# On the harmonic index of bicyclic conjugated molecular graphs

Yan Zhu<sup>\*a</sup>, Renying Chang<sup>b</sup>

<sup>a</sup>Department of Mathematics, East China University of Science and Technology, Shanghai, 200237, P. R. China <sup>b</sup>Department of Mathematics, Linyi University, Linyi, Shandong, 276005, P. R. China

**Abstract.** The harmonic index H(G) of a graph G is defined as the sum of weights  $\frac{2}{d(u)+d(v)}$  of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we first present a sharp lower bound on the harmonic index of bicyclic conjugated molecular graphs (bicyclic graphs with perfect matching). Also a sharp lower bound on the harmonic index of bicyclic graphs is given in terms of the order and given size of matching.

## 1. Introduction

We first introduce some terminologies and notations of graphs. Undefined terminologies and notations may refer to [1]. We only consider finite, undirected and simple graphs. Denote by  $C_n$  the cycle of n vertices. Unicyclic graphs are connected graphs with n vertices and n edges. For a vertex x of a graph G, we denote the neighborhood and the degree of x by N(x) and d(x), respectively. A pendant vertex is a vertex of degree 1. Denote by PV the set of pendant vertices of G. Let  $d_G(x, y)$  denote the length of a shortest (x, y)-path in G. We will use G - x to denote the graph that arises from G by deleting the vertex  $x \in V(G)$  together with its incident edges. A subset  $M \subseteq E$  is called a *matching* in G if its elements are edges and no two are adjacent in G. A matching M saturates a vertex v, and v is said to be M-saturated, if some edges of M is incident with v. If every vertex of G is M-saturated, the matching M is *perfect*. A matching M is said to be an *m*-matching (or a maximum matching), if |M| = m and for every matching M' in G,  $|M'| \leq m$ .

The Randić index of an organic molecule whose molecular graph is *G* was introduced by the chemist Milan Randić in 1975 [8] as

$$R(G) = \sum_{uv} \frac{1}{\sqrt{d(u)d(v)}},$$

where d(u) and d(v) stand for the degrees of the vertices u and v, respectively, and the summation goes over all edges uv of G. Recently, finding bounds for the Randić index of a given class of graphs, as well as related

<sup>2010</sup> Mathematics Subject Classification. 05C35

Keywords. Harmonic index, bicyclic graph, perfect matching, given size of matching

Received: 8 July 2012; Accepted: 13 September 2013

Communicated by Dragan Stevanović

This research was supported by the Fundamental Research Funds for the Central Universities, SRFDP(20130074120021) and SRF for ROCS, SEM.

Email addresses: operationzy@163.com (Corresponding author) (Yan Zhu\*), changrysd@163.com (Renying Chang)

problem of finding the graphs with extremal Randić index, attracted the attention of many researchers, and many results have been obtained (see recent books [4] and [6]).

In this paper, we consider another variant of the Randić index, named the harmonic index. For a graph G, the harmonic index H(G) is defined (see [2]) as

$$H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)}$$

In [3], the authors considered the relation between the harmonic index and the eigenvalues of graphs. In [10], [11] and [12], the authors presented the minimum and maximum values of harmonic index on simple connected graphs, trees, unicyclic graphs and bicyclic graphs respectively. In [5] and [9], the authors established some relationships between harmonic index and several other topological indices, such as the Zagreb index and the atom-bond connectivity index.

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. The bicyclic graphs of order *n* without pendant vertex are characterized as follows:



Figure 1 Bicyclic graphs without pendant vertex and their harmonic indices.

Let *n* and *m* be positive integers with  $n \ge 2m$ . Let  $U_{n,m}$  be a graph with *n* vertices obtained from  $C_3$  by attaching n - 2m + 1 pendant edges and m - 2 paths of length 2 to one vertex of  $C_3$ . Let  $B_{n,m}$  be a graph with *n* vertices obtained from  $Y_5$  by attaching n - 2m + 1 pendant edges and m - 3 paths of length 2 to the unique vertex of degree four in  $Y_5$  (see Figure 2). Denote  $\mathcal{U}_{n,m} = \{G: G \text{ is a unicyclic graph with } n \text{ vertices and an } m\text{-matching}\}$ ,  $\mathcal{B}_{n,m} = \{G: G \text{ is a bicyclic graph with } n \text{ vertices and an } m\text{-matching}\}$ .

