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Abstract. In this paper we study Hurwitz spaces parameterizing coverings with special points and with
monodromy group a Weyl group of type Bd. We prove that such spaces are irreducible if k > 3d − 3. Here,
k denotes the number of local monodromies that are reflections relative to long roots.

1. Introduction

The study of irreducible components of Hurwitz spaces is a classic problem in algebraic geometry and
it is valuable in many applications. The Lüroth - Clebsch - Hurwitz theorem states the irreducibility of the
Hurwitz space of simple coverings of IP1 with n branch points (see [11]). This result was used by Severi in
order to prove the irreducibility of the moduli space of genus 1 curves (see [18] ). Today, there were many
generalizations of Lüroth - Clebsch - Hurwitz result. Let Y be a smooth, connected, projective complex
curve of genus 1. Specifically, the irreducibility of Hurwitz spaces of coverings of Y with monodromy
group Sd and with an arbitrary number of special points has been studied both when 1 = 0 and when
1 > 0 (see [1, 9, 13–15, 19, 24, 27, 28]). We point out that, for example, Harris, Graber and Starr used
the result of [9] in order to prove the existence of sections of one-parameter family of complex rationally
connected varieties (see [10]). Hurwitz spaces of coverings whose monodromy group is a Weyl group
different from Sd and their irreducible components were studied, for example, in [2, 20–23, 25, 26]. We note
that coverings with monodromy group a Weyl group appear in the study of spectral curves, integrable
systems and Prym - Tyurin varieties (see [6, 15, 16]). In fact, the Prym maps yield morphism from the
Hurwitz spaces of coverings with monodromy group contained in a Weyl group to Siegel modular varieties
which parameterize Abelian varieties. Thus, some property of these varieties can be studied by using these
Hurwitz spaces.

In this paper we continue the investigation of the irreducibility of Hurwitz spaces that parameterize
coverings with special fibers and with monodromy group a Weyl group of type Bd. In particular, we work
with coverings that decompose into a sequence of type X→π X′ →f Y where π is a degree two covering with
n1 branch points and f is a degree d coverings with monodromy group Sd. Moreover, f has n2 branch
points, k of which are simple points and n2 − k of which are special points. Furthermore, f (Dπ) ∩ D f = ∅
where Dπ and D f denote, respectively, the branch locus of π and f .
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We prove that, under the hypothesis k > 3d − 3, the corresponding Hurwitz spaces are irreducible both
when 1 = 0 and when 1 > 0 (see Theorems 5.5 and 5.6). In this way, we generalize the results obtained for
coverings as above but with one or two special fibers by the author in [20, 25]. Moreover, we extend the
results obtained in the case in which the monodromy group is all Sd by Kulikov in [14] and by the author
in [27] to coverings with monodromy group a Weyl group of type Bd.

Conventions and Notations Here, two sequences of coverings, X1 →
π1 X′1 →

f1 Y and X2 →
π2 X′2 →

f2 Y, are
equivalent if there exist two biholomorphic maps p : X1 → X2 and p′ : X′1 → X′2 such that p′ ◦ π1 = π2 ◦ p
and f2 ◦ p′ = f1. We denote by [ f ◦ π] the equivalence class containing f ◦ π. Moreover, we denote by th the
permutation h−1 t h and we denote by ⟨t1, . . . , tl⟩ the subgroup of Sd generated by the permutations t1, . . . , tl.

2. Weyl groups of type Bd

Let {ε1, . . . , εd} be the standard base of IRd and let R be the root system {±εi, ±εi ± ε j : 1 ≤ i, j ≤ d}. The
Weyl group of type Bd is generated by the reflections sεi , with 1 ≤ i ≤ d, and by the reflections sεi−ε j , with
1 ≤ i < j ≤ d (see [4]). We denote this group by W(Bd). We recall that the reflection sεi−ε j exchanges εi with
ε j and −εi with −ε j, leaving fixed each εh with h , i, j. The reflection sεi exchanges εi with −εi and fixes all
the εh with h , i. Hence, identifying {±εi : 1 ≤ i ≤ d} with {±1, . . . ,±d} by using the map ±εi → ±i, we can
define an injective homomorphism from W(Bd) into S2d such that

sεi−ε j → (i j)(−i − j), sεi → (i − i), sεi+ε j = sεi sε j sεi−ε j → (i − j)(−i j).

