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Abstract. The reciprocal reverse Wiener index RΛ(G) of a connected graph G is defined in mathematical
chemistry as the sum of weights 1

d(G)−dG(u,v) of all unordered pairs of distinct vertices u and v with dG(u, v) <
d(G), where dG(u, v) is the distance between vertices u and v in G and d(G) is the diameter of G. We determine
the minimum and maximum reciprocal reverse Wiener indices in the class of n-vertex unicyclic graphs and
characterize the corresponding extremal graphs.

1. Introduction

A topological index is a numerical structural descriptor of the molecular structure based on certain
topological features of the molecular graph [7]. The Wiener index [8] introduced in 1947 is one of the oldest
and most widely used topological indices, see [5, 6]. There are also many variants of the Wiener index, for
example, the reverse Wiener index [1, 3] and the reciprocal reverse Wiener index [3, 10]. See [9] for a recent
survey for such distance based topological indices.

We consider simple graphs. Let G be a connected graph with vertex set V(G) and edge set E(G). For
u, v ∈ V(G), dG(u, v) denotes the distance between u and v in G. The diameter of G is the maximum distance
among all pairs of vertices of G, denoted by d(G). Let G be a graph with V(G) = {v1, v2, . . . , vn}. The distance
matrix D(G) of G is an n × n matrix (di j) such that di j = dG(vi, v j) for i, j = 1, 2, . . . ,n, The reciprocal reverse
Wiener (RRW) matrix RRW(G) of G is an n × n matrix (ri j) such that ri j =

1
d(G)−di j

if i , j and di j < d(G), and 0
otherwise [3, 4].

For a connected graph G, its Wiener index is defined as the sum of distances between all unordered
pairs of distinct vertices of G [2, 8]. In parallel to this definition, the reciprocal reverse Wiener (RRW) index
RΛ(G) of a connected graph G is defined as [3]

RΛ(G) =
∑
i< j

ri j =
∑
i< j

di j<d(G)

1
d(G) − di j

.
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For u, v ∈ V(G), let rG(u, v) = 1
d(G)−dG(u,v) if 0 < dG(u, v) < d(G), and rG(u, v) = 0 otherwise. Then

RΛ(G) =
∑

{u,v}⊆V(G)

rG(u, v).

The RRW index and some other topological indices derived from the RRW matrix were used to produce
QSPR models for the alkane molar heat capacity in [3]. Some basic properties for the RRW index, especially
for trees (connected graphs with no cycle), have been established by Zhou et al. [10].

In this paper, we determine the minimum and maximum RRW indices in the class of n-vertex unicyclic
graphs (connected graphs with a unique cycle) and characterize the corresponding extremal graphs.

2. Preliminaries

Let Cn and Pn be a cycle and path on n ≥ 3 vertices, respectively.
If an n-vertex unicyclic graph G has diameter n − 2, then G = Gn,i with 1 ≤ i ≤ ⌊ n−1

2 ⌋ or G = Hn,i with
1 ≤ i ≤ ⌊ n−2

2 ⌋, where Gn,i is the graph formed from the path Pn−1 whose vertices are labelled consecutively
as v1, v2, · · · , vn−1 by adding vertex v and edges vvi, vvi+1, and Hn,i is the graph formed from the path Pn−1
by adding vertex v and edges vvi, vvi+2. By direct calculation, we have

RΛ(Gn,1) = n − 2 +
n−3∑
k=2

1
k
+

1
n − 3

+

n−1∑
k=3

1
n − k

,

RΛ(Gn,i) = n − 2 +
n−3∑
k=2

1
k
+

i+2∑
k=3

1
n − k

+

n−i+1∑
k=3

1
n − k

for i ≥ 2

and

RΛ(Hn,i) = n − 2 +
n−3∑
k=2

1
k
+

i+2∑
k=3

1
n − k

+

n−i∑
k=3

1
n − k

+
1

n − 4
.

If an n-vertex unicyclic graph G different from C6 and C7 has diameter three, then it is one of the following
four types: (i) U3(a, b, c), the unicyclic graph formed by attaching a, b and c pendent edges respectively to
the vertices of C3, where a ≥ b ≥ max{c, 1} and a + b + c = n − 3; (ii) U4(a, b), the unicyclic graph formed by
attaching a and b pendent edges respectively to the two adjacent vertices of C4, where a ≥ max{b, 1} and
a + b = n − 4; (iii) U5(a, b), the unicyclic graph formed by attaching a and b pendent edges respectively to
the two adjacent vertices of C5, where a ≥ max{b, 1} and a + b = n − 5; (iv) U∗3(a, b), be the unicyclic graph
formed by attaching b+ 1 pendent edges to a vertex of C3 and then attaching a pendent edges to a pendent
vertex, where a ≥ 1 and a + b = n − 4.

