The Reciprocal Reverse Wiener Index of Unicyclic Graphs

Jianping Lia ${ }^{\mathrm{a}, \mathrm{b}}$, Bo Zhou ${ }^{\mathrm{b}, *}$
${ }^{a}$ Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090, P. R. China
${ }^{b}$ Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

Abstract

The reciprocal reverse Wiener index $R \Lambda(G)$ of a connected graph G is defined in mathematical chemistry as the sum of weights $\frac{1}{d(G)-d_{G}(u, v)}$ of all unordered pairs of distinct vertices u and v with $d_{G}(u, v)<$ $d(G)$, where $d_{G}(u, v)$ is the distance between vertices u and v in G and $d(G)$ is the diameter of G. We determine the minimum and maximum reciprocal reverse Wiener indices in the class of n-vertex unicyclic graphs and characterize the corresponding extremal graphs.

1. Introduction

A topological index is a numerical structural descriptor of the molecular structure based on certain topological features of the molecular graph [7]. The Wiener index [8] introduced in 1947 is one of the oldest and most widely used topological indices, see $[5,6]$. There are also many variants of the Wiener index, for example, the reverse Wiener index [1,3] and the reciprocal reverse Wiener index [3, 10]. See [9] for a recent survey for such distance based topological indices.

We consider simple graphs. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G), d_{G}(u, v)$ denotes the distance between u and v in G. The diameter of G is the maximum distance among all pairs of vertices of G, denoted by $d(G)$. Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance matrix $D(G)$ of G is an $n \times n$ matrix $\left(d_{i j}\right)$ such that $d_{i j}=d_{G}\left(v_{i}, v_{j}\right)$ for $i, j=1,2, \ldots, n$, The reciprocal reverse Wiener (RRW) matrix $R R W(G)$ of G is an $n \times n$ matrix $\left(r_{i j}\right)$ such that $r_{i j}=\frac{1}{d(G)-d_{i j}}$ if $i \neq j$ and $d_{i j}<d(G)$, and 0 otherwise [3, 4].

For a connected graph G, its Wiener index is defined as the sum of distances between all unordered pairs of distinct vertices of $G[2,8]$. In parallel to this definition, the reciprocal reverse Wiener (RRW) index $R \Lambda(G)$ of a connected graph G is defined as [3]

$$
R \Lambda(G)=\sum_{i<j} r_{i j}=\sum_{\substack{i<j \\ d_{i j}<d(G)}} \frac{1}{d(G)-d_{i j}}
$$

[^0]For $u, v \in V(G)$, let $r_{G}(u, v)=\frac{1}{d(G)-d_{G}(u, v)}$ if $0<d_{G}(u, v)<d(G)$, and $r_{G}(u, v)=0$ otherwise. Then

$$
R \Lambda(G)=\sum_{\{u, v\} \subseteq V(G)} r_{G}(u, v) .
$$

The RRW index and some other topological indices derived from the RRW matrix were used to produce QSPR models for the alkane molar heat capacity in [3]. Some basic properties for the RRW index, especially for trees (connected graphs with no cycle), have been established by Zhou et al. [10].

In this paper, we determine the minimum and maximum RRW indices in the class of n-vertex unicyclic graphs (connected graphs with a unique cycle) and characterize the corresponding extremal graphs.

2. Preliminaries

Let C_{n} and P_{n} be a cycle and path on $n \geq 3$ vertices, respectively.
If an n-vertex unicyclic graph G has diameter $n-2$, then $G=G_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ or $G=H_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-2}{2}\right\rfloor$, where $G_{n, i}$ is the graph formed from the path P_{n-1} whose vertices are labelled consecutively as $v_{1}, v_{2}, \cdots, v_{n-1}$ by adding vertex v and edges $v v_{i}, v v_{i+1}$, and $H_{n, i}$ is the graph formed from the path P_{n-1} by adding vertex v and edges $v v_{i}, v v_{i+2}$. By direct calculation, we have

$$
\begin{aligned}
& R \Lambda\left(G_{n, 1}\right)=n-2+\sum_{k=2}^{n-3} \frac{1}{k}+\frac{1}{n-3}+\sum_{k=3}^{n-1} \frac{1}{n-k^{\prime}} \\
& R \Lambda\left(G_{n, i}\right)=n-2+\sum_{k=2}^{n-3} \frac{1}{k}+\sum_{k=3}^{i+2} \frac{1}{n-k}+\sum_{k=3}^{n-i+1} \frac{1}{n-k} \text { for } i \geq 2
\end{aligned}
$$

and

$$
R \Lambda\left(H_{n, i}\right)=n-2+\sum_{k=2}^{n-3} \frac{1}{k}+\sum_{k=3}^{i+2} \frac{1}{n-k}+\sum_{k=3}^{n-i} \frac{1}{n-k}+\frac{1}{n-4} .
$$