Let (Z2)d be the set of the functions from {1, . . . , d} into Z2 equipped with the sum operation. Let us denote
byΨ the homomorphism from Sd in Aut((Z2)d) which assigns to t ∈ Sd the elementΨ(t) ∈ Aut((Z2)d) where

[Ψ(t) a] ( j) := a ( j t) for each a ∈ (Z2)d.

Let (Z2)d×sSd be the semidirect product of (Z2)d and Sd through the homomorphismΨ. Given (a′; t1), (a′′; t2) ∈
(Z2)d ×s Sd, we put

(a′; t1) · (a′′; t2) := (a′ +Ψ(t1) a′′; t1 t2).

Moreover, we use 1̄ j by denote the function of (Z2)d defined as

1̄ j( j) = 1̄ and 1̄ j(h) = 0̄ for each h , j

and we use zi j to denote the function of (Z2)d defined as

zi j(i) = zi j( j) = z and zi j(h) = 0̄ for each h , i, j and z ∈ Z2.

We notice that the homomorphism from W(Bd) into (Z2)d ×s Sd defined by

sεi−ε j → (0; (i j)), sεi → (1̄i; id), sεi+ε j → (1̄i j; (i j))

is an isomorphism. In what follows, we will use this isomorphism in order to identify W(Bd) by (Z2)d ×s Sd.

Definition 2.1. Let h be a positive integer. Let (c; ξ) be an element of W(Bd) satisfying the following: ξ is a h-cycle
of Sd and c is a function that sends to 0̄ all the indexes fixed by ξ. We call an such element positive h-cycle if c is
either zero or a function which sends to 1̄ an even number of indexes. We call it negative h-cycle if it is not positive.

We recall that two cycles (c; ξ) and (c′; ξ′) in W(Bd) are disjoint if ξ and ξ′ are disjoint. Furthermore, all
the elements in W(Bd) can be expressed as a product of disjoint positive and negative cycles. The lengths
of such disjoint cycles together with their signs determine the signed cycle type of the elements of W(Bd).
Two elements of W(Bd) are conjugate if and only if they have the same signed cycle type (see [5]).
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3. Hurwitz spaces of type HW(Bd)
d,n1,k,q1e1,...,qrer

(Y)

Let X, X′ and Y be smooth, connected, projective complex curves and let 1 be the genus of Y. Let
d,n1,n2, k be integers such that d ≥ 3,n1 > 0 and n2 > k > 0. In this paper we are interested in degree 2d
coverings that decompose in a sequence of coverings, X→π X′ →f Y, satisfying the followings:
π is a degree 2 covering with n1 branch points and f is a degree d coverings, with monodromy group Sd

and with n2 branch points, k of which are simple points and n2 − k of which are special points. Moreover,
f (Dπ) ∩D f = ∅where Dπ and D f denote, respectively, the branch locus of π and f .

Let b0 be a point of Y and let D be a finite subset of Y such that b0 ∈ Y − D. By Riemann’s existence
theorem (see [8], Proposition 1.2) there is a natural one-to-one correspondence between:
− the set of equivalence classes of degree 2d branched coverings of Y with branch locus D

and
− the set of equivalence classes of homomorphisms m : π1(Y−D, b0)→ S2d whose images are transitive subgroups

of S2d, where two homomorphisms m and m′ are equivalent if there exists h ∈ S2d such that m′([γ]) = h−1m([γ])h for
each [γ] ∈ π1(Y −D, b0).

From now on, we will denote by D and by m, respectively, the branch locus and the monodromy
homomorphism of f ◦ π.

Let e1, . . . , er be partitions of d such that ei = (ei
1, . . . , e

i
si

) and ei
1 ≥ · · · ≥ ei

si
. Let q1, . . . , qr be positive integers

such that q1 + · · · + qr = n2 − k. Let us denote by HW(Bd)
d,n1,k,q1e1,...,qrer (Y) the Hurwitz space of equivalence classes

of sequences of coverings, f ◦ π, defined as above such that qi among the special points of f have local
monodromy whose cycle type is given by the partition ei, for i = 1, . . . , r.

Definition 3.1. Let G be an arbitrary group. An ordered sequence

(t1, . . . , tn;λ1, µ1, . . . , λ1, µ1) := (t, λ, µ)

of elements in G is a Hurwitz system if ti , id for each i ∈ {1, . . . ,n} and t1 · · · tn = [λ1, µ1] · · · [λ1, µ1]. The
subgroup of G generated by ti, λs, µs with i = 1, . . . , n and s = 1, . . . , 1 is called the monodromy group of the
Hurwitz system. Two Hurwitz systems (t, λ, µ) and (t′, λ′, µ′) with elements in G are equivalent if there exsists h ∈ G
such that t′i = h−1tih, λ′s = h−1λsh and µ′s = h−1µsh for each i = 1, . . . , n and s = 1, . . . , 1.

