The Laplacian Eigenvalues and Invariants of Graphs

Rong-Ying Pan ${ }^{\text {a }}$, Jing Yan ${ }^{\text {b }}$, Xiao-Dong Zhang ${ }^{\text {c }}$
${ }^{a}$ Department of Basic, Suzhou Vocational University
${ }^{b}$ College of Mathematics and Physics, Jiangsu University of Technology
${ }^{c}$ Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University

Abstract

In this paper, we investigate some relations between the invariants (including vertex and edge connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, \cdots, e_{m}\right\}$. Denote by $d\left(v_{i}\right)$ the degree of vertex v_{i}. If $D(G)=\operatorname{diag}\left(d_{u}, u \in V\right)$ is the diagonal matrix of vertex degrees of G and $A(G)$ is the $0-1$ adjacency matrix of G, the matrix $L(G)=D(G)-A(G)$ is called the Laplacian matrix of a graph G Moreover, the eigenvalues of $L(G)$ are called Laplacian eigenvalues of G. Furthermore, the Laplacian eigenvalues of G are denoted by

$$
0=\sigma_{0} \leq \sigma_{1} \leq \cdots \leq \sigma_{n-1}
$$

since $L(G)$ is positive semi-definite. In recent years, the relations between invariants of a graph and its Laplacian eigenvalues have been investigated extensively. For example, Alon in [1] established that there are relations between an expander of a graph and its second smallest eigenvalue; Mohar in [13] presented a necessary condition foe the existence of Hamiltonicity in a graph in terms of its Laplacian eigenvalues. The reader is refereed to [3], [9] and [11] etc.

The purpose of this paper is to present some relations between some invariants of a graph and its Laplacian eigenvalues. In Section 2, the relations between the vertex and edge connectivities of a graph and its Laplacian eigenvalues are investigated. In Section 3, we present a sufficient condition for the existence of Hamiantonicity in a graph involving its Laplacian eigenvalues. In last Section, the lower bounds for forwarding indices of networks are obtained. Before finishing this section, we present a general discrepancy inequality from Chung[4], which is very useful for later.

[^0]For a subset X of vertices in G, the volume $\operatorname{vol}(X)$ is defined by $\operatorname{vol}(X)=\sum_{v \in X} d_{v}$, where d_{v} is the degree of v. For any two subsets X and Y of vertices in G, denote

$$
e(X, Y)=\{(x, y): x \in X, y \in Y,\{x, y\} \in E(G)\}
$$

Theorem 1.1. [4] Let G be a simple graph with n vertices and average degree $d=\frac{1}{n} \operatorname{vol}(G)$. If the Laplacian eigenvalues σ_{i} of G satisfy $\left|d-\sigma_{i}\right| \leq \theta$ for $i=1,2, \cdots, n-1$, then for any two subsets X and Y of vertices in G, we have

$$
\left|e(X, Y)-\frac{d}{n}\right| X||Y|+d| X \cap Y|-\operatorname{vol}(X \cap Y)| \leq \frac{\theta}{n} \sqrt{|X|(n-|X|)|Y|(n-|Y|)}
$$

2. Connectivity

The vertex connectivity of a graph G is the minimum number of vertices that we need to delete to make G is disconnected and denoted by $\kappa(G)$. Fiedler in [6] proved that if G is not the complete graph, then $\kappa(G)$ is at least the value of the second smallest Laplacian eigenvalue. In here, we present another bound for the vertex connectivity of a graph.
Theorem 2.1. Let G be a simple graph of order n with the smallest degree $\delta \leq \frac{n}{2}$ and average degree d. If the Laplacian eigenvalues σ_{i} satisfies $\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$, then

$$
\kappa(G) \geq \delta-(2+2 \sqrt{3})^{2} \frac{\theta^{2}}{\delta}
$$

Proof. Let $c=2+2 \sqrt{3}$. If $\theta \geq \frac{\delta}{c}$, there is nothing to show. We assume that $\theta<\frac{\delta}{c}$.
Suppose that there exists a subset $S \subset V(G)$ with $|S|<\delta-\frac{(c \theta)^{2}}{\delta}$ such that the induced graph $G[V \backslash S]$ is disconnected. Denote by U the set of vertices of the smallest connected component of $G[V \backslash S]$ and $W=V \backslash(S \cup U)$. Since the smallest degree of G is $\delta,|S|+|U|>\delta$, which implies $|U| \geq \frac{(c \theta)^{2}}{\delta}$. Moreover, $|W|=n-(|U|+|S|) \leq \frac{n-\delta}{2} \leq \frac{n}{4}$. Because U and W are disjoint for two subsets of G, by 1.1, we have

$$
\frac{d}{n}|U||W| \leq \frac{\theta}{n} \sqrt{|U||W|(n-|U|)(n-|W|)} \leq \sqrt{|U||W|}
$$

