Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# The Reciprocal Reverse Wiener Index of Unicyclic Graphs

# Jianping Li<sup>a,b</sup>, Bo Zhou<sup>b,\*</sup>

<sup>a</sup>Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090, P. R. China <sup>b</sup>Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

**Abstract.** The reciprocal reverse Wiener index  $R\Lambda(G)$  of a connected graph G is defined in mathematical chemistry as the sum of weights  $\frac{1}{d(G)-d_G(u,v)}$  of all unordered pairs of distinct vertices u and v with  $d_G(u,v) < d(G)$ , where  $d_G(u,v)$  is the distance between vertices u and v in G and d(G) is the diameter of G. We determine the minimum and maximum reciprocal reverse Wiener indices in the class of n-vertex unicyclic graphs and characterize the corresponding extremal graphs.

## 1. Introduction

A topological index is a numerical structural descriptor of the molecular structure based on certain topological features of the molecular graph [7]. The Wiener index [8] introduced in 1947 is one of the oldest and most widely used topological indices, see [5, 6]. There are also many variants of the Wiener index, for example, the reverse Wiener index [1, 3] and the reciprocal reverse Wiener index [3, 10]. See [9] for a recent survey for such distance based topological indices.

We consider simple graphs. Let *G* be a connected graph with vertex set *V*(*G*) and edge set *E*(*G*). For  $u, v \in V(G)$ ,  $d_G(u, v)$  denotes the distance between *u* and *v* in *G*. The diameter of *G* is the maximum distance among all pairs of vertices of *G*, denoted by d(G). Let *G* be a graph with  $V(G) = \{v_1, v_2, ..., v_n\}$ . The distance matrix *D*(*G*) of *G* is an  $n \times n$  matrix  $(d_{ij})$  such that  $d_{ij} = d_G(v_i, v_j)$  for i, j = 1, 2, ..., n, The reciprocal reverse Wiener (RRW) matrix *RRW*(*G*) of *G* is an  $n \times n$  matrix  $(r_{ij})$  such that  $r_{ij} = \frac{1}{d(G)-d_{ij}}$  if  $i \neq j$  and  $d_{ij} < d(G)$ , and 0 otherwise [3, 4].

For a connected graph *G*, its Wiener index is defined as the sum of distances between all unordered pairs of distinct vertices of *G* [2, 8]. In parallel to this definition, the reciprocal reverse Wiener (RRW) index  $R\Lambda(G)$  of a connected graph *G* is defined as [3]

$$R\Lambda(G) = \sum_{i < j} r_{ij} = \sum_{\substack{i < j \\ d_{ij} < d(G)}} \frac{1}{d(G) - d_{ij}}.$$

Keywords. distance, Wiener index, reciprocal reverse Wiener index, unicyclic graphs

<sup>2010</sup> Mathematics Subject Classification. Primary 05C15; Secondary 05C90

Received: 13 August 2012; Accepted: 13 September 2013

Communicated by Dragan Stevanović

Research supported by the Guangdong Provincial Natural Science Foundation of China (no. S2011010005539) \* Corresponding author

Email address: zhoubo@scnu.edu.cn (Bo Zhou)

For  $u, v \in V(G)$ , let  $r_G(u, v) = \frac{1}{d(G) - d_G(u, v)}$  if  $0 < d_G(u, v) < d(G)$ , and  $r_G(u, v) = 0$  otherwise. Then

$$R\Lambda(G) = \sum_{\{u,v\}\subseteq V(G)} r_G(u,v).$$

The RRW index and some other topological indices derived from the RRW matrix were used to produce QSPR models for the alkane molar heat capacity in [3]. Some basic properties for the RRW index, especially for trees (connected graphs with no cycle), have been established by Zhou et al. [10].

In this paper, we determine the minimum and maximum RRW indices in the class of *n*-vertex unicyclic graphs (connected graphs with a unique cycle) and characterize the corresponding extremal graphs.