Remark 3.2. We notice that an order sequence (t1, . . . , tn) of elements in G, with ti , id for each i, is a Hurwitz
system if t1 · · · tn = id.

Let (γ1, . . . , γn1+n2 , α1, β1, . . . , α1, β1) be a standard generating system for π1(Y − D, b0). The images via
m of γ1, . . . , γn1+n2 , α1, β1, . . . , α1, β1 determine an equivalence class of Hurwitz systems

[t1, . . . , tn1+n2 ;λ1, µ1, . . . , λ1, µ1]

with monodromy group W(Bd) satisfying the following conditions: k among the th are elements of type
(zi j; (i, j)), n1 are elements of type (1̄l; id) and qi, with i = 1, . . . , r, are product of si positive disjoint cycles
whose lengths are given by the elements of the partition ei. Let us denote by Ao

k,n1,q1e1,...,qrer,1
the set of all

equivalence classes of Hurwitz systems as above.
We notice that by Riemann’s existence theorem, we can identify the set of equivalence classes

[ f ◦ π] ∈ HW(Bd)
d,n1,k,q1e1,...,qrer (Y) such that f ◦ π has branch locus D with the set Ao

k,n1,q1e1,...,qrer,1
.

4. Braid moves

Let n be a positive integer. Let Y(n) be the n-fold symmetric product of Y and ∆ be the codimension
1 locus of Y(n) consisting of non simple divisors. In this paper we are interested in the way in which the



F. Vetro / Filomat 28:2 (2014), 275–284 278

generators of the braid group π1(Y(n) − ∆,D) act on Hurwitz systems. So, we recall that such group is
generated by the elementary braids σi with i = 1, . . . ,n − 1 and by the braids ρ js, τ js with 1 ≤ j ≤ n and
1 ≤ s ≤ 1 (see [3, 7, 17]). Here, we denote by σ′i , σ

′′
i = (σ′i )

−1 the pair of moves associated to σi. We call σ′i , σ
′′
i

elementary moves. The moves σ′i , σ
′′
i fix all the λs, all the µs and all the th with h , i, i + 1. They transform

(ti, ti+1) into
(titi+1t−1

i , ti) and (ti+1, t−1
i+1titi+1),

respectively (see [11]). We denote by ρ′js, ρ
′′
js = (ρ′js)

−1 and by τ′js, τ
′′
js = (τ′js)

−1, respectively, the pair of moves
associated to ρ js and τ js. We use the following result.

Proposition 4.1 ([12], Theorem 1. 8). Let (t1, . . . , tn;λ1, µ1, . . . , λ1, µ1) be a Hurwitz system. Let u0 = 1 and let
us = [λ1, µ1] · · · [λs, µs] for s = 1, . . . , 1. The following formulae hold:

(t1, . . . , tn;λ1, µ1, . . . , λ1, µ1)→ (t′1, . . . , t
′
n;λ′1, µ

′
1, . . . , λ

′
1, µ

′
1)

• For ρ′is where 1 ≤ i ≤ n, 1 ≤ s ≤ 1
t′j = t j for each j , i, λ′l = λl for each l, µ′l = µl for each l , s and

(ti, µs)→ (t′i , µ
′
s) = (a−1

1 tia1, b−1
1 t−1

i b1 µs)

where a1 = (t1 · · · ti−1)−1us−1λs(u−1
s u1)(ti+1 · · · tn)−1 and b1 = (t1 · · · ti−1)−1us−1λs.

• For τ′is where 1 ≤ i ≤ n, 1 ≤ s ≤ 1
t′j = t j for each j , i, λ′l = λl for each l , s, µ′l = µl for each l and

(ti, λs)→ (t′i , λ
′
s) = (c−1

1 tic1, d−1
1 tid1 λs)

where c1 = ti+1 · · · tn(u−1
s u1)−1µs(us−1)−1t1 · · · ti−1 and d1 = ti+1 · · · tn(u−1

s u1)−1µs.
• For ρ′′is where 1 ≤ i ≤ n, 1 ≤ s ≤ 1

t′j = t j for each j , i, λ′l = λl for each l, µ′l = µl for each l , s and

(ti, µs)→ (t′i , µ
′
s) = (a−1

2 tia2, b−1
2 tib2 µs)

where a2 = ti+1 · · · tn(u−1
s u1)−1λ−1

s (us−1)−1t1 · · · ti−1 and b2 = ti+1 · · · tn(u−1
s u1)−1.