3. Minimum RRW index and extremal graphs

Lemma 3.1. For n ≥ 6, n < RΛ(Cn) < n2−4n+8
2 .

Proof. Let d = d(Cn) = ⌊ n
2 ⌋. For v ∈ V(Cn) and i = 1, 2, . . . , d − 1, there are two vertices of distance i from v.

Then RΛ(Cn) = n
∑d−1

i=1
1

d−i = n
∑d−1

i=1
1
i . Thus RΛ(Cn) > n, and since d ≥ 3, RΛ(Cn) ≤

[
1 + 1

2 +
1
3 (d − 3)

]
n ≤[

3
2 +

1
3

(
n
2 − 3

)]
n < n2−4n+8

2 .

Lemma 3.2. Let G be an n-vertex unicyclic graph with d(G) = n − 2. Then RΛ(G) > n.
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Proof. Since d(G) = n − 2, G = Gn,i with 1 ≤ i ≤ ⌊ n−1
2 ⌋ or G = Hn,i with 1 ≤ i ≤ ⌊ n−2

2 ⌋. The expressions
for RΛ(Gn,i) and RΛ(Hn,i) are given in Section 2. Note that RΛ(G5,1) = 11

2 , RΛ(H5,1) = RΛ(G5,2) = 13
2 ,

RΛ(G6,1) = RΛ(H6,2) = 7, and RΛ(G6,2) = RΛ(H6,1) = 15
2 . Thus the result is true for n = 5, 6. Suppose that

n ≥ 7. Then
n−3∑
k=2

1
k ≥ 1

2 +
1
3 +

1
4 > 1, 1

n−3 +
n−1∑
k=3

1
n−k > (n − 2) · 1

n−2 = 1,
i+2∑
k=3

1
n−k +

n−i+1∑
k=3

1
n−k > (n − 1) · 1

n−1 = 1, and

i+2∑
k=3

1
n−k +

n−i∑
k=3

1
n−k +

1
n−4 > (n − 1) · 1

n−1 = 1. Thus RΛ(Gn,i) > n and RΛ(Hn,i) > n.

Lemma 3.3. Let G be an n-vertex unicyclic graph with 3 ≤ d(G) ≤ n − 3. Then RΛ(G) > n.

Proof. We prove the lemma by induction on n. If n = 6, then d(G) = 3 and G � C6, U3(1, 1, 1), U3(2, 1, 0),
U4(2, 0), U4(1, 1), U5(1, 0), U∗3(2, 0) or U∗3(1, 1), and thus by direct calculation, we have

RΛ(G) =


10 if G � U3(2, 1, 0),U5(1, 0), or U4(2, 0)
8 if G � U∗3(2, 0)
9 otherwise

> 6,

as desired.
Suppose that n ≥ 7 and the result is true for unicyclic graphs on n − 1 vertices. Let G be an n-vertex

unicyclic graph with 3 ≤ d(G) ≤ n − 3. Let d = d(G).
Case 1. There exists a pendent vertex, say u outside some diametrical path. Then d(G − u) = d and

RΛ(G) = RΛ(G − u) +
∑

v∈V(G)\{u}
rG(u, v).

By the induction hypothesis for 3 ≤ d ≤ n − 4, and Lemma 3.2 for d = n − 3, we have RΛ(G − u) > n − 1.
If d(u,w) = d − 1 for some w ∈ V(G) \ {u}, then

∑
v∈V(G)\{u}

rG(u, v) > rG(u,w) = 1. If d(u, v) , d − 1 for any

v ∈ V(G)\{u}, then 1 ≤ dG(u, v) ≤ d−2 for any v ∈ V(G)\{u}, and thus
∑

v∈V(G)\{u}
rG(u, v) ≥ ∑

v∈V(G)\{u}
1

d−1 =
n−1
d−1 > 1.