#### 2. Preliminaries

Let  $C_n$  and  $P_n$  be a cycle and path on  $n \ge 3$  vertices, respectively.

If an *n*-vertex unicyclic graph *G* has diameter n - 2, then  $G = G_{n,i}$  with  $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$  or  $G = H_{n,i}$  with  $1 \le i \le \lfloor \frac{n-2}{2} \rfloor$ , where  $G_{n,i}$  is the graph formed from the path  $P_{n-1}$  whose vertices are labelled consecutively as  $v_1, v_2, \cdots, v_{n-1}$  by adding vertex v and edges  $vv_i, vv_{i+1}$ , and  $H_{n,i}$  is the graph formed from the path  $P_{n-1}$  by adding vertex v and edges  $vv_i, vv_{i+2}$ . By direct calculation, we have

$$R\Lambda(G_{n,1}) = n - 2 + \sum_{k=2}^{n-3} \frac{1}{k} + \frac{1}{n-3} + \sum_{k=3}^{n-1} \frac{1}{n-k},$$
$$R\Lambda(G_{n,i}) = n - 2 + \sum_{k=2}^{n-3} \frac{1}{k} + \sum_{k=3}^{i+2} \frac{1}{n-k} + \sum_{k=3}^{n-i+1} \frac{1}{n-k} \text{ for } i \ge 2$$

and

$$R\Lambda(H_{n,i}) = n - 2 + \sum_{k=2}^{n-3} \frac{1}{k} + \sum_{k=3}^{i+2} \frac{1}{n-k} + \sum_{k=3}^{n-i} \frac{1}{n-k} + \frac{1}{n-4}.$$

If an *n*-vertex unicyclic graph *G* different from  $C_6$  and  $C_7$  has diameter three, then it is one of the following four types: (i)  $U_3(a, b, c)$ , the unicyclic graph formed by attaching *a*, *b* and *c* pendent edges respectively to the vertices of  $C_3$ , where  $a \ge b \ge \max\{c, 1\}$  and a + b + c = n - 3; (ii)  $U_4(a, b)$ , the unicyclic graph formed by attaching *a* and *b* pendent edges respectively to the two adjacent vertices of  $C_4$ , where  $a \ge \max\{b, 1\}$  and a + b = n - 4; (iii)  $U_5(a, b)$ , the unicyclic graph formed by attaching *a* and *b* pendent edges respectively to the two adjacent vertices of  $C_5$ , where  $a \ge \max\{b, 1\}$  and a + b = n - 5; (iv)  $U_3^*(a, b)$ , be the unicyclic graph formed by attaching *b* + 1 pendent edges to a vertex of  $C_3$  and then attaching *a* pendent edges to a pendent vertex, where  $a \ge 1$  and a + b = n - 4.

# 3. Minimum RRW index and extremal graphs

**Lemma 3.1.** For  $n \ge 6$ ,  $n < R\Lambda(C_n) < \frac{n^2 - 4n + 8}{2}$ .

*Proof.* Let  $d = d(C_n) = \lfloor \frac{n}{2} \rfloor$ . For  $v \in V(C_n)$  and i = 1, 2, ..., d-1, there are two vertices of distance i from v. Then  $R\Lambda(C_n) = n \sum_{i=1}^{d-1} \frac{1}{d-i} = n \sum_{i=1}^{d-1} \frac{1}{i}$ . Thus  $R\Lambda(C_n) > n$ , and since  $d \ge 3$ ,  $R\Lambda(C_n) \le \left[1 + \frac{1}{2} + \frac{1}{3}(d-3)\right]n \le \left[\frac{3}{2} + \frac{1}{3}\left(\frac{n}{2} - 3\right)\right]n < \frac{n^2 - 4n + 8}{2}$ .  $\Box$ 