• For τ′′is where 1 ≤ i ≤ n, 1 ≤ s ≤ 1
t′j = t j for each j , i, λ′l = λl for each l , s, µ′l = µl for each l and

(ti, λs)→ (t′i , λ
′
s) = (c−1

2 tic2, d−1
2 t−1

i d2 λs)

where c2 = (t1 · · · ti−1)−1us−1µ−1
s (u−1

s u1)(ti+1 · · · tn)−1 and d2 = (t1 · · · ti−1)−1us−1.

Remark 4.2. The moves ρ′is, ρ
′′
is , τ

′
is and τ′′is transform ti into an element belonging to the same conjugacy class.

Furthermore, we notice that when λ1 = · · · = λs = µ1 = · · · = µs−1 = id, the braid move ρ′1s transforms

µs into t−1
1 µs.

Analogously when λ1 = · · · = λs−1 = µ1 = · · · = µs−1 = id, the braid move τ′′1s transforms

λs into t−1
1 λs.

Definition 4.3. Two Hurwitz systems are said braid equivalent if one is obtained from the other by using a finite
sequence of braid moves σ′i , ρ

′
js, τ

′
js, σ

′′
i , ρ

′′
js, τ

′′
js where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n and 1 ≤ s ≤ 1. Two ordered

sequences of permutations (t1, . . . , tl) and (t′1, . . . , t
′
l ) are said braid equivalent if (t′1, . . . , t

′
l ) is obtained from (t1, . . . , tl)

by using a finite sequence of braid moves of type σ′i , σ
′′
i . We denote the braid equivalence by ∼.
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5. Irreducibility of HW(Bd)
d,n1,k,q1e1,...,qrer

(Y)

In what follows, we write |e1| to denote
∑s1

j=1(e1
j − 1). Moreover, we associate to the partition ei the

following element in Sd having cycle type given by ei

ϵi := (1, 2, . . . , ei
1)(ei

1 + 1, . . . , ei
1 + ei

2) · · · (
si−1∑
j=1

ei
j+1 . . . d).

Let ϵ be the following permutation of Sd

(ϵ1 · · · ϵ1ϵ2 · · · ϵ2 · · · ϵr · · · ϵr)−1

where ϵi, with i = 1, . . . , r, appears qi times. Let ξ1, . . . , ξq be disjoint cycles of lengths h1, . . . , hq, with
h1 ≥ h2 ≥ · · · ≥ hq, such that ϵ = ξ1 · · · ξq. Let ξ j = (l j

1 . . . l
j
h j

) where l j
1 < l j

b for each b = 2, . . . , h j. In the

sequel, we denote by Z j the sequence of transpositions ((l j
1, l

j
2), (l j

1, l
j
3), . . . , (l j

1, l
j
h j

)) and by Z the concatenation
Z1,Z2, . . . ,Zq.

For a convenience of the reader we recall the following results.

Lemma 5.1 ([19], Proposition 3). Let (t1, t2, . . . , tl) be a sequence of permutations in Sd such that t1 has cycle type
e1 and t2, . . . , tl are transpositions.

If l − 1 + |e1| ≥ 2d then (t1, t2, . . . , tl) is braid equivalent to

(t′1, t
′
2, . . . , t

′
l−2, t

′
l−1, t

′
l )

where t′1 has cycle type e1, t′2, . . . , t
′
l are transpositions, t′l−1 = t′l and

⟨t′1, t′2, . . . , t′l−2⟩ = ⟨t′1, . . . , t′l−2, t
′
l−1, t

′
l⟩.

Lemma 5.2 ([12], Main Lemma 2.1). Let (t1, . . . , tn;λ1, µ1, . . . , λ1, µ1) be a Hurwitz system of permutations in
Sd. Suppose that ti ti+1 = id. Let H be the subgroup of Sd generated by {t1, . . . , ti−1, ti+2, . . . , tn, λ1, µ1, . . . , λ1, µ1}.
Then for every h ∈ H the given Hurwitz system is braid equivalent to

(t1, . . . , ti−1, th
i , t

h
i+1, ti+2, . . . , tn;λ1, µ1, . . . , λ1, µ1).

