ(T), and hence λ is an isolated point of σ(T∗). But T∗ is algebraically quasi-paranormal, hence by Lemma
2.7 that λ ∈ p0(T∗). Therefore λ ∈ p0(T), and hence T − λ is Weyl. So λ ∈ σa(T) \ σea(T). Thus T ∈ aW. Now
we show that T is a-isoloid. Let λ be an isolated point of σa(T). Since T∗ has SVEP, λ is an isolated point
of σ(T). But T∗ is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence λ ∈ σp(T). Thus T
is a-isoloid. Finally, we shall show that f (T) ∈ aW for every f ∈ H(σ(T)). Let f ∈ H(σ(T)). Since T ∈ aW,
σea(T) = σab(T). It follows from Theorem 3.1 that

σab( f (T)) = f (σab(T)) = f (σea(T)) = σea( f (T)),

and hence f (T) ∈ aB. So σa( f (T)) \ σea( f (T)) ⊆ πa
00( f (T)).

Conversely, suppose λ ∈ πa
00( f (T)). Then λ is an isolated point of σa( f (T)) and 0 < α( f (T) − λ) < ∞. Since λ

is an isolated point of f (σa(T)), if αi ∈ σa(T) then αi is an isolated point of σa(T) by (3.1). Since T is a-isoloid,
0 < α(T − αi) < ∞ for each i = 1, 2, · · · ,n. Since T ∈ aW, T − αi is upper semi-Fredholm and i(T − αi) ≤ 0 for
each i = 1, 2, · · · ,n. Therefore f (T) − λ is upper semi-Fredholm and i( f (T) − λ) =

∑n
i=1 i(T − αi) ≤ 0. Hence

λ ∈ σa( f (T)) \ σea( f (T)), and so f (T) ∈ aW for each f ∈ H(σ(T)). This completes the proof.
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