Hence

$$
|U| \leq \frac{\theta^{2} n^{2}}{d^{2}|W|} \leq \frac{\theta}{d} \frac{n}{|W|} \frac{\theta n}{d}<\frac{4}{c} \frac{\theta n}{d}
$$

since $\frac{\theta}{d}<\frac{\theta}{\delta}<\frac{1}{c}$. By using Corollary 4 in [4], we have

$$
|2| e(U)\left|-\frac{d|U|(|U|-1)}{n}\right| \leq \frac{2 \theta}{n}|U|\left(n-\frac{|U|}{2}\right)
$$

Then

$$
\begin{aligned}
2|e(U)| & \leq 2 \theta|U|+\frac{d}{n}|U|^{2} \\
& \leq\left(2 \theta+\frac{d}{n} \frac{4}{c} \frac{\theta n}{d}\right)|U| \\
& =\left(2+\frac{4}{c}\right) \theta|U| .
\end{aligned}
$$

Hence, by $\theta<\frac{\delta}{c}$ and $c=2+2 \sqrt{3}$,

$$
\begin{aligned}
|e(U, S)| & \geq \delta|U|-2|e(U)| \\
& \geq\left(\delta-\left(2+\frac{4}{c}\right) \theta\right)|U| \\
& >\left(1-\left(2+\frac{4}{c} \frac{1}{c}\right)\right) \delta|U| \\
& >\left(\frac{1}{2}+\frac{1}{c}\right) \delta|U| .
\end{aligned}
$$

On the other hand, by 1.1 and $|S| \leq \delta,|U| \geq \frac{c^{2} \theta^{2}}{\delta}$ and $\frac{d}{n} \leq \frac{1}{2}$, we have

$$
\begin{aligned}
|e(U, S)| & \leq \frac{d}{n}|U||S|+\theta \sqrt{|U||S|} \\
& \leq\left(\frac{d \delta}{n}+\theta \frac{\delta \sqrt{\delta}}{c \theta}\right)|U| \\
& =\left(\frac{1}{2}+\frac{1}{c}\right) \delta|U|
\end{aligned}
$$

It is a contradiction. Therefore the result holds.
Corollary 2.2. ([10]) Let G be a d-regular graph of order n with $d \leq \frac{n}{2}$. Denote by λ the second largest absolute eigenvalue of $A(G)$. Then

$$
\kappa(G) \geq d-\frac{36 \lambda^{2}}{d}
$$

Proof. Since G is a d-regular graph, the eigenvalues of $A(G)$ are $d-\sigma_{0}, d-\sigma_{1}, \cdots, d-\sigma_{n-1}$. Hence λ satisfies $\left|d-\sigma_{i}\right| \leq \lambda$ for $i \neq 0$. It follows from Theorem 2.1 that $\kappa(G) \geq d-\frac{(2+2 \sqrt{3})^{2} d^{2}}{d} \geq d-\frac{36 \lambda^{2}}{d}$.

From [10], for a d-regular graph, the lower bound for $\kappa(G)$ in Corollary 2.2 is tight up to a constant factor, which implies Theorem 2.1 is tight up to a constant factor.

It is known that the edge connectivity $\kappa^{\prime}(G)$ of a graph G is the minimum number of edges that need to delete to make disconnected. In [7], Goldsmith and Entringer gave a sufficient condition for edge connectivity equal to the smallest degree. In here, we present also a sufficient condition for edge connectivity equal to the smallest degree in terms of its Laplacian eigenvalues.

Theorem 2.3. Let G be a graph of order n with average degree d and the smallest degree δ. If the Laplacian eigenvalues satisfy $2 \leq \sigma_{1} \leq \sigma_{n-1} \leq 2 d-2$, then $\kappa^{\prime}(G)=\delta$.