Proposition 5.3 ([14], Theorem 2. 3). Let [t1, . . . , tn2 ] be an equivalence class of Hurwitz systems of permutations
in Sd, with monodromy group Sd, satisfying the followings: k among the t j are transpositions and qi among the t j are
permutations whose cycle type is given by the partition ei of d, for i = 1, . . . , r. If k > 3d − 3, [t1, . . . , tn2 ] is braid
equivalent to the class [t̃1, . . . , t̃n2 ] where

t̃1 = . . . = t̃q1 = ϵ1, t̃q j+1 = . . . = t̃q j+1 = ϵ j+1

with j = 1, . . . , r − 1. Moreover the sequence (t̃n2−k+1, . . . , t̃n2 ) is equal to

(Z, (1, 2), . . . , (1, 2), (2, 3), (2, 3), . . . , (d − 1, d), (d − 1, d))

where (1, 2) appears an even number of times.

Now, by using Proposition 5.3, we show that any two class in Ao
k,n1,q1e1,...,qrer,0

are braid equivalent.

Proposition 5.4. If k > 3d − 3, each equivalence class in Ao
k,n1,q1e1,...,qrer,0

is braid equivalent to a class of the form:

[(0; t̃1), . . . , (0; t̃n2 ), (1̄1; id), . . . , (1̄1; id)]

where (t̃1, . . . , t̃n2 ) is the sequence in Proposition 5.3.
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Proof. Let [ t ] ∈ Ao
k,n1,q1e1,...,qrer,0

. We act with elementary moves of type σ′i and move on the right all the

elements (1̄∗; id). In this way, we have that [ t ] is braid equivalent to a class of the form

[(∗; t′1), . . . , (∗; t′n2
), (1̄∗; id), . . . , (1̄∗; id)].

We notice that the equivalence class [t′1, . . . , t
′
n2

] satisfies all the hypothesis in Proposition 5.3, so it is braid
equivalent to the class [t̃1, . . . , t̃n2 ]. Then, [t] is braid equivalent to a class of type

[(∗; t̃1), . . . , (∗; t̃n2 ), (1̄∗; id), . . . , (1̄∗; id)].

Step 1. We show that [t] is braid equivalent to a class of the form

[(∗; t̃1), . . . , (∗; t̃n2 ), (1̄1; id), . . . , (1̄1; id)].

Let i and j be two arbitrary indexes in {1, . . . , d} such that i < j and j , i + 1. We notice that the sequence
((∗; (i, i + 1)), (∗; (i, i + 1)), . . . , (∗; ( j − 1, j)), (∗; ( j − 1, j)) is braid equivalent to the sequence

((∗; (i, j)), (∗; (i, j)), (∗; (i, i + 1)), (∗; (i, i + 1)), . . . , (∗; ( j − 2, j − 1)), (∗; ( j − 2, j − 1))).

In fact, if the elements of the pair ((∗; ( j − 1, j)), (∗; ( j − 1, j)) are at the places h, h + 1 and the elements of the
pair ((∗; (i, i+1)), (∗; (i, i+1)) are at the places l, l+1, in order to obtain the claim we can act with the sequence
of moves

σ′h−1, σ
′
h, σ
′′
h−2, σ

′′
h−1, σ

′
h−3, σ

′
h−2, σ

′′
h−4, σ

′′
h−3, . . . , σ

′
l+1, σ

′
l+2, σ

′′
l , σ

′′
l+1.

Now, we can bring the elements of the pair ((∗; (i, j)), (∗; (i, j))) to the places n2 − 1 and n2 by using the
sequence of moves σ′l+1, σ

′
l , σ
′
l+2, σ

′
l+1, . . . , σ

′
n2−1, σ

′
n2−2.

This ensures that acting by suitable elementary moves on the sequence ((∗; (1, 2)), (∗; (1, 2)), . . . , (∗; (d −
1, d)), (∗; (d − 1, d))) we can replace it with

((∗; (1, 2)), (∗; (1, 2)), . . . , (∗; (u − 2, u − 1)), (∗; (u − 2,u − 1)), (∗; (u,u + 1)),

(∗; (u,u + 1)), . . . , (∗; (d − 1, d)), (∗; (d − 1, d)), (∗; (1,u)), (∗; (1,u)))

where u is an arbitrary index in {1, . . . , d}. Let (1̄v; id) be the element that occupies the place n2 + 1. Then, we
choose u = v and we act with σ′n2

in order to replace (1̄v; id) with (1̄1; id). Now, we move this element to the
last place. If the elements (∗; (u,u + 1)), (∗; (u, u + 1)) are in the places h + 2, h + 3, then we use the moves

