Filomat 28:2 (2014), 429–434 DOI 10.2298/FIL1402429P Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Laplacian Eigenvalues and Invariants of Graphs

Rong-Ying Pan^a, Jing Yan^b, Xiao-Dong Zhang^c

^aDepartment of Basic, Suzhou Vocational University ^bCollege of Mathematics and Physics, Jiangsu University of Technology ^c Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University

Abstract. In this paper, we investigate some relations between the invariants (including vertex and edge connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.

1. Introduction

Let G = (V, E) be a simple graph with vertex set $V(G) = \{v_1, \dots, v_n\}$ and edge set $E(G) = \{e_1, \dots, e_m\}$. Denote by $d(v_i)$ the *degree* of vertex v_i . If $D(G) = diag(d_u, u \in V)$ is the diagonal matrix of vertex degrees of G and A(G) is the 0 - 1 *adjacency matrix* of G, the matrix L(G) = D(G) - A(G) is called the *Laplacian matrix* of a graph G Moreover, the eigenvalues of L(G) are called *Laplacian eigenvalues* of G. Furthermore, the Laplacian eigenvalues of G are denoted by

$$0 = \sigma_0 \leq \sigma_1 \leq \cdots \leq \sigma_{n-1},$$

since L(G) is positive semi-definite. In recent years, the relations between invariants of a graph and its Laplacian eigenvalues have been investigated extensively. For example, Alon in [1] established that there are relations between an expander of a graph and its second smallest eigenvalue; Mohar in [13] presented a necessary condition foe the existence of Hamiltonicity in a graph in terms of its Laplacian eigenvalues. The reader is refereed to [3], [9] and [11] etc.

The purpose of this paper is to present some relations between some invariants of a graph and its Laplacian eigenvalues. In Section 2, the relations between the vertex and edge connectivities of a graph and its Laplacian eigenvalues are investigated. In Section 3, we present a sufficient condition for the existence of Hamiantonicity in a graph involving its Laplacian eigenvalues. In last Section, the lower bounds for forwarding indices of networks are obtained. Before finishing this section, we present a general discrepancy inequality from Chung[4], which is very useful for later.

Keywords. Laplacian eigenvalue, Connectivity, Hamiltonicity, Forwarding index.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C50; Secondary 15A42

Received: 25 March 2013; Accepted: 13 September 2013

Communicated by Dragan Stevanović

Research supported by National Natural Science Foundation of China (No:11271256) and Innovation Program of Shanghai Municipal Education Commission (No:14ZZ016) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20130073110075)

Email addresses: pry@jssvc.edu.cn (Rong-Ying Pan), yanjing@jstu.edu.cn (Jing Yan), xiaodong@sjtu.edu.cn (Xiao-Dong Zhang)

For a subset *X* of vertices in *G*, the *volume* vol(*X*) is defined by vol(*X*) = $\sum_{v \in X} d_v$, where d_v is the degree of *v*. For any two subsets *X* and *Y* of vertices in *G*, denote

$$e(X, Y) = \{(x, y) : x \in X, y \in Y, \{x, y\} \in E(G)\}.$$

Theorem 1.1. [4] Let G be a simple graph with n vertices and average degree $d = \frac{1}{n} \operatorname{vol}(G)$. If the Laplacian eigenvalues σ_i of G satisfy $|d - \sigma_i| \le \theta$ for $i = 1, 2, \dots, n-1$, then for any two subsets X and Y of vertices in G, we have

$$|e(X,Y) - \frac{d}{n}|X||Y| + d|X \cap Y| - \operatorname{vol}(X \cap Y)| \le \frac{\theta}{n}\sqrt{|X|(n - |X|)|Y|(n - |Y|)}$$

2. Connectivity

The *vertex connectivity* of a graph *G* is the minimum number of vertices that we need to delete to make *G* is disconnected and denoted by $\kappa(G)$. Fiedler in [6] proved that if *G* is not the complete graph, then $\kappa(G)$ is at least the value of the second smallest Laplacian eigenvalue. In here, we present another bound for the vertex connectivity of a graph.

