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The Laplacian Eigenvalues and Invariants of Graphs

Rong-Ying Pana, Jing Yanb, Xiao-Dong Zhangc

aDepartment of Basic, Suzhou Vocational University
bCollege of Mathematics and Physics, Jiangsu University of Technology

c Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University

Abstract. In this paper, we investigate some relations between the invariants (including vertex and edge
connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a
sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.

1. Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v1, · · · , vn} and edge set E(G) = {e1, · · · , em}.
Denote by d(vi) the degree of vertex vi. If D(G) = dia1(du,u ∈ V) is the diagonal matrix of vertex degrees of G
and A(G) is the 0 − 1 adjacency matrix of G, the matrix L(G) = D(G) − A(G) is called the Laplacian matrix of a
graph G Moreover, the eigenvalues of L(G) are called Laplacian eigenvalues of G. Furthermore, the Laplacian
eigenvalues of G are denoted by

0 = σ0 ≤ σ1 ≤ · · · ≤ σn−1,

since L(G) is positive semi-definite. In recent years, the relations between invariants of a graph and its
Laplacian eigenvalues have been investigated extensively. For example, Alon in [1] established that there
are relations between an expander of a graph and its second smallest eigenvalue; Mohar in [13] presented
a necessary condition foe the existence of Hamiltonicity in a graph in terms of its Laplacian eigenvalues.
The reader is refereed to [3], [9] and [11] etc.

The purpose of this paper is to present some relations between some invariants of a graph and its
Laplacian eigenvalues. In Section 2, the relations between the vertex and edge connectivities of a graph and
its Laplacian eigenvalues are investigated. In Section 3, we present a sufficient condition for the existence
of Hamiantonicity in a graph involving its Laplacian eigenvalues. In last Section, the lower bounds for
forwarding indices of networks are obtained. Before finishing this section, we present a general discrepancy
inequality from Chung[4], which is very useful for later.
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For a subset X of vertices in G, the volume vol(X) is defined by vol(X) =
∑

v∈X dv, where dv is the degree
of v. For any two subsets X and Y of vertices in G, denote

e(X,Y) = {(x, y) : x ∈ X, y ∈ Y, {x, y} ∈ E(G)}.
Theorem 1.1. [4] Let G be a simple graph with n vertices and average degree d = 1

n vol(G). If the Laplacian
eigenvalues σi of G satisfy |d − σi| ≤ θ for i = 1, 2, · · · ,n − 1, then for any two subsets X and Y of vertices in G, we
have

|e(X,Y) − d
n
|X||Y| + d|X ∩ Y| − vol(X ∩ Y)| ≤ θ

n

√
|X|(n − |X|)|Y|(n − |Y|).

2. Connectivity

The vertex connectivity of a graph G is the minimum number of vertices that we need to delete to make
G is disconnected and denoted by κ(G). Fiedler in [6] proved that if G is not the complete graph, then κ(G)
is at least the value of the second smallest Laplacian eigenvalue. In here, we present another bound for the
vertex connectivity of a graph.

Theorem 2.1. Let G be a simple graph of order n with the smallest degree δ ≤ n
2 and average degree d. If the Laplacian

eigenvalues σi satisfies |d − σi| ≤ θ for i , 0, then

κ(G) ≥ δ − (2 + 2
√

3)2θ
2

δ
.

Proof. Let c = 2 + 2
√

3. If θ ≥ δc , there is nothing to show. We assume that θ < δc .

Suppose that there exists a subset S ⊂ V(G) with |S| < δ − (cθ)2

δ such that the induced graph G[V \ S]
is disconnected. Denote by U the set of vertices of the smallest connected component of G[V \ S] and
W = V \ (S

∪
U). Since the smallest degree of G is δ, |S| + |U| > δ, which implies |U| ≥ (cθ)2

δ . Moreover,
|W| = n − (|U| + |S|) ≤ n−δ

2 ≤ n
4 . Because U and W are disjoint for two subsets of G, by 1.1, we have

d
n
|U||W| ≤ θ

n

√
|U||W|(n − |U|)(n − |W|) ≤

√
|U||W|.

Hence

|U| ≤ θ
2n2

d2|W| ≤
θ
d

n
|W|
θn
d
<

4
c
θn
d
,

since θd <
θ
δ <

1
c . By using Corollary 4 in [4], we have

|2|e(U)| − d|U|(|U| − 1)
n

| ≤ 2θ
n
|U|(n − |U|

2
).

Then

2|e(U)| ≤ 2θ|U| + d
n
|U|2

≤ (2θ +
d
n

4
c
θn
d

)|U|

= (2 +
4
c

)θ|U|.

Hence, by θ < δc and c = 2 + 2
√

3,

|e(U,S)| ≥ δ|U| − 2|e(U)|

≥ (δ − (2 +
4
c

)θ)|U|

> (1 − (2 +
4
c

1
c

))δ|U|

> (
1
2
+

1
c

)δ|U|.
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On the other hand, by 1.1 and |S| ≤ δ, |U| ≥ c2θ2

δ and d
n ≤ 1

2 , we have

|e(U,S)| ≤ d
n
|U||S| + θ

√
|U||S|

≤ (
dδ
n
+ θ
δ
√
δ

cθ
)|U|

= (
1
2
+

1
c

)δ|U|.