Thus RΛ(G) > n.
Case 2. There exists no pendent vertex outside any diametrical path. If G � Cn, then the result follows
from Lemma 3.1. Suppose that G � Cn. Let P = v1v2 . . . vdvd+1 be a diametrical path of G. Then a pendent
vertex of G must be v1 or vd+1. Let V1 = V(G) \ V(P). Obviously, dG(u, v) < d for u, v ∈ V1, or u ∈ V1 and
v ∈ V(P) \ {v1, vd+1}. If u ∈ V1, then dG(u, v1) < d. Thus∑

u∈V1,v∈V(G)

rG(u, v) =
∑
{u,v}⊆V1

rG(u, v) +
∑
u∈V1

∑
v∈V(P)

rG(u, v)

≥ 1
d − 1

(
n − d − 1

2

)
+

∑
u∈V1

∑
v∈V(P)

1
d − 1

≥ (n − d − 1)(n − d − 2)
2(d − 1)

+
∑
u∈V1

d
d − 1

>
(n − d − 1)(n − d − 2)

2(d − 1)
+ n − d − 1.

It is easily seen that

∑
{u,v}⊆V(P)

rG(u, v) =
d−1∑
i=1

d + 1 − i
d − i

= d +
d−1∑
i=2

1
i
.
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Then

RΛ(G) =
∑

u∈V1,v∈V(G)
rG(u, v) +

∑
{u,v}⊆V(P)

rG(u, v)

> n − 1 +
d−1∑
i=2

1
i +

(n−d−1)(n−d−2)
2(d−1)

≥ n − 1 + d−2
d−1 +

(n−d−1)(n−d−2)
2(d−1)

= n − 1 + n2−2nd+d2−3n+5d−2
2(d−1) .

Let f (d) = n2 − 2nd+ d2 − 3n+ 5d− 2− 2(d− 1) = n2 − 2nd+ d2 − 3n+ 3d. Since f ′(d) = −2n+ 3+ 2d < 0, f (d)
is decreasing for 3 ≤ d ≤ n − 3. Then f (d) ≥ f (n − 3) = 0, and thus n2 − 2nd + d2 − 3n + 5d − 2 ≥ 2(d − 1). It
follows that RΛ(G) > n − 1 + 1 = n.

Let Un−3
3 be the unicyclic graph formed by attaching n − 3 pendent vertices to a vertex of C3.

Theorem 3.4. Let G be a unicyclic graph with n vertices, n ≥ 4. Then RΛ(G) ≥ n with equality if and only if
G � C4, C5 or Un−3

3 .

Proof. Obviously, 2 ≤ d(G) ≤ n − 2. If d(G) ≥ 3, then by Lemmas 3.2 and 3.3, RΛ(G) > n. If d(G) = 2, then
RΛ(G) = n and G � C4, C5 or Un−3

3 .

4. Maximum RRW index and extremal graphs

Lemma 4.1. Let G be an n-vertex unicyclic graph with d(G) = 3. Then RΛ(G) ≤ n2−4n+8
2 with equality if and only

if G � U3(n − 4, 1, 0), U4(n − 4, 0) or U5(1, 0).

Proof. If G is a cycle, then G � C6 or C7, and the result follows from Lemma 3.1. Suppose that G is not a
cycle, then there are four possibilities:

(i) G � U3(a, b, c), a ≥ b ≥ max{c, 1} and a + b + c = n − 3; Then

RΛ(G) = n
2 + 2(n − 3) + a2+b2+c2−(n−3)

2

≤ n
2 + 2(n − 3) + (n−4)2+1−(n−3)

2

= n2−4n+8
2

with equality if and only if a = n − 4, b = 1 and c = 0, i.e., G � U3(n − 4, 1, 0).
(ii) G � U4(a, b), where a ≥ max{b, 1} and a + b = n − 4; Then

RΛ(G) = n
2 + 2(n − 3) + a2+b2−(n−4)

2

≤ n
2 + 2(n − 3) + (n−4)2−(n−4)

2

= n2−4n+8
2

with equality if and only if a = n − 4 and b = 0, i.e., G = U4(n − 4, 0).
(iii) G � U5(a, b), where a ≥ max{b, 1} and a + b = n − 5; Then

RΛ(G) = n
2 + 2n − 5 + a2+b2−(n−5)

2

≤ n
2 + 2n − 5 + (n−5)2−(n−5)

2

= n2−6n+20
2

≤ n2−4n+8
2

with equality if and only if n = 6, i.e., G � U5(1, 0).
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(iv) G � U∗3(a, b), where a ≥ 1 and a + b = n − 4; Then

RΛ(G) = n
2 + 2 + n − 4 + 2b + a2+b2−(n−4)

2

≤ n + a2+(b+2)2−4
2

≤ n + 12+(n−3)2−4
2

= n2−4n+6
2 < n2−4n+8

2 .