Proof. Let U be a subset of vertices of G with $|U| \leq \frac{n}{2}$.
If $1 \leq|U| \leq \delta$, then for every vertex $u \in U, u$ is adjacent to at least $\delta-|U|+1$ vertices in $G \backslash U$. Therefore,

$$
|e(U, G \backslash U)| \geq|U|(\delta-|U|+1) \geq \delta
$$

If $\delta<|U| \leq \frac{n}{2}$, let $\theta=d-2$. Since $2 \leq \sigma_{1} \leq \sigma_{n-1} \leq 2 d-2,\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$. By Theorem 1.1,

$$
\left\|e(U, V \backslash U)\left|-\frac{d}{n}\right| U\left|\left|V \backslash U \| \leq \frac{\theta}{n}\right| U\right|(n-|U|)\right.
$$

Thus,

$$
|e(U, V \backslash U)| \geq \frac{d-\theta}{n}|U|(n-|U|) \geq \frac{d-\theta}{n} \delta(n-\delta) \geq \frac{2 \delta(n-\delta)}{n} \geq \delta
$$

Hence there are always at least δ edges between U and $V \backslash U$. Therefore $\kappa^{\prime}(G)=\delta$.

3. Hamiltonicity and the chromatic number

In this section, we first give an upper bound for the independence number $\alpha(G)$, which is used to present a sufficient condition for a graph to have a Hamilton cycle. Moreover, a lower bound for the chromatic number of a graph is obtained. The independence number is the maximum cardinality of a set of vertices of G no two of which are adjacent.

Lemma 3.1. Let G be a graph of order n with average d. If the Lapalcian eigenvalues satisfies $\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$, then

$$
\alpha(G) \leq \frac{2 n \theta+d}{d+\theta}
$$

Proof. Let U be an independent set with the seize $\alpha(G)$. By Corollary 4 in [4], we have

$$
|2| e(U)\left|-\frac{d|U|(|U|-1)}{n}\right| \leq \frac{2 \theta}{n}|U|\left(n-\frac{|U|}{2}\right) .
$$

Hence $|U| \leq \frac{2 n \theta+d}{d+\theta}$.
Lemma 3.2. [5] Let G be a graph. If the vertex connectivity of G is at least as large as its independence number, then G is Hamiltonian.

Theorem 3.3. Let G be a graph of order n with average d and the smallest degree δ. If the Laplacian eigenvalues satisfies $\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$ and $\delta-(2+2 \sqrt{3})^{2} \frac{\theta^{2}}{\delta} \geq \frac{2 n \theta+d}{d+\theta}$, then G is Hamiltonian.

Proof. By Theorem 2.1, G has at least $\delta-(2+2 \sqrt{3})^{2} \frac{\theta^{2}}{\delta}$ vertex connected. On the other hand, by Lemma 3.1, the independence number of G is at most $\frac{2 n \theta+d}{d+\theta}$. It follows from Lemma 3.2 that G is Hamiltonian.

Theorem 3.4. Let G be a connected graph of order n with the smallest degree δ. If $\sigma_{1} \geq \frac{\sigma_{n-1}-\delta}{\sigma_{n-1}} n$, then G is Hamiltonian.
Proof. By a theorem in [6], $\kappa(G) \geq \sigma_{1}$. On the other hand, by Corollary 3.3 in [15], the independence number $\alpha(G) \leq \frac{\sigma_{n-1}-\delta}{\sigma_{n-1}} n$. It follows from Lemma 3.2 that G is Hamiltonian.

The proper coloring of the vertices of G is an assignment of colors to the vertices in such a way that adjacent vertices have distinct colors. The chromatic number, denoted by $\chi(G)$, is the minimal number od colors in a vertex coloring of G.

Theorem 3.5. Let G be a graph of order n with the smallest degree $\delta \geq 1$. Then