Researchers are interested in the extremal graph theory for a type of graphs, i.e., the connected graphs with perfect matchings. In this paper, we first present a sharp lower bound on the harmonic index of bicyclic conjugated molecular graphs (bicyclic graphs with a perfect matching). Also a sharp lower bound on the harmonic index of bicyclic graphs is given in terms of the order and given size of matching.

## 2. Some lemmas

**Lemma 2.1.** [7] Let  $G \in \mathscr{B}_{2m,m}$ . If  $PV \neq \phi$ , then for any vertex  $u \in V(G)$ ,  $|N(u) \cap PV| \leq 1$ .

**Lemma 2.2.** [14] Let  $G \in \mathcal{B}_{2m,m}$ ,  $m \ge 3$ , and let T be a tree in G attached to a root r. If  $v \in V(T)$  is a vertex furthest from the root r with  $d_G(v, r) \ge 2$ , then v is a pendant vertex and adjacent to a vertex u of degree 2.

Yan Zhu, Renying Chang / Filomat 28:2 (2014), 421-428





**Lemma 2.3.** [14] Let  $G \in \mathcal{B}_{n,m}(n > 2m)$  and G has at least one pendant vertex. Then there is an m-matching M and a pendant vertex v such that M does not saturate v.

**Lemma 2.4.** [13] Let x, y be positive integers with  $1 \le x \le y - 1$ . Denote  $\kappa(x, y) = \frac{2x+2}{y+1} + \frac{2(y-x-1)}{y+2}$ . Then the function  $\kappa(x - 1, y) - \kappa(x, y + 1)$  are monotonously increasing in  $x \ge 1$  and  $y \ge 0$ , respectively.

## 3. Main Results

Let *n* and *m* be positive integers with  $n \ge 2m$ . Let  $U_{n,m}$  be a graph with *n* vertices obtained from  $C_3$  by attaching n - 2m + 1 pendant edges and m - 2 paths of length 2 to one vertex of  $C_3$  (see Figure 2). Denote  $\varphi(n,m) = \frac{2(m-2)}{3} + \frac{2m}{n-m+3} + \frac{2(n-2m+1)}{n-m+2} + \frac{1}{2}$ .

**Theorem 3.1.** [13] Let  $G \in \mathcal{U}_{2m,m} \setminus \{H_6, H_8\}$   $(m \ge 2)$ . Then

$$H(G) \ge \varphi(2m, m),$$

with equality holds if and only if  $G \cong U_{2m,m}$  (see Figure 2).

**Theorem 3.2.** [12] Among connected bicyclic graphs on *n* vertices,  $n \ge 4$ , the graph of the type  $B_n$  and  $B'_n$  have maximum harmonic index, and  $H(B_n) = H(B'_n) = \frac{n}{2} - \frac{1}{15}$  (see Figure 1).

Denote  $\psi(n, m) = \frac{2(n-2m+1)}{n-m+3} + \frac{2m+2}{n-m+4} + \frac{2m}{3} - 1$ , where *n* and *m* are positive integers and  $n \ge 2m$ .

**Theorem 3.3.** Let  $G \in \mathscr{B}_{2m,m} \setminus \{R_8\}$   $(m \ge 3)$ . Then  $H(G) \ge \psi(2m, m)$ , with equality holds if and only if  $G \cong B_{2m,m}$  (see Figure 2).

**Proof.** First we note that if  $G \cong B_{2m,m}$ , then  $H(G) = \psi(2m, m)$ . We apply induction on *m*.

Now we prove that if  $G \in \mathscr{B}_{2m,m} \setminus \{R_8\}$ , then the result holds. If m = 3,  $\psi(6, 3) = 2.476$ , note that the total 17 graphs with their harmonic indices are listed in Figure 3. Thus the theorem holds for m = 3.