Theorem 2.1. Let *G* be a simple graph of order *n* with the smallest degree $\delta \leq \frac{n}{2}$ and average degree *d*. If the Laplacian eigenvalues σ_i satisfies $|d - \sigma_i| \leq \theta$ for $i \neq 0$, then

$$\kappa(G) \ge \delta - (2 + 2\sqrt{3})^2 \frac{\theta^2}{\delta}.$$

Proof. Let $c = 2 + 2\sqrt{3}$. If $\theta \ge \frac{\delta}{c}$, there is nothing to show. We assume that $\theta < \frac{\delta}{c}$.

Suppose that there exists a subset $S \subset V(G)$ with $|S| < \delta - \frac{(c\theta)^2}{\delta}$ such that the induced graph $G[V \setminus S]$ is disconnected. Denote by U the set of vertices of the smallest connected component of $G[V \setminus S]$ and $W = V \setminus (S \cup U)$. Since the smallest degree of G is δ , $|S| + |U| > \delta$, which implies $|U| \ge \frac{(c\theta)^2}{\delta}$. Moreover, $|W| = n - (|U| + |S|) \le \frac{n-\delta}{2} \le \frac{n}{4}$. Because U and W are disjoint for two subsets of G, by 1.1, we have

$$\frac{d}{n}|U||W| \le \frac{\theta}{n}\sqrt{|U||W|(n-|U|)(n-|W|)} \le \sqrt{|U||W|}.$$

Hence

$$|U| \leq \frac{\theta^2 n^2}{d^2 |W|} \leq \frac{\theta}{d} \frac{n}{|W|} \frac{\theta n}{d} < \frac{4}{c} \frac{\theta n}{d},$$

since $\frac{\theta}{d} < \frac{\theta}{\delta} < \frac{1}{c}$. By using Corollary 4 in [4], we have

$$|2|e(U)| - \frac{d|U|(|U|-1)}{n}| \le \frac{2\theta}{n}|U|(n-\frac{|U|}{2}).$$

Then

$$2|e(U)| \leq 2\theta|U| + \frac{d}{n}|U|^{2}$$
$$\leq (2\theta + \frac{d}{n}\frac{4}{c}\frac{\theta n}{d})|U|$$
$$= (2 + \frac{4}{c})\theta|U|.$$

Hence, by $\theta < \frac{\delta}{c}$ and $c = 2 + 2\sqrt{3}$,

$$|e(U,S)| \geq \delta|U| - 2|e(U)|$$

$$\geq (\delta - (2 + \frac{4}{c})\theta)|U|$$

$$> (1 - (2 + \frac{4}{c}\frac{1}{c}))\delta|U|$$

$$> (\frac{1}{2} + \frac{1}{c})\delta|U|.$$

430

On the other hand, by 1.1 and $|S| \le \delta$, $|U| \ge \frac{c^2 \theta^2}{\delta}$ and $\frac{d}{n} \le \frac{1}{2}$, we have

$$|e(U,S)| \leq \frac{d}{n}|U||S| + \theta \sqrt{|U||S|}$$
$$\leq (\frac{d\delta}{n} + \theta \frac{\delta \sqrt{\delta}}{c\theta})|U|$$
$$= (\frac{1}{2} + \frac{1}{c})\delta|U|.$$

It is a contradiction. Therefore the result holds. \Box

Corollary 2.2. ([10]) Let G be a d-regular graph of order n with $d \leq \frac{n}{2}$. Denote by λ the second largest absolute eigenvalue of A(G). Then

$$\kappa(G) \ge d - \frac{36\lambda^2}{d}.$$

Proof. Since *G* is a *d*-regular graph, the eigenvalues of *A*(*G*) are $d - \sigma_0$, $d - \sigma_1$, \cdots , $d - \sigma_{n-1}$. Hence λ satisfies $|d - \sigma_i| \leq \lambda$ for $i \neq 0$. It follows from Theorem 2.1 that $\kappa(G) \geq d - \frac{(2+2\sqrt{3})^2 d^2}{d} \geq d - \frac{36\lambda^2}{d}$. \Box

From [10], for a *d*-regular graph, the lower bound for $\kappa(G)$ in Corollary 2.2 is tight up to a constant factor, which implies Theorem 2.1 is tight up to a constant factor.

It is known that the edge connectivity $\kappa'(G)$ of a graph *G* is the minimum number of edges that need to delete to make disconnected. In [7], Goldsmith and Entringer gave a sufficient condition for edge connectivity equal to the smallest degree. In here, we present also a sufficient condition for edge connectivity equal to the smallest degree in terms of its Laplacian eigenvalues.