It is a contradiction. Therefore the result holds.

Corollary 2.2. ([10]) Let G be a d−regular graph of order n with d ≤ n
2 . Denote by λ the second largest absolute

eigenvalue of A(G). Then

κ(G) ≥ d − 36λ2

d
.

Proof. Since G is a d−regular graph, the eigenvalues of A(G) are d− σ0, d− σ1,· · · , d− σn−1. Hence λ satisfies

|d − σi| ≤ λ for i , 0. It follows from Theorem 2.1 that κ(G) ≥ d − (2+2
√

3)2d2

d ≥ d − 36λ2

d .

From [10], for a d−regular graph, the lower bound for κ(G) in Corollary 2.2 is tight up to a constant
factor, which implies Theorem 2.1 is tight up to a constant factor.

It is known that the edge connectivity κ′(G) of a graph G is the minimum number of edges that
need to delete to make disconnected. In [7], Goldsmith and Entringer gave a sufficient condition for
edge connectivity equal to the smallest degree. In here, we present also a sufficient condition for edge
connectivity equal to the smallest degree in terms of its Laplacian eigenvalues.

Theorem 2.3. Let G be a graph of order n with average degree d and the smallest degree δ. If the Laplacian eigenvalues
satisfy 2 ≤ σ1 ≤ σn−1 ≤ 2d − 2, then κ′(G) = δ.

Proof. Let U be a subset of vertices of G with |U| ≤ n
2 .

If 1 ≤ |U| ≤ δ, then for every vertex u ∈ U, u is adjacent to at least δ− |U|+ 1 vertices in G \U. Therefore,

|e(U,G \U)| ≥ |U|(δ − |U| + 1) ≥ δ.

If δ < |U| ≤ n
2 , let θ = d − 2. Since 2 ≤ σ1 ≤ σn−1 ≤ 2d − 2, |d − σi| ≤ θ for i , 0. By Theorem 1.1,

||e(U,V \U)| − d
n
|U||V \U|| ≤ θ

n
|U|(n − |U|).

Thus,

|e(U,V \U)| ≥ d − θ
n
|U|(n − |U|) ≥ d − θ

n
δ(n − δ) ≥ 2δ(n − δ)

n
≥ δ.

Hence there are always at least δ edges between U and V \U. Therefore κ′(G) = δ.

3. Hamiltonicity and the chromatic number

In this section, we first give an upper bound for the independence number α(G), which is used to present
a sufficient condition for a graph to have a Hamilton cycle. Moreover, a lower bound for the chromatic
number of a graph is obtained. The independence number is the maximum cardinality of a set of vertices
of G no two of which are adjacent.

Lemma 3.1. Let G be a graph of order n with average d. If the Lapalcian eigenvalues satisfies |d − σi| ≤ θ for i , 0,
then

α(G) ≤ 2nθ + d
d + θ

.
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Proof. Let U be an independent set with the seize α(G). By Corollary 4 in [4], we have

|2|e(U)| − d|U|(|U| − 1)
n

| ≤ 2θ
n
|U|(n − |U|

2
).

Hence |U| ≤ 2nθ+d
d+θ .

Lemma 3.2. [5] Let G be a graph. If the vertex connectivity of G is at least as large as its independence number, then
G is Hamiltonian.

Theorem 3.3. Let G be a graph of order n with average d and the smallest degree δ. If the Laplacian eigenvalues
satisfies |d − σi| ≤ θ for i , 0 and δ − (2 + 2

√
3)2 θ2

δ ≥ 2nθ+d
d+θ , then G is Hamiltonian.

Proof. By Theorem 2.1, G has at least δ − (2 + 2
√

3)2 θ2

δ vertex connected. On the other hand, by Lemma 3.1,
the independence number of G is at most 2nθ+d

d+θ . It follows from Lemma 3.2 that G is Hamiltonian.

Theorem 3.4. Let G be a connected graph of order n with the smallest degree δ. Ifσ1 ≥ σn−1−δ
σn−1

n, then G is Hamiltonian.

Proof. By a theorem in [6], κ(G) ≥ σ1. On the other hand, by Corollary 3.3 in [15], the independence number
α(G) ≤ σn−1−δ

σn−1
n. It follows from Lemma 3.2 that G is Hamiltonian.

The proper coloring of the vertices of G is an assignment of colors to the vertices in such a way that
adjacent vertices have distinct colors. The chromatic number, denoted by χ(G), is the minimal number od
colors in a vertex coloring of G.

Theorem 3.5. Let G be a graph of order n with the smallest degree δ ≥ 1. Then

χ(G) ≥ σn−1

σn−1 − δ
.

Moreover, if G is a d− regular bipartite graph, or a complete r−partite graph Ks,s,··· ,s, then equality holds.