We now suppose that  $m \ge 4$  and proceed by induction on m.

If *G* has no pendant vertex, then *G* is one of the type of  $\{B_{2m}, B'_{2m}, Y_{2m}, Y'_{2m}, Y''_{2m}\}$ . It is easy to prove that  $\min\{H(B_{2m}), H(B'_{2m}), H(Y'_{2m}), H(Y''_{2m})\} = H(Y_{2m}) = m - \frac{1}{6} > \psi(2m, m)$ . Hence, now we assume that *G* has at least one pendant vertex.

By Lemmas 2.1 and 2.2, we only consider the following two cases.

**Case 1.** *G* has a pendant vertex *v* which is adjacent to a vertex *w* of degree 2.

In this case, there is a unique vertex  $u \neq v$  such that  $uw \in E(G)$ . Denote d(u) = t and  $N(u) = \{w, y_1, \dots, y_{t-1}\}$ , then  $t \ge 2$ . Since *G* is a bicyclic graph with a perfect matching, then  $t \le m + 2$ . By Lemma 2.1, there exists at most one vertex in  $\{y_i\}$  ( $i = 1, 2, \dots, t - 1$ ) has degree one, say i = 1, such that  $d(y_1) \ge 1$ , the degree of other vertices are at least two. Let G' = G - v - w. Then  $G' \in \mathcal{B}_{2m-2,m-1}$ .

423

Yan Zhu, Renying Chang / Filomat 28:2 (2014), 421–428



If  $G' \cong R_8$ , then  $G \in \{G_i | 1 \le i \le 4\}$ , where  $G_i(1 \le i \le 4)$  and their harmonic indices are illustrated in Figure 4. By  $\psi(10,5) = 3.917$ , it is easy to verify that  $B_{10,5}$  has the minimum harmonic indices among all bicyclic graphs in  $\{G_i | 1 \le i \le 4\} \cup \{B_{10,5}\}$ .



Figure 4

Otherwise, if  $G' \not\cong R_8$ , by the induction hypothesis, then

$$H(G) = H(G') + \frac{2}{3} + \frac{2}{t+2} + \sum_{i=1}^{t-1} \frac{2}{t+d(y_i)} - \sum_{i=1}^{t-1} \frac{2}{t+d(y_i)-1}$$
  

$$\geq \psi(2m-2,m-1) + \frac{2}{3} + \frac{2}{t+2} - \frac{2}{t(t+1)} - \frac{2(t-2)}{(t+1)(t+2)}$$
  

$$= \psi(2m-2,m-1) + \frac{2}{3} + \frac{4t-4}{t(t+1)(t+2)}.$$

Since  $\frac{4t-4}{t(t+1)(t+2)}$  is strictly monotonously decreasing in *t* and  $t \le m + 2$ , we have

The equality  $H(G) = \psi(2m, m)$  holds if and only if equality holds throughout the above inequalities, that is if and only if  $G' \cong B_{2m-2,m-1}$ ,  $d(y_1) = 1$ ,  $d(y_i) = 2$  for i = 2, 3, ..., t - 1 and t = m + 2. Thus  $G \cong B_{2m,m}$ . **Case 2.** *G* is one of the type of  $\{B_s, B'_s, Y'_s, Y'_s,$ 

If there is no vertex of degree two, then  $G \in \{F_i | 1 \le i \le 7\}$ , where  $F_i(1 \le i \le 7)$  is illustrated in Figure 5. In  $F_1$ , if m = 4, then  $H(F_1) = 3.5 > \psi(8, 4) = 3.202$ . In  $F_2$ , we have  $m \ge 5$  because  $G \not\cong R_8$ . If m = 5, then  $H(F_2) = 4.026 > \psi(10, 5) = 3.917$ . In  $F_3$ , if m = 5, then  $H(F_3) = 4.333 > \psi(10, 5) = 3.917$ . In  $F_4$ , if m = 6, then