**Lemma 3.2.** Let G be an n-vertex unicyclic graph with d(G) = n - 2. Then  $R\Lambda(G) > n$ .

*Proof.* Since d(G) = n - 2,  $G = G_{n,i}$  with  $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$  or  $G = H_{n,i}$  with  $1 \le i \le \lfloor \frac{n-2}{2} \rfloor$ . The expressions for  $R\Lambda(G_{n,i})$  and  $R\Lambda(H_{n,i})$  are given in Section 2. Note that  $R\Lambda(G_{5,1}) = \frac{11}{2}$ ,  $R\Lambda(H_{5,1}) = R\Lambda(G_{5,2}) = \frac{13}{2}$ ,  $R\Lambda(G_{6,1}) = R\Lambda(H_{6,2}) = 7$ , and  $R\Lambda(G_{6,2}) = R\Lambda(H_{6,1}) = \frac{15}{2}$ . Thus the result is true for n = 5, 6. Suppose that  $n \ge 7$ . Then  $\sum_{k=2}^{n-3} \frac{1}{k} \ge \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1$ ,  $\frac{1}{n-3} + \sum_{k=3}^{n-1} \frac{1}{n-k} > (n-2) \cdot \frac{1}{n-2} = 1$ ,  $\sum_{k=3}^{i+2} \frac{1}{n-k} + \sum_{k=3}^{n-i+1} \frac{1}{n-k} > (n-1) \cdot \frac{1}{n-1} = 1$ , and  $\sum_{k=3}^{i+2} \frac{1}{n-k} + \sum_{k=3}^{n-i} \frac{1}{n-k} + (n-1) \cdot \frac{1}{n-1} = 1$ . Thus  $R\Lambda(G_{n,i}) > n$  and  $R\Lambda(H_{n,i}) > n$ .  $\Box$ 

**Lemma 3.3.** Let G be an n-vertex unicyclic graph with  $3 \le d(G) \le n - 3$ . Then  $R\Lambda(G) > n$ .

*Proof.* We prove the lemma by induction on *n*. If n = 6, then d(G) = 3 and  $G \cong C_6$ ,  $U_3(1, 1, 1)$ ,  $U_3(2, 1, 0)$ ,  $U_4(2, 0)$ ,  $U_4(1, 1)$ ,  $U_5(1, 0)$ ,  $U_3^*(2, 0)$  or  $U_3^*(1, 1)$ , and thus by direct calculation, we have

$$R\Lambda(G) = \begin{cases} 10 & \text{if } G \cong U_3(2,1,0), U_5(1,0), \text{ or } U_4(2,0) \\ 8 & \text{if } G \cong U_3^*(2,0) \\ 9 & \text{otherwise} \end{cases}$$
  
> 6.

as desired.

Suppose that  $n \ge 7$  and the result is true for unicyclic graphs on n - 1 vertices. Let *G* be an *n*-vertex unicyclic graph with  $3 \le d(G) \le n - 3$ . Let d = d(G).

**Case 1.** There exists a pendent vertex, say *u* outside some diametrical path. Then d(G - u) = d and

$$R\Lambda(G) = R\Lambda(G-u) + \sum_{v \in V(G) \setminus \{u\}} r_G(u,v).$$

By the induction hypothesis for  $3 \le d \le n - 4$ , and Lemma 3.2 for d = n - 3, we have  $R\Lambda(G - u) > n - 1$ . If d(u, w) = d - 1 for some  $w \in V(G) \setminus \{u\}$ , then  $\sum_{v \in V(G) \setminus \{u\}} r_G(u, v) > r_G(u, w) = 1$ . If  $d(u, v) \ne d - 1$  for any

 $v \in V(G) \setminus \{u\}$ , then  $1 \le d_G(u, v) \le d-2$  for any  $v \in V(G) \setminus \{u\}$ , and thus  $\sum_{v \in V(G) \setminus \{u\}} r_G(u, v) \ge \sum_{v \in V(G) \setminus \{u\}} \frac{1}{d-1} = \frac{n-1}{d-1} > 1$ .