σ′n2−2 , σ
′
n2−1 , σ

′
n2−3 , σ

′
n2−2 , . . . , σ

′
n2−2(d−1)+2 , σ

′
n2−2(d−1)+3 , σ

′
n2−2(d−1)+3 , σ

′
n2−2(d−1)+2 ,

σ′′n2−2(d−1)+4 , σ
′′
n2−2(d−1)+3 , σ

′
n2−2(d−1)+5 , σ

′
n2−2(d−1)+4 , . . . , σ

′′
h−1 , σ

′′
h , σ

′
h , σ

′
h−1

in order to obtain again a sequence of the type

((∗; (1, 2)), (∗; (1, 2)), . . . , (∗; (u − 1,u)), (∗; (u − 1,u)), . . . , (∗; (d − 1, d)), (∗; (d − 1, d))).

Now, we can proceed as above for all the elements of type (1̄∗; id). In this way, we obtain the claim.

Step 2. By Step 1, [t] is braid equivalent to a class of the form

[(b1; t̃1), . . . , (∗; t̃n2 ), (1̄1; id), (1̄1; id), . . . , (1̄1; id)].

Now we claim that [t] is braid equivalent to a class of type

[(0; t̃1), . . . , (0; t̃n2−2(d−1)), (∗; t̃n2−2(d−1)+1), . . . , (∗; t̃n2 ), (1̄1; id), . . . , (1̄1; id)].

Let i1, i2, . . . , il be the indexes which b1 sends to 1̄. We suppose that i1 < i2 < · · · < il−1 < il. We notice that,
by Step 1, we can assume that the element at the place n2 + 1 is (1̄il ; id). In fact, in order to obtain the claim it



F. Vetro / Filomat 28:2 (2014), 275–284 281

is sufficient to choose u = il. By using elementary moves of type σ′′j , we move (1̄il ; id) to the place 2. We act

two times with the moves σ′′1 and so we replace the pair ((b1; t̃1), (1̄il ; id)) with ((b̂1; t̃1), (1̄il+1; id)) where b̂1 is
a function that sends to 1̄ the indexes i1, i2, . . . , il−1, il − 1. Here, il − 1 and il + 1 are, respectively, the index
that precede and the index that follow il in t̃1. Now, we move the element (1̄il+1 ; id) to the place n2 + 1. By
Step 1, we can replace (1̄il+1 ; id) with (1̄1; id).

Since b1 is a function which sends to 1̄ an even number of indexes (see Definition 2.1), acting as above,
after a finite number of steps, we can replace the element (b̂1; t̃1) with (0; t̃1).

We can proceed as done for (b1; t̃1), also for all the elements of type (∗; t̃ j) with j = 2, . . . , n2 − 2(d − 1). In
this way, we obtain the claim.

Step 3 . By Step 2, [t] is braid equivalent to the class

[(0; t̃1), . . . , (0; t̃n2−2(d−1)), (∗; (1, 2)), (∗; (1, 2)), . . . , (∗; (d − 1, d)), (∗; (d − 1, d)), (1̄1; id), . . . , (1̄1; id)].
Since n1 is even, one has

(0; t̃1) · · · (0; t̃n2−2(d−1))(∗; (1, 2))(∗; (1, 2)) · · · (∗; (d − 1, d))(∗; (d − 1, d)) = (0; id).

From this it follows that the sequence ((∗; (1, 2)), (∗; (1, 2)), . . . , (∗; (d − 1, d)), (∗; (d − 1, d))) is equal to either

((0; (1, 2)), (0; (1, 2)), . . . , (0; (d − 1, d)), (0; (d − 1, d)))

or
((1̄12; (1, 2)), (1̄12; (1, 2)), . . . , (1̄d−1d; (d − 1, d)), (1̄d−1d; (d − 1, d))).

In the first case, we have the claim. So, we analyze the second case. We use the movesσ′n2
, σ′n2−1, . . . , σ

′
n2−2(d−1)+3

in order to shift one element of type (1̄1; id) to the right of the pair ((1̄12; (1, 2)), (1̄12; (1, 2))). We use the
moves σ′′n2−2(d−1)+2, σ

′′
n2−2(d−1)+2, σ

′′
n2−2(d−1)+1 in order to replace the sequence ((1̄12; (1, 2)), (1̄12; (1, 2)), (1̄1; id))

with ((0; (1, 2)), (1̄12; (1, 2)), (1̄2; id)).
By using the moves

σ′n2−2(d−1)+3, σ
′′
n2−2(d−1)+4, σ

′
n2−2(d−1)+5, σ

′′
n2−2(d−1)+6, . . . , σ

′
n2
, σ′′n2+1

we replace
((1̄2; id), (1̄23; (2, 3)), (1̄23; (2, 3)), . . . , (1̄d−1d; (d − 1, d)), (1̄d−1d; (d − 1, d)))

with
((0; (2, 3)), (1̄23; (2, 3)), . . . , (0; (d − 1, d)), (1̄d−1d; (d − 1, d)), (1̄d; id)).