424





 $H(F_4) = 4.86 > \psi(12, 6) = 4.622$ . In  $F_5$ , if m = 5, then  $H(F_5) = 4 > \psi(10, 5) = 3.917$ . In  $F_6$ , if m = 5, then  $H(F_6) = 4.014 > \psi(10, 5) = 3.917$ . In  $F_7$ , if m = 7, then  $H(F_7) = 5.681 > \psi(14, 7) = 5.321$ . We can clearly see that the harmonic index of each  $F_i(1 \le i \le 7)$  can be expressed by the form of  $H(F_i) = \frac{5m}{6} + c_i$ , where  $c_i$  is a constant  $(1 \le i \le 7)$ . By the induction hypothesis, then

$$\begin{split} H(F_i) &= \frac{5(m-1)}{6} + c_i + \frac{5}{6} \ge \psi(2m-2,m-1) + \frac{5}{6} \\ &= \psi(2m,m) + \frac{2}{m+2} - \frac{8}{m+3} + \frac{6}{m+4} + \frac{1}{6} \\ &> \psi(2m,m) + \frac{2}{m+3} - \frac{2}{m+3} - \frac{6}{m+3} + \frac{6}{m+4} + \frac{1}{6} \\ &= \psi(2m,m) + \frac{(m+\frac{7}{2})^2 - \frac{145}{4}}{6(m+3)(m+4)} > \psi(2m,m), \end{split}$$

where the last inequality holds since  $m \ge 4$ .

Otherwise, there is at least a vertex of degree two on *G*. We assume that d(u) = 2, v and w are the two vertices adjacent to u.

**Subcase 2.1.** The vertex *u* is on one of the two cycles of *G*.

By the definition of matching, among the edges adjacent to u, there is a unique edge uw (or uv) which not belong to the *m*-matching, without loss of generality, denote it by uw. Denote  $d(w) = t, N(w) \setminus \{u\} =$  $\{x_1, x_2, ..., x_{t-1}\}$ . We have  $2 \le t \le 5$ ,  $2 \le d(v) \le 5$ ,  $d(x_i) \ge 1$  ( $1 \le i \le t - 1$ ). By Lemma 2.1, there is at most one vertex in  $\{x_1, x_2, ..., x_{t-1}\}$  which is degree 1. Let G' = G - uw. Obviously, we have  $G' \in \mathcal{U}_{2m,m}$ . Since  $m \ge 4$ , by Theorem 3.1, if  $G' \not\cong H_8$ , we have

$$\begin{split} H(G) &= H(G') + \frac{2}{2+d(v)} - \frac{2}{1+d(v)} + \frac{2}{t+2} + \sum_{i=1}^{t-1} \frac{2}{t+d(x_i)} - \sum_{i=1}^{t-1} \frac{2}{t+d(x_i) - 1} \\ &= H(G') - \frac{2}{(1+d(v))(2+d(v))} + \frac{2}{t+2} - \sum_{i=1}^{t-1} \frac{2}{(t+d(x_i))(t+d(x_i) - 1)} \\ &\geq H(G') - \frac{2}{3\times 4} + \frac{2}{t+2} - \frac{2(t-1)}{t(t+1)} \\ &\geq \frac{2m}{3} + \frac{2m}{m+3} + \frac{2}{m+2} - 1 + \frac{t^3 - t^2 - 2t + 4}{t(t+1)(t+2)}. \end{split}$$

Since  $\frac{t^3-t^2-2t+4}{t(t+1)(t+2)}$  is strictly monotonously increasing in *t* and  $m \ge 4, 2 \le t \le 5$ , we have

$$\begin{split} H(G) - \psi(2m,m) &\geq \frac{2m}{3} + \frac{2m}{m+3} + \frac{2}{m+2} - 1 + \frac{1}{6} - \psi(2m,m) \\ &= \frac{2}{m+2} - \frac{8}{m+3} + \frac{6}{m+4} + \frac{1}{6} \\ &> \frac{(m+\frac{7}{2})^2 - \frac{145}{4}}{6(m+3)(m+4)} > 0. \end{split}$$

If  $G' \cong H_8$ , then  $G \in \{Q_i | 1 \le i \le 11\}$  since  $G \not\cong R_8$ , where  $Q_i(1 \le i \le 11)$  are illustrated in Figure 6. Thus  $H(Q_i) > \psi(8, 4) = 3.202$ .