If an n-vertex unicyclic graph G different from C_{6} and C_{7} has diameter three, then it is one of the following four types: (i) $U_{3}(a, b, c)$, the unicyclic graph formed by attaching a, b and c pendent edges respectively to the vertices of C_{3}, where $a \geq b \geq \max \{c, 1\}$ and $a+b+c=n-3$; (ii) $U_{4}(a, b)$, the unicyclic graph formed by attaching a and b pendent edges respectively to the two adjacent vertices of C_{4}, where $a \geq \max \{b, 1\}$ and $a+b=n-4$; (iii) $U_{5}(a, b)$, the unicyclic graph formed by attaching a and b pendent edges respectively to the two adjacent vertices of C_{5}, where $a \geq \max \{b, 1\}$ and $a+b=n-5$; (iv) $U_{3}^{*}(a, b)$, be the unicyclic graph formed by attaching $b+1$ pendent edges to a vertex of C_{3} and then attaching a pendent edges to a pendent vertex, where $a \geq 1$ and $a+b=n-4$.

3. Minimum RRW index and extremal graphs

Lemma 3.1. For $n \geq 6, n<R \Lambda\left(C_{n}\right)<\frac{n^{2}-4 n+8}{2}$.
Proof. Let $d=d\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. For $v \in V\left(C_{n}\right)$ and $i=1,2, \ldots, d-1$, there are two vertices of distance i from v. Then $R \Lambda\left(C_{n}\right)=n \sum_{i=1}^{d-1} \frac{1}{d-i}=n \sum_{i=1}^{d-1} \frac{1}{i}$. Thus $R \Lambda\left(C_{n}\right)>n$, and since $d \geq 3, R \Lambda\left(C_{n}\right) \leq\left[1+\frac{1}{2}+\frac{1}{3}(d-3)\right] n \leq$ $\left[\frac{3}{2}+\frac{1}{3}\left(\frac{n}{2}-3\right)\right] n<\frac{n^{2}-4 n+8}{2}$.

Lemma 3.2. Let G be an n-vertex unicyclic graph with $d(G)=n-2$. Then $R \Lambda(G)>n$.

Proof. Since $d(G)=n-2, G=G_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ or $G=H_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-2}{2}\right\rfloor$. The expressions for $R \Lambda\left(G_{n, i}\right)$ and $R \Lambda\left(H_{n, i}\right)$ are given in Section 2. Note that $R \Lambda\left(G_{5,1}\right)=\frac{11}{2}, R \Lambda\left(H_{5,1}\right)=R \Lambda\left(G_{5,2}\right)=\frac{13}{2}$, $R \Lambda\left(G_{6,1}\right)=R \Lambda\left(H_{6,2}\right)=7$, and $R \Lambda\left(G_{6,2}\right)=R \Lambda\left(H_{6,1}\right)=\frac{15}{2}$. Thus the result is true for $n=5,6$. Suppose that $n \geq 7$. Then $\sum_{k=2}^{n-3} \frac{1}{k} \geq \frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1, \frac{1}{n-3}+\sum_{k=3}^{n-1} \frac{1}{n-k}>(n-2) \cdot \frac{1}{n-2}=1, \sum_{k=3}^{i+2} \frac{1}{n-k}+\sum_{k=3}^{n-i+1} \frac{1}{n-k}>(n-1) \cdot \frac{1}{n-1}=1$, and $\sum_{k=3}^{i+2} \frac{1}{n-k}+\sum_{k=3}^{n-i} \frac{1}{n-k}+\frac{1}{n-4}>(n-1) \cdot \frac{1}{n-1}=1$. Thus $R \Lambda\left(G_{n, i}\right)>n$ and $R \Lambda\left(H_{n, i}\right)>n$.