Thus  $R\Lambda(G) > n$ .

**Case 2.** There exists no pendent vertex outside any diametrical path. If  $G \cong C_n$ , then the result follows from Lemma 3.1. Suppose that  $G \not\cong C_n$ . Let  $P = v_1 v_2 \dots v_d v_{d+1}$  be a diametrical path of G. Then a pendent vertex of G must be  $v_1$  or  $v_{d+1}$ . Let  $V_1 = V(G) \setminus V(P)$ . Obviously,  $d_G(u, v) < d$  for  $u, v \in V_1$ , or  $u \in V_1$  and  $v \in V(P) \setminus \{v_1, v_{d+1}\}$ . If  $u \in V_1$ , then  $d_G(u, v_1) < d$ . Thus

$$\sum_{u \in V_1, v \in V(G)} r_G(u, v) = \sum_{\{u, v\} \subseteq V_1} r_G(u, v) + \sum_{u \in V_1} \sum_{v \in V(P)} r_G(u, v)$$

$$\geq \frac{1}{d-1} \binom{n-d-1}{2} + \sum_{u \in V_1} \sum_{v \in V(P)} \frac{1}{d-1}$$

$$\geq \frac{(n-d-1)(n-d-2)}{2(d-1)} + \sum_{u \in V_1} \frac{d}{d-1}$$

$$> \frac{(n-d-1)(n-d-2)}{2(d-1)} + n-d-1.$$

It is easily seen that

$$\sum_{\{u,v\}\subseteq V(P)} r_G(u,v) = \sum_{i=1}^{d-1} \frac{d+1-i}{d-i} = d + \sum_{i=2}^{d-1} \frac{1}{i}.$$

Then

$$\begin{split} R\Lambda(G) &= \sum_{u \in V_1, v \in V(G)} r_G(u, v) + \sum_{\{u, v\} \subseteq V(P)} r_G(u, v) \\ &> n - 1 + \sum_{i=2}^{d-1} \frac{1}{i} + \frac{(n-d-1)(n-d-2)}{2(d-1)} \\ &\geq n - 1 + \frac{d-2}{d-1} + \frac{(n-d-1)(n-d-2)}{2(d-1)} \\ &= n - 1 + \frac{n^2 - 2nd + d^2 - 3n + 5d - 2}{2(d-1)}. \end{split}$$

Let  $f(d) = n^2 - 2nd + d^2 - 3n + 5d - 2 - 2(d - 1) = n^2 - 2nd + d^2 - 3n + 3d$ . Since f'(d) = -2n + 3 + 2d < 0, f(d) is decreasing for  $3 \le d \le n - 3$ . Then  $f(d) \ge f(n - 3) = 0$ , and thus  $n^2 - 2nd + d^2 - 3n + 5d - 2 \ge 2(d - 1)$ . It follows that  $R\Lambda(G) > n - 1 + 1 = n$ .  $\Box$ 

Let  $U_3^{n-3}$  be the unicyclic graph formed by attaching n-3 pendent vertices to a vertex of  $C_3$ .

**Theorem 3.4.** Let G be a unicyclic graph with n vertices,  $n \ge 4$ . Then  $R\Lambda(G) \ge n$  with equality if and only if  $G \cong C_4$ ,  $C_5$  or  $U_3^{n-3}$ .

*Proof.* Obviously,  $2 \le d(G) \le n - 2$ . If  $d(G) \ge 3$ , then by Lemmas 3.2 and 3.3,  $R\Lambda(G) > n$ . If d(G) = 2, then  $R\Lambda(G) = n$  and  $G \cong C_4$ ,  $C_5$  or  $U_3^{n-3}$ .  $\Box$ 

# 4. Maximum RRW index and extremal graphs

**Lemma 4.1.** Let G be an n-vertex unicyclic graph with d(G) = 3. Then  $R\Lambda(G) \le \frac{n^2-4n+8}{2}$  with equality if and only if  $G \cong U_3(n-4,1,0)$ ,  $U_4(n-4,0)$  or  $U_5(1,0)$ .