The result follows.

Lemma 4.2. Let G be an n-vertex unicyclic graph with d(G) = n − 2. Then RΛ(G) < n2−4n+8
2 .

Proof. Since d(G) = n − 2, G = Gn,i with 1 ≤ i ≤ ⌊ n−1
2 ⌋ or G = Hn,i with 1 ≤ i ≤ ⌊ n−2

2 ⌋. The expressions for
RΛ(Gn,i) and RΛ(Hn,i) are given in Section 2. Thus

RΛ(Gn,1) = n − 2 +
n−3∑
k=2

1
k +

1
n−3 +

n−1∑
k=3

1
n−k

≤ n − 2 + n−4
2 +

1
2 +

n−4
2 + 1

= 2n − 4 − 1
2

< n2−4n+8
2 .

Similarly, RΛ(Gn,i) < n2−4n+8
2 for i ≥ 2 and RΛ(Hn,i) < n2−4n+8

2 for i ≥ 1.

Lemma 4.3. Let G be a unicyclic graph with diameter d(G), where 4 ≤ d(G) ≤ n − 3. If there exists no pendent
vertex outside any diametrical path of G, then RΛ(G) < n2−4n+8

2 .

Proof. If G � Cn, then the result follows from Lemma 3.1. Suppose that G � Cn.
Let P = v1v2 . . . vdvd+1 be a diametrical path of G. Let V1 = V(G) \ V(P). By the proof of Lemma 3.3, we

have

∑
{u,v}⊆V(P)

rG(u, v) = d +
d−1∑
i=2

1
i
.

Let u ∈ V1. We will show that
∑

v∈V(P)
rG(u, v) ≤ d. Suppose first that G has exactly one pendent vertex, say

vd+1. If dG(u, vd+1) = d, then
∑

v∈V(P)
rG(u, v) ≤ (d + 1) − 1 = d. Suppose that dG(u, vd+1) ≤ d − 1. Then dG(u, vd) ≤

d−2. If vd lies outside the cycle of G, then dG(u, vd−1) < d−2, and otherwise, min{dG(u, v1), dG(u, vd−1)} ≤ d−2.
Thus

∑
v∈V(P)

rG(u, v) ≤ (d + 1) − 2 + 1
2 · 2 = d. If G has two pendent vertices v1 and vd+1, then dG(u, v2),

dG(u, vd) ≤ d− 2, i.e., rG(u, v2), rG(u, vd) ≤ 1
2 , implying that

∑
v∈V(P)

rG(u, v) ≤ (d+ 1)− 2+ 1
2 · 2 = d. It follows that

∑
u∈V1

∑
v∈V(P)

rG(u, v) ≤
∑
u∈V1

d = (n − d − 1)d.

If u, v ∈ V1 and u , v, then rG(u, v) ≤ 1 and rG(u, v) = 1
d−1 <

1
2 if u and v are adjacent. Thus∑

{u,v}⊆V1

rG(u, v) ≤ 1 ·
(
n − d − 1

2

)
− 1

2
· (n − d − 2)

=
(n − d − 1)(n − d − 2)

2
− n − d − 2

2
.
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Note that −d2 + 5d ≤ 4 since d ≥ 4. Then

RΛ(G) =
∑

{u,v}⊆V(P)
rG(u, v) +

∑
u∈V1

∑
v∈V(P)

rG(u, v) +
∑

{u,v}⊆V1

rG(u, v)

≤ d +
d−1∑
i=2

1
i + (n − d − 1)d + (n−d−1)(n−d−2)

2 − n−d−2
2

≤ d + d−2
2 +

n2−4n+2−d2+2d+2
2

= n2−4n+2
2 + −d2+5d

2

≤ n2−4n+2
2 + 2

< n2−4n+8
2 ,

as desired.

For u ∈ V(G), du denotes the degree of u in G.

Lemma 4.4. Let G be a unicyclic graph with 4 ≤ d(G) ≤ n − 3. Then RΛ(G) < n2−4n+8
2 .