**Subcase 2.2.** There is no vertex of degree two on the two cycles of *G*, it means that the vertex *u* is on the path which join the two cycles.

In this subcase, there exists an edge vw which belongs to one of the two cycles of G such that d(v) = 3, d(w) = 3. Denote the other two vertices adjacent to v are  $v_1, v_2$ , the other two vertices adjacent to w are  $w_1, w_2$ . Without loss of generality, we have  $d(v_1) = 1$ ,  $3 \le d(v_2) \le 4$ ,  $d(w_1) = 1$ ,  $3 \le d(w_2) \le 4$ . Let G' = G - vw.

Obviously, we have  $G' \in \mathscr{U}_{2m,m}$  ( $m \ge 6$ ). By Theorem 3.1, we have

$$\begin{split} H(G) - \psi(2m,m) &= H(G') - \frac{2}{(2+d(v_2))(3+d(v_2))} - \frac{2}{(2+d(w_2))(3+d(w_2))} - \psi(2m,m) \\ &\geq \frac{1}{6} - \frac{8}{m+3} + \frac{2}{m+2} + \frac{6}{m+4} - \frac{2}{5\times6} - \frac{2}{5\times6} \\ &= \frac{2}{m+2} - \frac{2}{m+3} - \frac{6}{m+3} + \frac{6}{m+4} + \frac{1}{30} \\ &> \frac{m^2 + 7m + 7}{30(m+3)(m+4)} > 0. \end{split}$$

Note that  $H(R_8) = 3.193 < \psi(8, 4) = 3.202$ . Completing the proof.  $\Box$ 

**Theorem 3.4.** Let  $G \in \mathcal{B}_{n,m}$  ( $n \ge 2m, m \ge 5$ ). Then  $H(G) \ge \psi(n, m)$ , with equality holds if and only if  $G \cong B_{n,m}$ .

**Proof.** We apply induction on *n*. Suppose n = 2m. Then the theorem holds by Theorem 3.3. Now we suppose that n > 2m and the result holds for smaller values of *n*.

If *G* has no pendant vertex, then clearly *G* is one of the type of  $\{B_{2m+1}, B'_{2m+1}, Y_{2m+1}, Y'_{2m+1}, Y''_{2m+1}\}$  because *G* has an *m*-matching. It is easy to prove that  $\min\{H(B_{2m+1}), H(B'_{2m+1}), H(Y_{2m+1}), H(Y'_{2m+1}), H(Y'_{2m+1})\} = H(Y_{2m+1}) = m + \frac{1}{3} > \psi(2m + 1, m)$ . So in the following proof, we assume that *G* has at least one pendant vertex.

By Lemma 2.3, *G* has an *m*-matching *M* and a pendant vertex *v* such that *M* does not saturate *v*. Let  $uv \in E(G)$  with d(u) = t. Denote  $N(u) \cap PV = \{v, x_1, ..., x_r\}$  and  $N(u) \setminus PV = \{y_1, ..., y_{t-r-1}\}$ . Then all  $d(y_i) \ge 2$   $(1 \le i \le t - r - 1)$ . Let G' = G - v. Then  $G' \in \mathcal{B}_{n-1,m}$ . We have