$$
\chi(G) \geq \frac{\sigma_{n-1}}{\sigma_{n-1}-\delta}
$$

Moreover, if G is a d-regular bipartite graph, or a complete r-partite graph $K_{s, s, \cdots, s,}$, then equality holds.
Proof. Let $V_{1}, V_{2}, \cdots, V_{\chi}$ denote the color class of G. Denote by e the vector with all component equal to 1 . Let s_{i} be the restriction vector of $\frac{1}{\left|V_{i}\right|} e$ to V_{i}; that is, $\left(s_{i}\right)_{j}=\frac{1}{\left|V_{i}\right|}$, if $j \in V_{i} ;\left(s_{i}\right)_{j}=0$, otherwise. Thus $S=\left(s_{1}, \cdots, s_{\chi}\right)$ is an $n \times \chi$ matrix and $S^{T} S=I_{n}$. Let $B=S^{T} L(G) S=\left(b_{i j}\right)$ and its eigenvalues $\mu_{0} \leq \mu_{1} \leq \cdots \leq \mu_{\chi-1}$. By eigenvalue interlacing, it is easy to see that $\mu_{0}=0$ and $\mu_{\chi-1} \leq \sigma_{n-1}$. Moreover, $b_{i i}=\frac{1}{\left|V_{i}\right|} \sum_{v \in V_{i}} d_{v} \geq \delta$. Hence

$$
\delta \chi \leq \operatorname{tr} B=\mu_{0}+\cdots \mu_{\chi-1} \leq(\chi-1) \sigma_{n-1},
$$

which yields the desired inequality. If G is a d - regular graph, then $\chi=2, \delta=d$ and $\sigma_{n-1}=2 d$. So equality holds. If G is a complete r-partite graph, then $\chi=r, \delta=(r-1) s$ and $\sigma_{n-1}=\frac{r}{r-1} s$. Hence equality holds.

4. Forwarding indices of graphs

In this section, we discuss some relations between the Laplacian eigenvalues of a graph and its forwarding indices.

A routing R of a graph G of order n is a set of $n(n-1)$ paths specified for all ordered pairs u and v of vertices of G. Denote $\xi(G, R, v)$ by the number of paths of R going through v (where v is not an end vertex). The vertex forwarding index of G is defined to be

$$
\xi(G)=\min _{R} \max _{v \in V(V)} \xi(G, R, v)
$$

Denote $\pi(G, R, e)$ by the number of paths of R going through edge e. The edge forwarding index of G is defined to be

$$
\pi(G)=\min _{R} \max _{e \in E(G)} \pi(G, R, e) .
$$

Let X be a proper subset of V. The vertex cut induced by X is $N(X)=\{y \in V \backslash X \mid\{x, y\} \in E(G)\}$. Moreover, denote X^{+}by the complement of $X \cup N(X)$ in V. The vertex expanding index is defined by

$$
\gamma(G)=\min \left\{\frac{|N(X)|}{|X|\left|X^{+}\right|}\left|X \subseteq V, 1 \leq|X| \leq n-1,\left|X^{+}\right| \geq 1\right\}\right.
$$

where the min on a void set of X is taken to be infinite.
Theorem 4.1. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfies $\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$, then

$$
\gamma(G) \geq \frac{d^{2}-\theta^{2}}{n \theta^{2}}
$$

Proof. Let U be a subset of G such that

$$
\gamma(G)=\frac{|N(U)|}{|U|\left|U^{+}\right|}, \quad 1 \leq|U| \leq n-1, \quad\left|U^{+}\right| \geq 1
$$

Set $W=V \backslash(U \bigcup N(U))$. By Theorem 1.1, we have

$$
\left\|e(U, W)\left|-\frac{d}{n}\right| U\right\| W \| \leq \frac{\theta}{n} \sqrt{|U|(n-|U|)|W|(n-|W|)}
$$

Hence

$$
d^{2}|U||W| \leq \theta^{2}(|U|+|N(U)|)(|W|+|N(W)|)
$$

Then

$$
\frac{|N(U)|}{|U|\left|U^{+}\right|}=\frac{|N(U)|}{|U|(n-|W|)} \geq \frac{d^{2}-\theta^{2}}{n \theta^{2}}
$$

We complete the proof.
Theorem 4.2. Let G be a graph of order n. If $\sigma_{1} \leq \frac{1}{2}$, then $\xi(G) \geq \sqrt{\frac{1-2 \sigma_{1}}{\sigma_{1}}}$.
Proof. By Lemma 2.4 in [1], we have

$$
\sigma_{1} \geq \frac{c^{2}}{4+2 c^{2}}
$$

where c satisfies $\frac{|N(X)|}{|X|} \geq c$ for every $|X| \leq \frac{n}{2}$ and $X \subset U$. Hence

$$
\gamma(G) \leq c \leq \sqrt{\frac{4 \sigma_{1}}{1-2 \sigma_{1}}}
$$

On the other hand, there exists a subset U such that $\gamma(G)=\frac{|N(U)|}{\left|U \|\left|U^{+}\right|\right.}$. It follows from the definition of $\xi(G)$ that $2|U|\left|U^{+}\right| \geq \xi(G)|N(U)|$, since there does not exist edges between U and U^{+}. Hence

$$
\xi(G) \geq \frac{2|U|\left|U^{+}\right|}{|N(U)|}=\frac{2}{\gamma(G)} \geq \sqrt{\frac{1-2 \sigma_{1}}{\sigma_{1}}} .
$$