*Proof.* If *G* is a cycle, then  $G \cong C_6$  or  $C_7$ , and the result follows from Lemma 3.1. Suppose that *G* is not a cycle, then there are four possibilities:

(i)  $G \cong U_3(a, b, c), a \ge b \ge \max\{c, 1\}$  and a + b + c = n - 3; Then

$$R\Lambda(G) = \frac{n}{2} + 2(n-3) + \frac{a^2 + b^2 + c^2 - (n-3)}{2}$$
  
$$\leq \frac{n}{2} + 2(n-3) + \frac{(n-4)^2 + 1 - (n-3)}{2}$$
  
$$= \frac{n^2 - 4n + 8}{2}$$

with equality if and only if a = n - 4, b = 1 and c = 0, i.e.,  $G \cong U_3(n - 4, 1, 0)$ . (ii)  $G \cong U_4(a, b)$ , where  $a \ge \max\{b, 1\}$  and a + b = n - 4; Then

$$R\Lambda(G) = \frac{n}{2} + 2(n-3) + \frac{a^2 + b^2 - (n-4)}{2}$$
  
$$\leq \frac{n}{2} + 2(n-3) + \frac{(n-4)^2 - (n-4)}{2}$$
  
$$= \frac{n^2 - 4n + 8}{2}$$

with equality if and only if a = n - 4 and b = 0, i.e.,  $G = U_4(n - 4, 0)$ . (iii)  $G \cong U_5(a, b)$ , where  $a \ge \max\{b, 1\}$  and a + b = n - 5; Then

$$R\Lambda(G) = \frac{n}{2} + 2n - 5 + \frac{n^2 + b^2 - (n-5)}{2}$$
  
$$\leq \frac{n}{2} + 2n - 5 + \frac{(n-5)^2 - (n-5)}{2}$$
  
$$= \frac{n^2 - 6n + 20}{2}$$
  
$$\leq \frac{n^2 - 4n + 8}{2}$$

with equality if and only if n = 6, i.e.,  $G \cong U_5(1, 0)$ .

(iv)  $G \cong U_3^*(a, b)$ , where  $a \ge 1$  and a + b = n - 4; Then

$$\begin{split} R\Lambda(G) &= \frac{n}{2} + 2 + n - 4 + 2b + \frac{a^2 + b^2 - (n - 4)}{2} \\ &\leq n + \frac{a^2 + (b + 2)^2 - 4}{2} \\ &\leq n + \frac{1^2 + (n - 3)^2 - 4}{2} \\ &= \frac{n^2 - 4n + 6}{2} < \frac{n^2 - 4n + 8}{2}. \end{split}$$

The result follows.  $\Box$ 

**Lemma 4.2.** Let G be an n-vertex unicyclic graph with d(G) = n - 2. Then  $R\Lambda(G) < \frac{n^2 - 4n + 8}{2}$ .

*Proof.* Since d(G) = n - 2,  $G = G_{n,i}$  with  $1 \le i \le \lfloor \frac{n-1}{2} \rfloor$  or  $G = H_{n,i}$  with  $1 \le i \le \lfloor \frac{n-2}{2} \rfloor$ . The expressions for  $R\Lambda(G_{n,i})$  and  $R\Lambda(H_{n,i})$  are given in Section 2. Thus

$$R\Lambda(G_{n,1}) = n - 2 + \sum_{k=2}^{n-3} \frac{1}{k} + \frac{1}{n-3} + \sum_{k=3}^{n-1} \frac{1}{n-k}$$
  

$$\leq n - 2 + \frac{n-4}{2} + \frac{1}{2} + \frac{n-4}{2} + 1$$
  

$$= 2n - 4 - \frac{1}{2}$$
  

$$< \frac{n^2 - 4n + 8}{2}.$$

Similarly,  $R\Lambda(G_{n,i}) < \frac{n^2-4n+8}{2}$  for  $i \ge 2$  and  $R\Lambda(H_{n,i}) < \frac{n^2-4n+8}{2}$  for  $i \ge 1$ .  $\Box$ 