$$\begin{split} H(G) &= H(G') + \frac{2r+2}{t+1} - \frac{2r}{t} + \sum_{i=1}^{t-r-1} \frac{2}{t+d(y_i)} - \sum_{i=1}^{t-r-1} \frac{2}{t+d(y_i)-1} \\ &\geq \psi(n-1,m) + \frac{2r+2}{t+1} + \frac{2(t-r-1)}{t+2} - \frac{2r}{t} - \frac{2(t-r-1)}{t+1} \\ &= \psi(n,m) + \frac{2(n-2m)}{n-m+2} + \frac{2m+2}{n-m+3} - \frac{2(n-2m+1)}{n-m+3} - \frac{2m+2}{n-m+4} \\ &+ \frac{2r+2}{t+1} + \frac{2(t-r-1)}{t+2} - \frac{2r}{t} - \frac{2(t-r-1)}{t+1} \\ &= \psi(n,m) + \left[\kappa(n-2m-1,n-m+1) - \kappa(n-2m,n-m+2)\right] - \left[\kappa(r-1,t-1) - \kappa(r,t)\right], \end{split}$$

where  $\kappa(x, y)$  is defined in Lemma 2.4. Since the bicyclic graph *G* has an *m*-matching,  $n - m + 2 \ge t$  and  $n - 2m \ge r$ . By Lemma 2.4 and  $t \ge r + 1$ , we have

$$H(G) \ge \psi(n,m) + [\kappa(r-1,n-m+1) - \kappa(r,n-m+2)] - [\kappa(r-1,t-1) - \kappa(r,t)] \ge \psi(n,m).$$

The equality  $H(G) = \psi(n, m)$  holds if and only if equality holds throughout the above inequalities, that is if and only if  $G' \cong B_{n-1,m}$ ,  $d(y_1) = \ldots = d(y_{t-r-1}) = 2$ , n - m + 2 = t and n - 2m = r. Thus  $G \cong B_{n,m}$ .  $\Box$ **Note 1.** If  $G \in \mathscr{B}_{2m,m}$ , by Theorem 3.2, then  $H(G) \le m - \frac{1}{15}$  with equality if and only if  $G \cong B_{2m}$  or  $B'_{2m}$ . Similarly, if  $G \in \mathscr{B}_{2m+1,m}$ , then  $H(G) \le m + \frac{13}{30}$  with equality if and only if  $G \cong B_{2m+1}$  or  $B'_{2m+1}$ . As to  $G \in \mathscr{B}_{n,m}$  ( $n \ge 2m + 2$ ), we do not know the sharp upper bound on the harmonic index of bicyclic conjugated molecular graphs, this case maybe much more complicated.

### References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
- [2] S. Fajtlowicz, On conjectures of Graffti-II, Congr. Numer. 60 (1987) 187–197.
- [3] O. Favaron, M. Mahó, J.F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffi-II), Discrete Math. 111 (1993) 197–220.
- [4] I. Gutman, B. Furtula (Eds.), Recent results in the theory of Randić index, Mathematical Chemistry Monographs, No.6, University of Kragujevac, 2008.
- [5] A. Ilić, Note on the harmonic index of a graph, http://arxiv.org/abs/1204.3313v1.
- [6] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs, No. 1, University of Kragujevac and Faculty of Science Kragujevac, pp.VI+330, 2006.
- [7] X. Pan, H. Liu, J. Xu, Sharp lower bounds for the general Randić index of trees with a given size of matching, MATCH Commun. Math. Comput. Chem. 54 (2005) 465–480.
- [8] M. Randić, On the characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609–6615.
- [9] X. Xu, Relationships between harmonic index and other topological indices, Applied Mathematical Sciences 41 (2012) 2013–2018.
  [10] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [11] L. Zhong, The harmonic index on unicyclic graphs, Ars Combin. 104 (2012) 261–269.
- [12] Y. Zhu, R. Chang, X. Wei, The harmonic index on bicyclic graphs, Ars Combin. 110 (2013) 97–104.
- [13] Y. Zhu, R. Chang, On the harmonic index of unicyclic conjugated molecular graphs, submitted.
- [14] Y. Zhu, G. Liu, J. Wang, On the Randić index of bicyclic conjugated molecules, Recent Results in the Theory of Randić Index, Mathematical Chemistry Monographs 6 (2008) 133–144.