Theorem 2.3. Let *G* be a graph of order *n* with average degree *d* and the smallest degree δ . If the Laplacian eigenvalues satisfy $2 \le \sigma_1 \le \sigma_{n-1} \le 2d - 2$, then $\kappa'(G) = \delta$.

Proof. Let *U* be a subset of vertices of *G* with $|U| \leq \frac{n}{2}$.

If $1 \le |U| \le \delta$, then for every vertex $u \in U$, u is adjacent to at least $\delta - |U| + 1$ vertices in $G \setminus U$. Therefore,

$$|e(U, G \setminus U)| \ge |U|(\delta - |U| + 1) \ge \delta$$

If $\delta < |U| \le \frac{n}{2}$, let $\theta = d - 2$. Since $2 \le \sigma_1 \le \sigma_{n-1} \le 2d - 2$, $|d - \sigma_i| \le \theta$ for $i \ne 0$. By Theorem 1.1,

$$||e(U, V \setminus U)| - \frac{d}{n}|U||V \setminus U|| \le \frac{\theta}{n}|U|(n - |U|).$$

Thus,

$$|e(U,V\setminus U)|\geq \frac{d-\theta}{n}|U|(n-|U|)\geq \frac{d-\theta}{n}\delta(n-\delta)\geq \frac{2\delta(n-\delta)}{n}\geq \delta$$

Hence there are always at least δ edges between *U* and *V* \ *U*. Therefore $\kappa'(G) = \delta$.

3. Hamiltonicity and the chromatic number

In this section, we first give an upper bound for the independence number $\alpha(G)$, which is used to present a sufficient condition for a graph to have a Hamilton cycle. Moreover, a lower bound for the chromatic number of a graph is obtained. The independence number is the maximum cardinality of a set of vertices of *G* no two of which are adjacent.

Lemma 3.1. Let *G* be a graph of order *n* with average *d*. If the Lapalcian eigenvalues satisfies $|d - \sigma_i| \le \theta$ for $i \ne 0$, then

$$\alpha(G) \le \frac{2n\theta + d}{d + \theta}.$$

Proof. Let *U* be an independent set with the seize $\alpha(G)$. By Corollary 4 in [4], we have

$$|2|e(U)| - \frac{d|U|(|U|-1)}{n}| \le \frac{2\theta}{n}|U|(n-\frac{|U|}{2}).$$

Hence $|U| \leq \frac{2n\theta + d}{d + \theta}$. \Box

Lemma 3.2. [5] Let G be a graph. If the vertex connectivity of G is at least as large as its independence number, then G is Hamiltonian.

Theorem 3.3. Let G be a graph of order n with average d and the smallest degree δ . If the Laplacian eigenvalues satisfies $|d - \sigma_i| \leq \theta$ for $i \neq 0$ and $\delta - (2 + 2\sqrt{3})^2 \frac{\theta^2}{\delta} \geq \frac{2n\theta + d}{d + \theta}$, then G is Hamiltonian.

Proof. By Theorem 2.1, *G* has at least $\delta - (2 + 2\sqrt{3})^2 \frac{\theta^2}{\delta}$ vertex connected. On the other hand, by Lemma 3.1, the independence number of *G* is at most $\frac{2n\theta+d}{d+\theta}$. It follows from Lemma 3.2 that *G* is Hamiltonian. \Box

Theorem 3.4. Let *G* be a connected graph of order *n* with the smallest degree δ . If $\sigma_1 \geq \frac{\sigma_{n-1}-\delta}{\sigma_{n-1}}n$, then *G* is Hamiltonian.

Proof. By a theorem in [6], $\kappa(G) \ge \sigma_1$. On the other hand, by Corollary 3.3 in [15], the independence number $\alpha(G) \le \frac{\sigma_{n-1}-\delta}{\sigma_{n-1}}n$. It follows from Lemma 3.2 that *G* is Hamiltonian. \Box

The proper coloring of the vertices of *G* is an assignment of colors to the vertices in such a way that adjacent vertices have distinct colors. The chromatic number, denoted by $\chi(G)$, is the minimal number od colors in a vertex coloring of *G*.