**Lemma 4.3.** Let G be a unicyclic graph with diameter d(G), where  $4 \le d(G) \le n - 3$ . If there exists no pendent vertex outside any diametrical path of G, then  $R\Lambda(G) < \frac{n^2 - 4n + 8}{2}$ .

*Proof.* If  $G \cong C_n$ , then the result follows from Lemma 3.1. Suppose that  $G \not\cong C_n$ .

Let  $P = v_1 v_2 \dots v_d v_{d+1}$  be a diametrical path of *G*. Let  $V_1 = V(G) \setminus V(P)$ . By the proof of Lemma 3.3, we have

$$\sum_{\{u,v\}\subseteq V(P)} r_G(u,v) = d + \sum_{i=2}^{d-1} \frac{1}{i}.$$

Let  $u \in V_1$ . We will show that  $\sum_{v \in V(P)} r_G(u, v) \le d$ . Suppose first that *G* has exactly one pendent vertex, say  $v_{d+1}$ . If  $d_G(u, v_{d+1}) = d$ , then  $\sum_{v \in V(P)} r_G(u, v) \le (d+1) - 1 = d$ . Suppose that  $d_G(u, v_{d+1}) \le d - 1$ . Then  $d_G(u, v_d) \le d - 2$ . If  $v_d$  lies outside the cycle of *G*, then  $d_G(u, v_{d-1}) < d - 2$ , and otherwise, min $\{d_G(u, v_1), d_G(u, v_{d-1})\} \le d - 2$ . Thus  $\sum_{v \in V(P)} r_G(u, v) \le (d+1) - 2 + \frac{1}{2} \cdot 2 = d$ . If *G* has two pendent vertices  $v_1$  and  $v_{d+1}$ , then  $d_G(u, v_2)$ ,  $d_G(u, v_d) \le d - 2$ , i.e.,  $r_G(u, v_2)$ ,  $r_G(u, v_d) \le \frac{1}{2}$ , implying that  $\sum_{v \in V(P)} r_G(u, v) \le (d+1) - 2 + \frac{1}{2} \cdot 2 = d$ . It follows that

$$\sum_{u \in V_1} \sum_{v \in V(P)} r_G(u, v) \le \sum_{u \in V_1} d = (n - d - 1)d$$

If  $u, v \in V_1$  and  $u \neq v$ , then  $r_G(u, v) \leq 1$  and  $r_G(u, v) = \frac{1}{d-1} < \frac{1}{2}$  if u and v are adjacent. Thus

$$\sum_{\{u,v\}\subseteq V_1} r_G(u,v) \leq 1 \cdot \binom{n-d-1}{2} - \frac{1}{2} \cdot (n-d-2)$$
$$= \frac{(n-d-1)(n-d-2)}{2} - \frac{n-d-2}{2}.$$

Note that  $-d^2 + 5d \le 4$  since  $d \ge 4$ . Then

$$\begin{split} R\Lambda(G) &= \sum_{\{u,v\} \subseteq V(P)} r_G(u,v) + \sum_{u \in V_1} \sum_{v \in V(P)} r_G(u,v) + \sum_{\{u,v\} \subseteq V_1} r_G(u,v) \\ &\leq d + \sum_{i=2}^{d-1} \frac{1}{i} + (n-d-1)d + \frac{(n-d-1)(n-d-2)}{2} - \frac{n-d-2}{2} \\ &\leq d + \frac{d-2}{2} + \frac{n^2 - 4n + 2 - d^2 + 2d + 2}{2} \\ &= \frac{n^2 - 4n + 2}{2} + \frac{-d^2 + 5d}{2} \\ &\leq \frac{n^2 - 4n + 2}{2} + 2 \\ &< \frac{n^2 - 4n + 2}{2}, \end{split}$$

as desired.  $\Box$ 

For  $u \in V(G)$ ,  $d_u$  denotes the degree of u in G.