Proof. Let V1,V2, · · · ,Vχ denote the color class of G. Denote by e the vector with all component equal to 1.
Let si be the restriction vector of 1

|Vi | e to Vi; that is, (si) j =
1
|Vi | , if j ∈ Vi ; (si) j = 0, otherwise. Thus S = (s1, · · · , sχ)

is an n × χ matrix and STS = In. Let B = STL(G)S = (bi j) and its eigenvalues µ0 ≤ µ1 ≤ · · · ≤ µχ−1. By
eigenvalue interlacing, it is easy to see that µ0 = 0 and µχ−1 ≤ σn−1. Moreover, bii =

1
|Vi |
∑

v∈Vi
dv ≥ δ. Hence

δχ ≤ trB = µ0 + · · ·µχ−1 ≤ (χ − 1)σn−1,

which yields the desired inequality. If G is a d− regular graph, then χ = 2, δ = d and σn−1 = 2d. So equality
holds. If G is a complete r−partite graph, then χ = r, δ = (r − 1)s and σn−1 =

r
r−1 s. Hence equality holds.

4. Forwarding indices of graphs

In this section, we discuss some relations between the Laplacian eigenvalues of a graph and its forward-
ing indices.

A routing R of a graph G of order n is a set of n(n − 1) paths specified for all ordered pairs u and v of
vertices of G. Denote ξ(G,R, v) by the number of paths of R going through v (where v is not an end vertex).
The vertex forwarding index of G is defined to be

ξ(G) = min
R

max
v∈V(V)

ξ(G,R, v).

Denote π(G,R, e) by the number of paths of R going through edge e. The edge forwarding index of G is defined
to be

π(G) = min
R

max
e∈E(G)

π(G,R, e).
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Let X be a proper subset of V. The vertex cut induced by X is N(X) = {y ∈ V \ X|{x, y} ∈ E(G)}. Moreover,
denote X+ by the complement of X

∪
N(X) in V. The vertex expanding index is defined by

γ(G) = min{ |N(X)|
|X||X+| | X ⊆ V, 1 ≤ |X| ≤ n − 1, |X+| ≥ 1},

where the min on a void set of X is taken to be infinite.

Theorem 4.1. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfies |d − σi| ≤ θ
for i , 0, then

γ(G) ≥ d2 − θ2

nθ2 .

Proof. Let U be a subset of G such that

γ(G) =
|N(U)|
|U||U+| , 1 ≤ |U| ≤ n − 1, |U+| ≥ 1.

Set W = V \ (U
∪

N(U)). By Theorem 1.1, we have

||e(U,W)| − d
n
|U||W|| ≤ θ

n

√
|U|(n − |U|)|W|(n − |W|).

Hence
d2|U||W| ≤ θ2(|U| + |N(U)|)(|W| + |N(W)|).

Then
|N(U)|
|U||U+| =

|N(U)|
|U|(n − |W|) ≥

d2 − θ2

nθ2 .

We complete the proof.

Theorem 4.2. Let G be a graph of order n. If σ1 ≤ 1
2 , then ξ(G) ≥

√
1−2σ1
σ1

.

Proof. By Lemma 2.4 in [1], we have

σ1 ≥
c2

4 + 2c2 ,

where c satisfies |N(X)|
|X| ≥ c for every |X| ≤ n

2 and X ⊂ U. Hence

γ(G) ≤ c ≤
√

4σ1

1 − 2σ1
.

On the other hand, there exists a subset U such that γ(G) = |N(U)|
|U||U+ | . It follows from the definition of ξ(G) that

2|U||U+| ≥ ξ(G)|N(U)|, since there does not exist edges between U and U+. Hence

ξ(G) ≥ 2|U||U+|
|N(U)| =

2
γ(G)

≥
√

1 − 2σ1

σ1
.

We finish the proof.

Lemma 4.3. Let G be a graph of order n with average degree d and let β(G) = min{ |e(U,V\U)|
|U|(n−|U|) , 1 ≤ |U| ≤ n − 1}. If

the Laplacian eigenvalues satisfy |d − σi||leθ for i , 0, then

β(G) ≤ d + θ
n
.
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Proof. By the definition of β(G), there exists a subset U such that β(G) = |e(U,V\U)|
|U|(n−|U|) . On the other hand, by

Theorem 1.1, we have

||e(U,V \U)| − d
n
|U|(n − |U|)|leθ

n
|U|(n − |U|).

Hence β(G) ≤ d+θ
n .

Theorem 4.4. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfy |d − σi| ≤ θ for
i , 0, then

π(G) ≥ 2n
d + θ

.

Proof. It follows from Theorem 1 π(G)β(G) ≥ 2 in [14] and Lemma 4.3 that the result holds.

Remark The lower bounds for ξ(G) and π(G) are tight up to a constant factor. For example, Let Pn be a
path of order n. It is easy to see that ξ(Pn) = 2(⌊ n

2 ⌋(⌈ n
2 ⌉ − 1), π(G) = 2⌊ n

2 ⌋⌈ n
2 ⌉; while σ1 = 4 sin2 π

2n .
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