We finish the proof.
Lemma 4.3. Let G be a graph of order n with average degree d and let $\beta(G)=\min \left\{\frac{|e(U, V \backslash u)|}{|U|(n-|U|)}, 1 \leq|U| \leq n-1\right\}$. If the Laplacian eigenvalues satisfy $\mid d-\sigma_{i} \| l e \theta$ for $i \neq 0$, then

$$
\beta(G) \leq \frac{d+\theta}{n} .
$$

Proof. By the definition of $\beta(G)$, there exists a subset U such that $\beta(G)=\frac{|e(U, V \backslash u)|}{|U|(n-|U|)}$. On the other hand, by Theorem 1.1, we have

$$
\left||e(U, V \backslash U)|-\frac{d}{n}\right| U|(n-|U|)| l e \frac{\theta}{n}|U|(n-|U|) .
$$

Hence $\beta(G) \leq \frac{d+\theta}{n}$.
Theorem 4.4. Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfy $\left|d-\sigma_{i}\right| \leq \theta$ for $i \neq 0$, then

$$
\pi(G) \geq \frac{2 n}{d+\theta}
$$

Proof. It follows from Theorem $1 \pi(G) \beta(G) \geq 2$ in [14] and Lemma 4.3 that the result holds.
Remark The lower bounds for $\xi(G)$ and $\pi(G)$ are tight up to a constant factor. For example, Let P_{n} be a path of order n. It is easy to see that $\xi\left(P_{n}\right)=2\left(\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil-1\right), \pi(G)=2\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil\right.$; while $\sigma_{1}=4 \sin ^{2} \frac{\pi}{2 n}$.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.
[2] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan Press, New York, 1976.
[3] F. R. K. Chung, Spectral Graph Theorey, CBMS Lecture Notes 92, AMS Publications, Providence, 1997.
[4] F. R. K. Chung, Discrete isoperimetric inequalities, Surveys in Differential Geometry IX, International Press, Newyork, 53-82, 2004.
[5] V. Chvatal, P. Erdös, A note on Hamiltonian circuits, Discrete Mathematics 27 (1972) 111-113.
[6] M. Fiedler, Algebraic connectivityof graphs, Czechoslovak Math. J. 23 (1973) 298-305.
[7] D. C. Goldsmith, R. C. Entringer, A sufficient condition for equality of edge connectivity and minimum degree of a graph, J. Graph Theory 3 (1979) 251-255.
[8] R. Grone R. Merris, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math. 7 (1994) 221-229.
[9] M. C. Heydemannn, J. C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete Applied Mathematics 23 (1989) 101-123.
[10] M. Krivelevich, B. Sudakov, Pseudo-random graphs, In: More sets, graphs and numbers, E. Győri, G. O. H. Katona, L. Lovász, Eds., Bolyai Society Mathematical Studies Vol. 15, 199-262, 2004.
[11] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143-176.
[12] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998) 33-35.
[13] B. Mohar, A domain monotonicity theorem for graphs and Hamiltonicity, Discrete Appl. Math. 36 (1992) 169-177.
[14] P. Sole, Expanding and forwarding, Discrete Appl. Math. 58 (1995) 67-78.
[15] X.-D. Zhang, On the two conjectures of Graffiti, Linear Algebra Appl. 385 (2004) 369-379.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 15A42
 Keywords. Laplacian eigenvalue, Connectivity, Hamiltonicity, Forwarding index.
 Received: 25 March 2013; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 Research supported by National Natural Science Foundation of China (No:11271256) and Innovation Program of Shanghai Municipal Education Commission (No:14ZZ016) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20130073110075)

 Email addresses: pry@jssvc.edu.cn (Rong-Ying Pan), yanjing@jstu.edu.cn (Jing Yan), xiaodong@sjtu.edu.cn (Xiao-Dong Zhang)