**Lemma 4.4.** Let G be a unicyclic graph with  $4 \le d(G) \le n-3$ . Then  $R\Lambda(G) < \frac{n^2-4n+8}{2}$ .

*Proof.* We prove the lemma by induction on *n*. Suppose first that n = 7. Then d(G) = 4. Let  $P = v_1v_2v_3v_4v_5$  be the diametrical path of *G* and *C* the unique cycle of *G*. Let  $D(v_6) = \sum_{u \in V(P)} r_G(u, v_6)$ , and

$$D(v_7) = \sum_{u \in V(P)} r_G(u, v_7) + r_G(v_6, v_7).$$
 Note that  

$$R\Lambda(G) = \sum_{\{u,v\} \subseteq V(P)} r_G(u, v) + D(v_6) + D(v_7) \text{ and } \sum_{\{u,v\} \subseteq V(P)} r_G(u, v) = 4 + \frac{1}{2} + \frac{1}{3} = 4 + \frac{5}{6}.$$

Suppose that  $v_6, v_7 \in V(C)$ . Then  $v_6$  and  $v_7$  are adjacent,  $v_6$  is also adjacent to a vertex  $u \in V(P)$ . Let v be a neighbor of u in P. Then  $d_G(u, v_6) = 1$  and  $d_G(v, v_6) \leq 2$ , implying that  $r_G(u, v_6) = \frac{1}{3}$  and  $r_G(v, v_6) \leq \frac{1}{2}$ . Thus

$$D(v_6) \le (5-2) + \frac{1}{3} + \frac{1}{2} = 3 + \frac{5}{6}.$$

Similarly,

$$D(v_7) \le (6-3) + \frac{1}{3} \times 2 + \frac{1}{2} = 4 + \frac{1}{6}.$$

Hence

$$R\Lambda(G) \le 4 + \frac{5}{6} + 3 + \frac{5}{6} + 4 + \frac{1}{6} = 12 + \frac{5}{6} < \frac{29}{2} = \frac{7^2 - 4 \times 7 + 8}{2}.$$

If one of  $v_6$  and  $v_7$  belongs to V(C), then by similar arguments as above we also have the result. Thus the result follows for n = 7.

Suppose that  $n \ge 8$  and the result follows for unicyclic graphs on n - 1 vertices. Let *G* be an *n*-vertex unicyclic graph with  $4 \le d(G) \le n - 3$ . Let d(G) = d.

If there exists no pendent vertex outside any diametrical path, the the result follows from Lemma 4.3.

Suppose there exists a pendent vertex, say *u* outside some diametrical path, say  $P = v_1 v_2 \dots v_d v_{d+1}$ . Obviously, d(G - u) = d. Note that

$$R\Lambda(G) = R\Lambda(G-u) + \sum_{v \in V(G) \setminus \{u\}} r_G(u,v).$$

By the induction hypothesis for  $4 \le d \le n - 4$ , and Lemma 4.2 for d = n - 3, we have

$$R\Lambda(G-u) < \frac{(n-1)^2 - 4(n-1) + 8}{2} = \frac{n^2 - 6n + 13}{2}.$$

Next we will show that  $\sum_{v \in V(G) \setminus \{u\}} r_G(u, v) \le n - \frac{5}{2}$ . If  $d_G(u, w) = d$  for some  $w \in V(G) \setminus \{u\}$ , then there is a shortest path P' from u to w with length d,  $\sum_{v \in V(P') \setminus \{u\}} r_G(u, v) \le \frac{1}{2} \cdot (d - 2) + 1$ , and thus