Now, we apply the sequence of moves σ′′n2
, σ′n2−1, . . . , σ

′′
n2−2(d−1)+4, σ

′
n2−2(d−1)+3, σ

′′
n2−2(d−1)+2, σ

′′
n2−2(d−1)+2. In this

way, we have that the above sequence is braid equivalent to

((0; (1, 2)), (1̄1; id), (0; (2, 3)), (0; (2, 3)), . . . , (0; (d − 1, d)), (0; (d − 1, d))).

We obtain the claim by using the moves

σ′′n2−2(d−1)+3, σ
′′
n2−2(d−1)+4, . . . , σ

′′
n2−1, σ

′′
n2
.

The purpose of this paper is to show that the space HW(Bd)
d,n1,k,q1e1,...,qrer (Y) is irreducible. We notice that such

space is smooth. So, if we prove that it is connected then we also prove that it is irreducible. Let

δ : HW(Bd)
d,n1,k,q1e1,...,qrer (Y)→ Y(n1+n2) − ∆
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be the map which assigns to each equivalence class [ f ◦ π] the branch locus of f ◦ π. The topology
defined on HW(Bd)

d,n1,k,q1e1,...,qrer (Y) is such that δ is a topological covering map (see [8]). Therefore the braid group

π1(Y(n1+n2) − ∆,D) acts on Ao
k,n1,q1e1,...,qrer,1

. The orbits of this action are in one-to-one correspondence with

the connected components of HW(Bd)
d,n1,k,q1e1,...,qrer (Y). So, if we prove that π1(Y(n1+n2) − ∆,D) acts transitively on

Ao
k,n1,q1e1,...,qrer,1

then we also prove that HW(Bd)
d,n1,k,q1e1,...,qrer (Y) is connected. We notice that, in order to check the

transitivity of this action, it is sufficient to prove that any class in Ao
k,n1,q1e1,...,qrer,1

is braid equivalent to a given
normal form. Hence, an immediate consequence of the previous proposition is the following theorem.

Theorem 5.5. If k > 3d − 3, then the Hurwitz space HW(Bd)
d,n1,k,q1e1,...,qrer (IP1) is irreducible.

From Prposition 5.4, it follows also the following result.

Theorem 5.6. Let Y be a smooth, connected, projective complex curve of genus ≥ 1. If k > 3d − 3, then the Hurwitz
space HW(Bd)

d,n1,k,q1e1,...,qrer (Y) is irreducible.

Proof. In order to obtain the claim it is sufficient to prove that each equivalence class in Ao
k,n1,q1e1,...,qrer,1

is
braid equivalente to a class of the form [t′; (0; id), (0; id), . . . , (0; id), (0; id)]. In fact, [t′] belongs to Ao

k,n1,q1e1,...,qrer,0
and so the theorem follows by Proposition 5.4. Let [t;λ, µ] ∈ Ao

k,n1,q1e1,...,qrer,1
.

Step 1. At first, we show that [t;λ, µ] is braid equivalent to a class of type [. . . , (1̄i; id), . . . ;λ, µ] where i
is an arbitrary index in {1, . . . , d}.

Using suitable elementary moves σ′i , we shift on the right the elements of the form (1̄∗; id). We act with
elementary moves σ′′i in order to bring to the first place an element of type (∗; η), where η is a permutation
with cycle type given by the partition e1 of d. Now, we move to the places 2, . . . , k + 1 the elements of type
(zi j; (i, j)). In this way, we have that our class is braid equivalent to

[t̄1, . . . , t̄n2 , (1̄h; id), . . . , (1̄∗; id);λ1, µ1, . . . , λ1, µ1]

where t̄i = (∗; t′i ), λk = (∗;λ′k), µk = (∗;µ′k), t′1 = η and t′2, . . . , t
′
k+1 are transpositions.

We observe that the condition k > 3d − 3 ensures that k + |e1| ≥ 2d. So, by Lemma 5.1, we have that the
sequence of permutations (η, t′2, . . . , t

′
k+1) is braid equivalent to a sequence of type (η′, t′′2 , . . . , t

′′
k+1) where η′

has cycle type e1, t′′2 , . . . , t
′′
k+1 are transpositions, t′′k = t′′k+1 and

⟨η′, t′′2 , . . . , t′′k+1⟩ = ⟨η′, t′′2 , . . . , t′′k−1⟩.