Lemma 3.3. Let G be an n-vertex unicyclic graph with $3 \leq d(G) \leq n-3$. Then $R \Lambda(G)>n$.
Proof. We prove the lemma by induction on n. If $n=6$, then $d(G)=3$ and $G \cong C_{6}, U_{3}(1,1,1), U_{3}(2,1,0)$, $U_{4}(2,0), U_{4}(1,1), U_{5}(1,0), U_{3}^{*}(2,0)$ or $U_{3}^{*}(1,1)$, and thus by direct calculation, we have

$$
\begin{aligned}
R \Lambda(G) & = \begin{cases}10 & \text { if } G \cong U_{3}(2,1,0), U_{5}(1,0), \text { or } U_{4}(2,0) \\
8 & \text { if } G \cong U_{3}^{*}(2,0) \\
9 & \text { otherwise }\end{cases} \\
& >6,
\end{aligned}
$$

as desired.
Suppose that $n \geq 7$ and the result is true for unicyclic graphs on $n-1$ vertices. Let G be an n-vertex unicyclic graph with $3 \leq d(G) \leq n-3$. Let $d=d(G)$.
Case 1. There exists a pendent vertex, say u outside some diametrical path. Then $d(G-u)=d$ and

$$
R \Lambda(G)=R \Lambda(G-u)+\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) .
$$

By the induction hypothesis for $3 \leq d \leq n-4$, and Lemma 3.2 for $d=n-3$, we have $R \Lambda(G-u)>n-1$. If $d(u, w)=d-1$ for some $w \in V(G) \backslash\{u\}$, then $\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v)>r_{G}(u, w)=1$. If $d(u, v) \neq d-1$ for any $v \in V(G) \backslash\{u\}$, then $1 \leq d_{G}(u, v) \leq d-2$ for any $v \in V(G) \backslash\{u\}$, and thus $\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) \geq \sum_{v \in V(G) \backslash\{u\}} \frac{1}{d-1}=\frac{n-1}{d-1}>1$. Thus $R \Lambda(G)>n$.
Case 2. There exists no pendent vertex outside any diametrical path. If $G \cong C_{n}$, then the result follows from Lemma 3.1. Suppose that $G \not \equiv C_{n}$. Let $P=v_{1} v_{2} \ldots v_{d} v_{d+1}$ be a diametrical path of G. Then a pendent vertex of G must be v_{1} or v_{d+1}. Let $V_{1}=V(G) \backslash V(P)$. Obviously, $d_{G}(u, v)<d$ for $u, v \in V_{1}$, or $u \in V_{1}$ and $v \in V(P) \backslash\left\{v_{1}, v_{d+1}\right\}$. If $u \in V_{1}$, then $d_{G}\left(u, v_{1}\right)<d$. Thus

$$
\begin{aligned}
\sum_{u \in V_{1}, v \in V(G)} r_{G}(u, v) & =\sum_{\{u, v\} \subseteq V_{1}} r_{G}(u, v)+\sum_{u \in V_{1}} \sum_{v \in V(P)} r_{G}(u, v) \\
& \geq \frac{1}{d-1}\binom{n-d-1}{2}+\sum_{u \in V_{1}} \sum_{v \in V(P)} \frac{1}{d-1} \\
& \geq \frac{(n-d-1)(n-d-2)}{2(d-1)}+\sum_{u \in V_{1}} \frac{d}{d-1} \\
& >\frac{(n-d-1)(n-d-2)}{2(d-1)}+n-d-1 .
\end{aligned}
$$

It is easily seen that

$$
\sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v)=\sum_{i=1}^{d-1} \frac{d+1-i}{d-i}=d+\sum_{i=2}^{d-1} \frac{1}{i}
$$

Then

$$
\begin{aligned}
R \Lambda(G) & =\sum_{u \in V_{1}, v \in V(G)} r_{G}(u, v)+\sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v) \\
& >n-1+\sum_{i=2}^{d-1} \frac{1}{i}+\frac{(n-d-1)(n-d-2)}{2(d-1)} \\
& \geq n-1+\frac{d-2}{d-1}+\frac{(n-d-1)(n-d-2)}{2(d-1)} \\
& =n-1+\frac{n^{2}-2 n d+d^{2}-3 n+5 d-2}{2(d-1)} .
\end{aligned}
$$

Let $f(d)=n^{2}-2 n d+d^{2}-3 n+5 d-2-2(d-1)=n^{2}-2 n d+d^{2}-3 n+3 d$. Since $f^{\prime}(d)=-2 n+3+2 d<0, f(d)$ is decreasing for $3 \leq d \leq n-3$. Then $f(d) \geq f(n-3)=0$, and thus $n^{2}-2 n d+d^{2}-3 n+5 d-2 \geq 2(d-1)$. It follows that $R \Lambda(G)>n-1+1=n$.