$$\begin{split} \sum_{v \in V(G) \setminus \{u\}} r_G(u, v) &= \sum_{v \in V(P') \setminus \{u\}} r_G(u, v) + \sum_{v \in V(G) \setminus V(P')} r_G(u, v) \\ &\leq \frac{d-2}{2} + 1 + (n - d - 1) \\ &= n - \frac{d}{2} - 1 \\ &< n - \frac{5}{2}. \end{split}$$

Now suppose that  $1 \le d_G(u, v) \le d - 1$  for any  $v \in V(G) \setminus \{u\}$ . Let w be the unique neighbor of u. If  $d_w \ge 3$ , then for neighbors x and y of w different from u, d(u, w), d(u, x),  $d(u, y) \le 2 \le d - 2$ , implying that

$$\sum_{v\in V(G)\backslash \{u\}}r_G(u,v)\leq (n-1)-3+\frac{1}{2}\times 3=n-\frac{5}{2}$$

Suppose that  $d_w = 2$  and x is the neighbor of w different from u. If d(G) = 4, then for any  $y \in V(G) \setminus \{u, w, x\}$ ,  $y \in N_x$  or  $d_G(x, y) = 2$ ; In the former case, y is a neighbor of x for any  $y \in V(G) \setminus \{u, w, x\}$ , which implies d(G) = 3, a contradiction, while in the latter case,  $d_G(u, y) = 4$ , also a contradiction. Thus  $d(G) \ge 5$ . Let y be a neighbor x. Then d(u, w), d(u, x),  $d(u, y) \le 3 \le d - 2$ , implying that

$$\sum_{v \in V(G) \setminus \{u\}} r_G(u, v) \le (n - 1) - 3 + \frac{1}{2} \times 3 = n - \frac{5}{2}$$

It follows that  $R\Lambda(G) < \frac{n^2 - 6n + 13}{2} + n - \frac{5}{2} = \frac{n^2 - 4n + 8}{2}$ . This completes the proof.  $\Box$ 

**Theorem 4.5.** Let G be a unicyclic graph with n vertices. Then  $R\Lambda(G) \leq \frac{n^2-4n+8}{2}$  with equality if and only if  $G \cong U_3(n-4,1,0), U_4(n-4,0)$  or  $U_5(1,0)$ .

*Proof.* Obviously,  $2 \le d(G) \le n - 2$ . If d(G) = 2, then  $R\Lambda(G) = n < \frac{n^2 - 4n + 8}{2}$ . Thus the result follows from Lemmas 4.1, 4.2 and 4.4.  $\Box$ 

## References

- [1] A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73 (2000) 933–941.
- H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan 44 (1971) 2332–2339.
- [3] O. Ivanciuc, T. Ivanciuc, A.T. Balaban, Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1 (2002) 467–487.
- [4] D. Janežič, A. Miličević, S. Nikolić, N. Trinajstić, Graph Theoretical Matrices in Chemistry, Mathematical Chemistry Monographs No. 3, Univ. Kragujevac, Kragujevac, 2007.
- [5] S. Nikolić, N. Trinajstić, Z. Mihalić, The Wiener index: development and applications, Croat. Chem. Acta 68 (1995) 105–129.
- [6] D.H. Rouvray, The rich legacy of half of a century of the Wiener index, in: D.H. Rouvray, R.B. King (eds.), Topology in Chemistry–Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16–37.
- [7] N. Trinajstić, Chemical Graph Theory, CRC press, Boca Raton, 1992.
- [8] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- [9] B. Zhou, N. Trinajstić, Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010) 227–242.
- [10] B. Zhou, Y. Yang, N. Trinajstić, On reciprocal reverse Wiener index, J. Math. Chem. 47 (2010) 201-209.