Theorem 3.5. *Let G be a graph of order n with the smallest degree* $\delta \ge 1$ *. Then*

$$\chi(G) \ge \frac{\sigma_{n-1}}{\sigma_{n-1} - \delta}$$

Moreover, if G is a d-regular bipartite graph, or a complete r-partite graph $K_{s,s,\dots,s}$, then equality holds.

Proof. Let $V_1, V_2, \dots, V_{\chi}$ denote the color class of *G*. Denote by *e* the vector with all component equal to 1. Let s_i be the restriction vector of $\frac{1}{|V_i|}e$ to V_i ; that is, $(s_i)_j = \frac{1}{|V_i|}$, if $j \in V_i$; $(s_i)_j = 0$, otherwise. Thus $S = (s_1, \dots, s_{\chi})$ is an $n \times \chi$ matrix and $S^T S = I_n$. Let $B = S^T L(G)S = (b_{ij})$ and its eigenvalues $\mu_0 \le \mu_1 \le \dots \le \mu_{\chi-1}$. By eigenvalue interlacing, it is easy to see that $\mu_0 = 0$ and $\mu_{\chi-1} \le \sigma_{n-1}$. Moreover, $b_{ii} = \frac{1}{|V_i|} \sum_{v \in V_i} d_v \ge \delta$. Hence

$$\delta \chi \leq \operatorname{tr} B = \mu_0 + \cdots + \mu_{\chi-1} \leq (\chi - 1)\sigma_{n-1},$$

which yields the desired inequality. If *G* is a *d*- regular graph, then $\chi = 2$, $\delta = d$ and $\sigma_{n-1} = 2d$. So equality holds. If *G* is a complete *r*-partite graph, then $\chi = r$, $\delta = (r-1)s$ and $\sigma_{n-1} = \frac{r}{r-1}s$. Hence equality holds. \Box

4. Forwarding indices of graphs

In this section, we discuss some relations between the Laplacian eigenvalues of a graph and its forwarding indices.

A routing *R* of a graph *G* of order *n* is a set of n(n - 1) paths specified for all ordered pairs *u* and *v* of vertices of *G*. Denote $\xi(G, R, v)$ by the number of paths of *R* going through *v* (where *v* is not an end vertex). The vertex forwarding index of *G* is defined to be

$$\xi(G) = \min_{R} \max_{v \in V(V)} \xi(G, R, v).$$

Denote $\pi(G, R, e)$ by the number of paths of *R* going through edge *e*. The *edge forwarding index* of *G* is defined to be

$$\pi(G) = \min_{R} \max_{e \in E(G)} \pi(G, R, e).$$

Let *X* be a proper subset of *V*. The vertex cut induced by *X* is $N(X) = \{y \in V \setminus X | \{x, y\} \in E(G)\}$. Moreover, denote *X*⁺ by the complement of $X \bigcup N(X)$ in *V*. The *vertex expanding index* is defined by

$$\gamma(G) = \min\{\frac{|N(X)|}{|X||X^+|} \mid X \subseteq V, 1 \le |X| \le n - 1, |X^+| \ge 1\},\$$

where the min on a void set of *X* is taken to be infinite.

Theorem 4.1. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfies $|d - \sigma_i| \le \theta$ for $i \ne 0$, then

$$\gamma(G) \geq \frac{d^2 - \theta^2}{n\theta^2}.$$

Proof. Let *U* be a subset of *G* such that

$$\gamma(G) = \frac{|N(U)|}{|U||U^+|}, \ 1 \le |U| \le n - 1, \ |U^+| \ge 1.$$

Set $W = V \setminus (U \bigcup N(U))$. By Theorem 1.1, we have

$$||e(U,W)| - \frac{d}{n}|U||W|| \le \frac{\theta}{n}\sqrt{|U|(n-|U|)|W|(n-|W|)}.$$

Hence

$$d^{2}|U||W| \le \theta^{2}(|U| + |N(U)|)(|W| + |N(W)|)$$

Then

$$\frac{|N(U)|}{|U||U^+|} = \frac{|N(U)|}{|U|(n-|W|)} \ge \frac{d^2 - \theta^2}{n\theta^2}.$$

We complete the proof. \Box

Theorem 4.2. Let G be a graph of order n. If $\sigma_1 \leq \frac{1}{2}$, then $\xi(G) \geq \sqrt{\frac{1-2\sigma_1}{\sigma_1}}$.