Let U_{3}^{n-3} be the unicyclic graph formed by attaching $n-3$ pendent vertices to a vertex of C_{3}.
Theorem 3.4. Let G be a unicyclic graph with n vertices, $n \geq 4$. Then $R \Lambda(G) \geq n$ with equality if and only if $G \cong C_{4}, C_{5}$ or U_{3}^{n-3}.

Proof. Obviously, $2 \leq d(G) \leq n-2$. If $d(G) \geq 3$, then by Lemmas 3.2 and $3.3, R \Lambda(G)>n$. If $d(G)=2$, then $R \Lambda(G)=n$ and $G \cong C_{4}, C_{5}$ or U_{3}^{n-3}.

4. Maximum RRW index and extremal graphs

Lemma 4.1. Let G be an n-vertex unicyclic graph with $d(G)=3$. Then $R \Lambda(G) \leq \frac{n^{2}-4 n+8}{2}$ with equality if and only if $G \cong U_{3}(n-4,1,0), U_{4}(n-4,0)$ or $U_{5}(1,0)$.

Proof. If G is a cycle, then $G \cong C_{6}$ or C_{7}, and the result follows from Lemma 3.1. Suppose that G is not a cycle, then there are four possibilities:
(i) $G \cong U_{3}(a, b, c), a \geq b \geq \max \{c, 1\}$ and $a+b+c=n-3$; Then

$$
\begin{aligned}
R \Lambda(G) & =\frac{n}{2}+2(n-3)+\frac{a^{2}+b^{2}+c^{2}-(n-3)}{2} \\
& \leq \frac{n}{2}+2(n-3)+\frac{(n-4)^{2}+1-(n-3)}{2} \\
& =\frac{n^{2}-4 n+8}{2}
\end{aligned}
$$

with equality if and only if $a=n-4, b=1$ and $c=0$, i.e., $G \cong U_{3}(n-4,1,0)$.
(ii) $G \cong U_{4}(a, b)$, where $a \geq \max \{b, 1\}$ and $a+b=n-4$; Then

$$
\begin{aligned}
R \Lambda(G) & =\frac{n}{2}+2(n-3)+\frac{a^{2}+b^{2}-(n-4)}{2} \\
& \leq \frac{n}{2}+2(n-3)+\frac{(n-4)^{2}-(n-4)}{2} \\
& =\frac{n^{2}-4 n+8}{2}
\end{aligned}
$$

with equality if and only if $a=n-4$ and $b=0$, i.e., $G=U_{4}(n-4,0)$.
(iii) $G \cong U_{5}(a, b)$, where $a \geq \max \{b, 1\}$ and $a+b=n-5$; Then

$$
\begin{aligned}
R \Lambda(G) & =\frac{n}{2}+2 n-5+\frac{a^{2}+b^{2}-(n-5)}{2} \\
& \leq \frac{n}{2}+2 n-5+\frac{(n-5)^{2}-(n-5)}{2} \\
& =\frac{n^{2}-6 n+20}{2} \\
& \leq \frac{n^{2}-4 n+8}{2}
\end{aligned}
$$

with equality if and only if $n=6$, i.e., $G \cong U_{5}(1,0)$.
(iv) $G \cong U_{3}^{*}(a, b)$, where $a \geq 1$ and $a+b=n-4$; Then

$$
\begin{aligned}
R \Lambda(G) & =\frac{n}{2}+2+n-4+2 b+\frac{a^{2}+b^{2}-(n-4)}{2} \\
& \leq n+\frac{a^{2}+(b+2)^{2}-4}{2} \\
& \leq n+\frac{1^{2}+(n-3)^{2}-4}{2} \\
& =\frac{n^{2}-4 n+6}{2}<\frac{n^{2}-4 n+8}{2} .
\end{aligned}
$$