Proof. We prove the lemma by induction on n. Suppose first that n = 7. Then d(G) = 4. Let P =
v1v2v3v4v5 be the diametrical path of G and C the unique cycle of G. Let D(v6) =

∑
u∈V(P)

rG(u, v6), and

D(v7) =
∑

u∈V(P)
rG(u, v7) + rG(v6, v7). Note that

RΛ(G) =
∑

{u,v}⊆V(P)

rG(u, v) +D(v6) +D(v7) and
∑

{u,v}⊆V(P)

rG(u, v) = 4 +
1
2
+

1
3
= 4 +

5
6
.

Suppose that v6, v7 ∈ V(C). Then v6 and v7 are adjacent, v6 is also adjacent to a vertex u ∈ V(P). Let v be a
neighbor of u in P. Then dG(u, v6) = 1 and dG(v, v6) ≤ 2, implying that rG(u, v6) = 1

3 and rG(v, v6) ≤ 1
2 . Thus

D(v6) ≤ (5 − 2) +
1
3
+

1
2
= 3 +

5
6
.

Similarly,

D(v7) ≤ (6 − 3) +
1
3
× 2 +

1
2
= 4 +

1
6
.

Hence

RΛ(G) ≤ 4 +
5
6
+ 3 +

5
6
+ 4 +

1
6
= 12 +

5
6
<

29
2
=

72 − 4 × 7 + 8
2

.

If one of v6 and v7 belongs to V(C), then by similar arguments as above we also have the result. Thus the
result follows for n = 7.

Suppose that n ≥ 8 and the result follows for unicyclic graphs on n − 1 vertices. Let G be an n-vertex
unicyclic graph with 4 ≤ d(G) ≤ n − 3. Let d(G) = d.

If there exists no pendent vertex outside any diametrical path, the the result follows from Lemma 4.3.
Suppose there exists a pendent vertex, say u outside some diametrical path, say P = v1v2 . . . vdvd+1.

Obviously, d(G − u) = d. Note that

RΛ(G) = RΛ(G − u) +
∑

v∈V(G)\{u}
rG(u, v).

By the induction hypothesis for 4 ≤ d ≤ n − 4, and Lemma 4.2 for d = n − 3, we have

RΛ(G − u) <
(n − 1)2 − 4(n − 1) + 8

2
=

n2 − 6n + 13
2

.
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Next we will show that
∑

v∈V(G)\{u}
rG(u, v) ≤ n − 5

2 . If dG(u,w) = d for some w ∈ V(G) \ {u}, then there is a

shortest path P′ from u to w with length d,
∑

v∈V(P′)\{u}
rG(u, v) ≤ 1

2 · (d − 2) + 1, and thus

∑
v∈V(G)\{u}

rG(u, v) =
∑

v∈V(P′)\{u}
rG(u, v) +

∑
v∈V(G)\V(P′)

rG(u, v)

≤ d−2
2 + 1 + (n − d − 1)

= n − d
2 − 1

< n − 5
2 .

Now suppose that 1 ≤ dG(u, v) ≤ d − 1 for any v ∈ V(G) \ {u}. Let w be the unique neighbor of u. If dw ≥ 3,
then for neighbors x and y of w different from u, d(u,w), d(u, x), d(u, y) ≤ 2 ≤ d − 2, implying that∑

v∈V(G)\{u}
rG(u, v) ≤ (n − 1) − 3 +

1
2
× 3 = n − 5

2
.

Suppose that dw = 2 and x is the neighbor of w different from u. If d(G) = 4, then for any y ∈ V(G) \ {u,w, x},
y ∈ Nx or dG(x, y) = 2; In the former case, y is a neighbor of x for any y ∈ V(G) \ {u,w, x}, which implies
d(G) = 3, a contradiction, while in the latter case, dG(u, y) = 4, also a contradiction. Thus d(G) ≥ 5. Let y be
a neighbor x. Then d(u,w), d(u, x), d(u, y) ≤ 3 ≤ d − 2, implying that∑

v∈V(G)\{u}
rG(u, v) ≤ (n − 1) − 3 +

1
2
× 3 = n − 5

2
.

It follows that RΛ(G) < n2−6n+13
2 + n − 5

2 =
n2−4n+8

2 . This completes the proof.

Theorem 4.5. Let G be a unicyclic graph with n vertices. Then RΛ(G) ≤ n2−4n+8
2 with equality if and only if

G � U3(n − 4, 1, 0), U4(n − 4, 0) or U5(1, 0).

Proof. Obviously, 2 ≤ d(G) ≤ n − 2. If d(G) = 2, then RΛ(G) = n < n2−4n+8
2 . Thus the result follows from

Lemmas 4.1, 4.2 and 4.4.
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