Proof. By Lemma 2.4 in [1], we have

$$\sigma_1 \geq \frac{c^2}{4+2c^2},$$

where *c* satisfies $\frac{|N(X)|}{|X|} \ge c$ for every $|X| \le \frac{n}{2}$ and $X \subset U$. Hence

$$\gamma(G) \le c \le \sqrt{\frac{4\sigma_1}{1 - 2\sigma_1}}.$$

On the other hand, there exists a subset *U* such that $\gamma(G) = \frac{|N(U)|}{|U||U^+|}$. It follows from the definition of $\xi(G)$ that $2|U||U^+| \ge \xi(G)|N(U)|$, since there does not exist edges between *U* and *U*⁺. Hence

$$\xi(G) \ge \frac{2|U||U^+|}{|N(U)|} = \frac{2}{\gamma(G)} \ge \sqrt{\frac{1-2\sigma_1}{\sigma_1}}.$$

We finish the proof. \Box

Lemma 4.3. Let G be a graph of order n with average degree d and let $\beta(G) = \min\{\frac{|e(U,V\setminus U)|}{|U|(n-|U|)}, 1 \le |U| \le n-1\}$. If the Laplacian eigenvalues satisfy $|d - \sigma_i||le\theta$ for $i \ne 0$, then

$$\beta(G) \le \frac{d+\theta}{n}.$$

Proof. By the definition of $\beta(G)$, there exists a subset U such that $\beta(G) = \frac{|e(U,V\setminus U)|}{|U|(n-|U|)}$. On the other hand, by Theorem 1.1, we have

$$||e(U,V\setminus U)|-\frac{d}{n}|U|(n-|U|)|le\frac{\theta}{n}|U|(n-|U|).$$

Hence $\beta(G) \leq \frac{d+\theta}{n}$. \Box

Theorem 4.4. Let *G* be a graph of order *n* with average degree *d*. If the Laplacian eigenvalues satisfy $|d - \sigma_i| \le \theta$ for $i \ne 0$, then

$$\pi(G) \ge \frac{2n}{d+\theta}.$$

Proof. It follows from Theorem 1 $\pi(G)\beta(G) \ge 2$ in [14] and Lemma 4.3 that the result holds. \Box

Remark The lower bounds for $\xi(G)$ and $\pi(G)$ are tight up to a constant factor. For example, Let P_n be a path of order *n*. It is easy to see that $\xi(P_n) = 2\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$; while $\sigma_1 = 4 \sin^2 \frac{\pi}{2n}$.

References

- [1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83–96.
- [2] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan Press, New York, 1976.
- [3] F. R. K. Chung, Spectral Graph Theorey, CBMS Lecture Notes 92, AMS Publications, Providence, 1997.
- [4] F. R. K. Chung, Discrete isoperimetric inequalities, Surveys in Differential Geometry IX, International Press, Newyork, 53–82, 2004.
- [5] V. Chvatal, P. Erdös, A note on Hamiltonian circuits, Discrete Mathematics 27 (1972) 111-113.
- [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
- [7] D. C. Goldsmith, R. C. Entringer, A sufficient condition for equality of edge connectivity and minimum degree of a graph, J. Graph Theory 3 (1979) 251–255.
- [8] R. Grone R. Merris, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math. 7 (1994) 221–229.
- [9] M. C. Heydemannn, J. C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete Applied Mathematics 23 (1989) 101–123.
- [10] M. Krivelevich, B. Sudakov, Pseudo-random graphs, In: More sets, graphs and numbers, E. Győri, G. O. H. Katona, L. Lovász, Eds., Bolyai Society Mathematical Studies Vol. 15, 199–262, 2004.
- [11] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143–176.
- [12] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998) 33-35.
- [13] B. Mohar, A domain monotonicity theorem for graphs and Hamiltonicity, Discrete Appl. Math. 36 (1992) 169–177.
- [14] P. Sole, Expanding and forwarding, Discrete Appl. Math. 58 (1995) 67–78.
- [15] X.-D. Zhang, On the two conjectures of Graffiti, Linear Algebra Appl. 385 (2004) 369–379.