The result follows.
Lemma 4.2. Let G be an n-vertex unicyclic graph with $d(G)=n-2$. Then $R \Lambda(G)<\frac{n^{2}-4 n+8}{2}$.
Proof. Since $d(G)=n-2, G=G_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ or $G=H_{n, i}$ with $1 \leq i \leq\left\lfloor\frac{n-2}{2}\right\rfloor$. The expressions for $R \Lambda\left(G_{n, i}\right)$ and $R \Lambda\left(H_{n, i}\right)$ are given in Section 2. Thus

$$
\begin{aligned}
R \Lambda\left(G_{n, 1}\right) & =n-2+\sum_{k=2}^{n-3} \frac{1}{k}+\frac{1}{n-3}+\sum_{k=3}^{n-1} \frac{1}{n-k} \\
& \leq n-2+\frac{n-4}{2}+\frac{1}{2}+\frac{n-4}{2}+1 \\
& =2 n-4-\frac{1}{2} \\
& <\frac{n^{2}-4 n+8}{2} .
\end{aligned}
$$

Similarly, $R \Lambda\left(G_{n, i}\right)<\frac{n^{2}-4 n+8}{2}$ for $i \geq 2$ and $R \Lambda\left(H_{n, i}\right)<\frac{n^{2}-4 n+8}{2}$ for $i \geq 1$.
Lemma 4.3. Let G be a unicyclic graph with diameter $d(G)$, where $4 \leq d(G) \leq n-3$. If there exists no pendent vertex outside any diametrical path of G, then $R \Lambda(G)<\frac{n^{2}-4 n+8}{2}$.

Proof. If $G \cong C_{n}$, then the result follows from Lemma 3.1. Suppose that $G \nsubseteq C_{n}$.
Let $P=v_{1} v_{2} \ldots v_{d} v_{d+1}$ be a diametrical path of G. Let $V_{1}=V(G) \backslash V(P)$. By the proof of Lemma 3.3, we have

$$
\sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v)=d+\sum_{i=2}^{d-1} \frac{1}{i} .
$$

Let $u \in V_{1}$. We will show that $\sum_{v \in V(P)} r_{G}(u, v) \leq d$. Suppose first that G has exactly one pendent vertex, say v_{d+1}. If $d_{G}\left(u, v_{d+1}\right)=d$, then $\sum_{v \in V(P)} r_{G}(u, v) \leq(d+1)-1=d$. Suppose that $d_{G}\left(u, v_{d+1}\right) \leq d-1$. Then $d_{G}\left(u, v_{d}\right) \leq$ $d-2$. If v_{d} lies outside the cycle of G, then $d_{G}\left(u, v_{d-1}\right)<d-2$, and otherwise, $\min \left\{d_{G}\left(u, v_{1}\right), d_{G}\left(u, v_{d-1}\right)\right\} \leq d-2$. Thus $\sum_{v \in V(P)} r_{G}(u, v) \leq(d+1)-2+\frac{1}{2} \cdot 2=d$. If G has two pendent vertices v_{1} and v_{d+1}, then $d_{G}\left(u, v_{2}\right)$, $d_{G}\left(u, v_{d}\right) \leq d-2$, i.e., $r_{G}\left(u, v_{2}\right), r_{G}\left(u, v_{d}\right) \leq \frac{1}{2}$, implying that $\sum_{v \in V(P)} r_{G}(u, v) \leq(d+1)-2+\frac{1}{2} \cdot 2=d$. It follows that

$$
\sum_{u \in V_{1}} \sum_{v \in V(P)} r_{G}(u, v) \leq \sum_{u \in V_{1}} d=(n-d-1) d
$$

If $u, v \in V_{1}$ and $u \neq v$, then $r_{G}(u, v) \leq 1$ and $r_{G}(u, v)=\frac{1}{d-1}<\frac{1}{2}$ if u and v are adjacent. Thus

$$
\begin{aligned}
\sum_{\{u, v\} \subseteq V_{1}} r_{G}(u, v) & \leq 1 \cdot\binom{n-d-1}{2}-\frac{1}{2} \cdot(n-d-2) \\
& =\frac{(n-d-1)(n-d-2)}{2}-\frac{n-d-2}{2}
\end{aligned}
$$