Now, we notice that (η′, t′′2 , . . . , t
′′
k+1, , . . . , t

′
n2

;λ′1, µ
′
1, . . . , λ

′
1, µ

′
1) is the Hurwitz system of a degree d branched

covering of Y with monodromy group Sd. So, by Lemma 5.2, it is braid equivalent to a system of type
(. . . , ν, ν . . . ;λ′1, µ

′
1, . . . , λ

′
1, µ

′
1) where ν is an arbitrary transposition of Sd. From this, it follows that our class

is braid equivalent to a class of type

[. . . , (∗; ν), (∗; ν), . . . , (1̄h; id), . . . ;λ1, µ1, . . . , λ1, µ1].

Now, in order to obtain the claim it is sufficient to choose ν = (i, h), to move one element of type (∗; ν) to the
place n2 and to act with σ′n2

.

Step 2. Now, we claim that [t;λ, µ] is braid equivalent to a class of type [t′; (0; id), (0; id), . . . , (0; id), (0; id)].
Acting by suitable elementary moves σ′j we have that our class is braid equivalent to

[t̂1, . . . , t̂n2 , (1̄∗; id), . . . , (1̄∗; id);λ1, µ1, . . . , λ1, µ1]

where t̂i = (∗; ṫi), λk = (∗;λ′k) and µk = (∗;µ′k).
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We notice that (ṫ1, . . . , ṫn2 ;λ′1, µ
′
1, . . . , λ

′
1, µ

′
1) is the Hurwitz system of a degree d ≥ 3 covering of Y, with

monodromy group Sd and with n2 branch points, k of which are simple points and n2−k of which are special
points. Moreover, qi among of the special points have local monodromies with cycle type given by the
partition ei of d. Since, under the condition k > 3d−3, the Hurwitz space parameterizing coverings as above
is irreducible (see [27], Theorem 2), the Hurwitz system (ṫ1, . . . , ṫn2 ;λ′1, µ

′
1, . . . , λ

′
1, µ

′
1) is braid equivalent to a

system of type
(ẗ1, . . . , ẗn2 ; id, id, . . . , id, id).

Hence, [t;λ, µ] is braid equivalent to a class of the form

[t̄1, . . . , t̄n2 , (1̄∗; id), . . . ; (a1; id), (b1; id), . . . , (a1; id), (b1; id)].

We notice that if as = 0 and bv = 0 for each 1 ≤ s, v ≤ 1 we have the claim. So, let a1 , 0 and i be one of
the indexes that a1 sends to 1̄.

By Step 1, [t̄1, . . . , t̄n2 , (1̄∗; id), . . . ; (a1; id), (b1; id), . . . , (a1; id), (b1; id)] is braid equivalent to the class

[. . . , (1̄i; id), . . . ; (a1; id), (b1; id), . . . , (a1; id), (b1; id)].

Acting with elementary moves σ′′j we bring to the first place the element (1̄i; id) and then we use the move
τ′′11 to replace (a1; id) with (1̄i; id) (a1; id) where 1̄i + a1 is a function that sends i to 0̄.

So reasoning for all the indexes that a1 sends to 1̄, after a finite number of steps, we obtain that our class
is braid equivalent to

[. . . ; (0; id), (b1; id), . . . , (a1; id), (b1; id)].

If a1 = 0, b1 , 0 and b1 sends i to 1̄, we again use elementary moves of type σ′′j to shift (1̄i; id) to the first
place. We act by the braid move ρ′11 and so we transform (b1; id) into (1̄i; id) (b1; id) where the function 1̄i + b1
sends i to 0̄. Following this line for all the indexes that b1 sent to 1̄, we can replace our class with

[. . . ; (0; id), (0; id), . . . , (a1; id), (b1; id)].

We notice that if as , 0 and al = bl = 0, for each l ≤ s − 1, in order to obtain the claim one can reason
in the same way but this time applying the braid move τ′1s. Analogously if bs , 0, al = bl = 0, for each
l ≤ s − 1, and as = 0 one can apply the braid move ρ′1k to transform (bk; id) into (0; id).
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[5] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Mathematica, 25 (1972) 1–59.
[6] R. Donagi, Decomposition of spectral covers, Astérisque, 218 (1993) 145–175.
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