Note that $-d^{2}+5 d \leq 4$ since $d \geq 4$. Then

$$
\begin{aligned}
R \Lambda(G) & =\sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v)+\sum_{u \in V_{1}} \sum_{v \in V(P)} r_{G}(u, v)+\sum_{\{u, v\} \subseteq V_{1}} r_{G}(u, v) \\
& \leq d+\sum_{i=2}^{d-1} \frac{1}{i}+(n-d-1) d+\frac{(n-d-1)(n-d-2)}{2}-\frac{n-d-2}{2} \\
& \leq d+\frac{d-2}{2}+\frac{n^{2}-4 n+2-d^{2}+2 d+2}{2} \\
& =\frac{n^{2}-4 n+2}{2}+\frac{-d^{2}+5 d}{2} \\
& \leq \frac{n^{2}-4 n+2}{2}+2 \\
& <\frac{n^{2}-4 n+8}{2},
\end{aligned}
$$

as desired.
For $u \in V(G), d_{u}$ denotes the degree of u in G.
Lemma 4.4. Let G be a unicyclic graph with $4 \leq d(G) \leq n-3$. Then $R \Lambda(G)<\frac{n^{2}-4 n+8}{2}$.
Proof. We prove the lemma by induction on n. Suppose first that $n=7$. Then $d(G)=4$. Let $P=$ $v_{1} v_{2} v_{3} v_{4} v_{5}$ be the diametrical path of G and C the unique cycle of G. Let $D\left(v_{6}\right)=\sum_{u \in V(P)} r_{G}\left(u, v_{6}\right)$, and $D\left(v_{7}\right)=\sum_{u \in V(P)} r_{G}\left(u, v_{7}\right)+r_{G}\left(v_{6}, v_{7}\right)$. Note that

$$
R \Lambda(G)=\sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v)+D\left(v_{6}\right)+D\left(v_{7}\right) \text { and } \sum_{\{u, v\} \subseteq V(P)} r_{G}(u, v)=4+\frac{1}{2}+\frac{1}{3}=4+\frac{5}{6} .
$$

Suppose that $v_{6}, v_{7} \in V(C)$. Then v_{6} and v_{7} are adjacent, v_{6} is also adjacent to a vertex $u \in V(P)$. Let v be a neighbor of u in P. Then $d_{G}\left(u, v_{6}\right)=1$ and $d_{G}\left(v, v_{6}\right) \leq 2$, implying that $r_{G}\left(u, v_{6}\right)=\frac{1}{3}$ and $r_{G}\left(v, v_{6}\right) \leq \frac{1}{2}$. Thus

$$
D\left(v_{6}\right) \leq(5-2)+\frac{1}{3}+\frac{1}{2}=3+\frac{5}{6} .
$$

Similarly,

$$
D\left(v_{7}\right) \leq(6-3)+\frac{1}{3} \times 2+\frac{1}{2}=4+\frac{1}{6}
$$

Hence

$$
R \Lambda(G) \leq 4+\frac{5}{6}+3+\frac{5}{6}+4+\frac{1}{6}=12+\frac{5}{6}<\frac{29}{2}=\frac{7^{2}-4 \times 7+8}{2}
$$

If one of v_{6} and v_{7} belongs to $V(C)$, then by similar arguments as above we also have the result. Thus the result follows for $n=7$.

Suppose that $n \geq 8$ and the result follows for unicyclic graphs on $n-1$ vertices. Let G be an n-vertex unicyclic graph with $4 \leq d(G) \leq n-3$. Let $d(G)=d$.

If there exists no pendent vertex outside any diametrical path, the the result follows from Lemma 4.3.
Suppose there exists a pendent vertex, say u outside some diametrical path, say $P=v_{1} v_{2} \ldots v_{d} v_{d+1}$. Obviously, $d(G-u)=d$. Note that

$$
R \Lambda(G)=R \Lambda(G-u)+\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) .
$$

By the induction hypothesis for $4 \leq d \leq n-4$, and Lemma 4.2 for $d=n-3$, we have

$$
R \Lambda(G-u)<\frac{(n-1)^{2}-4(n-1)+8}{2}=\frac{n^{2}-6 n+13}{2} .
$$

Next we will show that $\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) \leq n-\frac{5}{2}$. If $d_{G}(u, w)=d$ for some $w \in V(G) \backslash\{u\}$, then there is a shortest path P^{\prime} from u to w with length $d, \sum_{v \in V\left(P^{\prime}\right) \backslash\{u\}} r_{G}(u, v) \leq \frac{1}{2} \cdot(d-2)+1$, and thus

$$
\begin{aligned}
\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) & =\sum_{v \in V\left(P^{\prime}\right) \backslash\{u\}} r_{G}(u, v)+\sum_{v \in V(G) \backslash V\left(P^{\prime}\right)} r_{G}(u, v) \\
& \leq \frac{d-2}{2}+1+(n-d-1) \\
& =n-\frac{d}{2}-1 \\
& <n-\frac{5}{2} .
\end{aligned}
$$

Now suppose that $1 \leq d_{G}(u, v) \leq d-1$ for any $v \in V(G) \backslash\{u\}$. Let w be the unique neighbor of u. If $d_{w} \geq 3$, then for neighbors x and y of w different from $u, d(u, w), d(u, x), d(u, y) \leq 2 \leq d-2$, implying that

$$
\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) \leq(n-1)-3+\frac{1}{2} \times 3=n-\frac{5}{2} .
$$

Suppose that $d_{w}=2$ and x is the neighbor of w different from u. If $d(G)=4$, then for any $y \in V(G) \backslash\{u, w, x\}$, $y \in N_{x}$ or $d_{G}(x, y)=2$; In the former case, y is a neighbor of x for any $y \in V(G) \backslash\{u, w, x\}$, which implies $d(G)=3$, a contradiction, while in the latter case, $d_{G}(u, y)=4$, also a contradiction. Thus $d(G) \geq 5$. Let y be a neighbor x. Then $d(u, w), d(u, x), d(u, y) \leq 3 \leq d-2$,implying that

$$
\sum_{v \in V(G) \backslash\{u\}} r_{G}(u, v) \leq(n-1)-3+\frac{1}{2} \times 3=n-\frac{5}{2}
$$

It follows that $R \Lambda(G)<\frac{n^{2}-6 n+13}{2}+n-\frac{5}{2}=\frac{n^{2}-4 n+8}{2}$. This completes the proof.
Theorem 4.5. Let G be a unicyclic graph with n vertices. Then $R \Lambda(G) \leq \frac{n^{2}-4 n+8}{2}$ with equality if and only if $G \cong U_{3}(n-4,1,0), U_{4}(n-4,0)$ or $U_{5}(1,0)$.

Proof. Obviously, $2 \leq d(G) \leq n-2$. If $d(G)=2$, then $R \Lambda(G)=n<\frac{n^{2}-4 n+8}{2}$. Thus the result follows from Lemmas 4.1, 4.2 and 4.4.

References

[1] A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73 (2000) 933-941.
[2] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
[3] O. Ivanciuc, T. Ivanciuc, A.T. Balaban, Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1 (2002) 467-487.
[4] D. Janežič, A. Miličević, S. Nikolić, N. Trinajstić, Graph Theoretical Matrices in Chemistry, Mathematical Chemistry Monographs No. 3, Univ. Kragujevac, Kragujevac, 2007.
[5] S. Nikolić, N. Trinajstić, Z. Mihalić, The Wiener index: development and applications, Croat. Chem. Acta 68 (1995) 105-129.
[6] D.H. Rouvray, The rich legacy of half of a century of the Wiener index, in: D.H. Rouvray, R.B. King (eds.), Topology in Chemistry-Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16-37.
[7] N. Trinajstić, Chemical Graph Theory, CRC press, Boca Raton, 1992.
[8] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[9] B. Zhou, N. Trinajstić, Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010) $227-242$.
[10] B. Zhou, Y. Yang, N. Trinajstić, On reciprocal reverse Wiener index, J. Math. Chem. 47 (2010) 201-209.

[^0]: 2010 Mathematics Subject Classification. Primary 05C15; Secondary 05C90
 Keywords. distance, Wiener index, reciprocal reverse Wiener index, unicyclic graphs
 Received: 13 August 2012; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 Research supported by the Guangdong Provincial Natural Science Foundation of China (no. S2011010005539)

 * Corresponding author

 Email address: zhoubo@scnu.edu.cn (Bo Zhou)

