Filomat 28:3 (2014), 531–539 DOI 10.2298/FIL1403531Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Extremal Narumi-Katayama Index of Graphs

Zhifu You^a, Bolian Liu^b

^a School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, P.R. China ^b School of Mathematical Science, South China Normal University, Guangzhou, 510631, P.R. China

Abstract. The Narumi-Katayama index of a graph G, denoted by NK(G), is defined as $\prod^{n} deg(v_i)$. In

this paper, we determine the extremal NK(G) of trees, unicyclic graphs with given diameter and vertices. Moreover, the second and third minimal NK(G) of unicyclic graphs with given vertices and the minimal NK(G) of bicyclic graphs with given vertices are obtained.

1. Introduction

Let *G* be a simple graph with the vertex set V(G) and edge set E(G). A connected graph *G* with *n* vertices is a tree (unicyclic or bicyclic graph) if |E(G)| = n - 1 (|E(G)| = n or |E(G)| = n + 1). Denote by $deg(v_i)$ or d_i the degree of vertex v_i . The distance between two vertices is defined as the length of a shortest path between them. The diameter of *G* is the maximum distance over all pairs of vertices *u* and *v* of *G*. In 1984, Narumi and Katayama [1] proposed a definition "simple topological index":

$$NK(G) = \prod_{i=1}^{n} deg(v_i).$$

On this graph invariant, several works [2,3,4,5,6] are reported and the name "Narumi-Katayama index" is used.

In [6], I. Gutman et al. considered the problem of extremal Narumi-Katayama index and offered a few results filling the gap. For graphs without isolated vertices, I. Gutman et al. [6] presented the minimal, second-minimal and third-minimal (maximal, second-maximal, and third-maximal, resp.) *NK*-values and extremal graphs. Moreover, the maximal (second-maximal) Narumi-Katayama index of *n*-vertex tree (unicyclic graph) is determined [6]. And the maximal Narumi-Katayama index of *n*-vertex bicyclic graphs is given. For connected *n*-vertex graphs, the minimal and second minimal Narumi-Katayama index are showed [6]. Consequently, the second-minimal Narumi-Katayama index among *n*-vertex trees and the minimal Narumi-Katayama index among *n*-vertex unicyclic graphs are presented [6].

In this paper, we determine the extremal NK(G) of trees, unicyclic graphs with given diameter and vertices. Moreover, the second and third minimal NK(G) of unicyclic graphs with given vertices and the minimal NK(G) of bicyclic graphs with given vertices are obtained.

Received: 08 July 2012; Accepted: 13 September 2013

²⁰¹⁰ Mathematics Subject Classification. Primary 92E10; Secondary 05C35

Keywords. Narumi-Katayama index; Trees; Unicyclic graphs; Bicyclic graphs; Diameter

Communicated by Dragan Stevanović

Research supported by the National Natural Science Foundation of China (Grant No. 11301093 and 11071088)

Email address: liubl@scnu.edu.cn (Bolian Liu)

2. The minimal Narumi-Katayama index of trees and unicyclic graphs with given diameter

Lemma 2.1 Operation A: For an edge uv of Graph G, let u be a vertex with all adjacency vertices are pendent vertices except a vertex v. If all pendent edges incident with u are grafted to v, then the resulting graph G^* (Fig. 1) satisfies $NK(G) > NK(G^*)$.

Figure 1: Operation A

Proof. By the definition of NK-index,

$$NK(G) - NK(G^{*}) = \prod_{v_{i} \in V(G) \setminus \{u,v\}} deg(v_{i}) \cdot [deg_{G}(u) \cdot deg_{G}(v) - 1 \cdot (deg_{G}(u) + deg_{G}(v) - 1)]$$

=
$$\prod_{v_{i} \in V(G) \setminus \{u,v\}} deg(v_{i}) \cdot (deg_{G}(u) - 1) \cdot (deg_{G}(v) - 1) > 0.$$

Hence the result holds. \Box

Lemma 2.2 Operation B: Let G be a connected graph. For a cut vertex v of G (we say v is an root of G), if T_1 is a tree branch of G including v (see Fig. 2), we transform T_1 to the star with same order $S_{|T_1|}$ and obtain G^* , then $NK(G) \ge NK(G^*)$, with the equality holds if and only if $T_1 \cong S_{|T_1|}$.

Figure 2: Operation B

Proof. T_1 is a tree including vertex v. By the definition of *NK*-index and repeating the operation in Lemma 2.1,

$$NK(G) = \prod_{v_i \in V(G) \setminus T_1} deg(v_i) \cdot \prod_{v_i \in T_1} deg(v_i) \ge \prod_{v_i \in V(G) \setminus T_1} deg(v_i) \cdot \prod_{v_i \in S_{|T_1|}} deg(v_i) = NK(G^*).$$

Obviously, the equality holds if and only if $T_1 \cong S_{|T_1|}$. \Box

Lemma 2.3 Operation C: Let S_{k+1} and S_{l+1} be two stars rooted in u and v, respectively. If all edges incident to v are grafted to u with $d(u) \ge d(v)$, denoted by the resulting graph G^* (Fig. 3), then $NK(G) > NK(G^*)$.

Proof. By the definition of *NK*-index, then

Z. You, B. Liu / Filomat 28:3 (2014), 531-539

$$NK(G) - NK(G^*) = \prod_{v_i \in V(G) \setminus \{u,v\}} deg(v_i) \cdot [deg_G(u) \cdot deg_G(v) - (deg_G(u) + l) \cdot (deg_G(v) - l)]$$

$$= \prod_{v_i \in V(G) \setminus \{u,v\}} deg(v_i) \cdot l \cdot [deg_G(u) - deg_G(v) + l].$$

Since $deg_G(u) \ge deg_G(v)$ and $l \ge 1$, $NK(G) - NK(G^*) > 0$.

Hence the result follows. \Box

Theorem 2.4 Let T be a tree with given diameter d and n vertices. Then $NK(T) \ge NK(T_1^*)$, where $T_1^* \in \mathcal{T}_d^{1,*}$ and $\mathcal{T}_d^{1,*}$ (Fig. 4) is the set of trees with given diameter d and S_{n-d} rooted in the diametral path excepting the two end vertices.

Figure 4: A tree T_1^* in $\mathcal{T}_d^{1,*}$

Proof. For a tree *T* with given diameter *d*, choose a diametral path $P_{d+1} = v_1 \cdots v_{d+1}$, and replace tree branches rooted in v_2, \ldots, v_d by stars, then graft two stars to a star. Repeat the operations *B* and *C*. By Lemmas 2.2 and 2.3, the result follows. \Box

Theorem 2.5 Let *T* be a tree with given diameter *d*, *n* vertices and $T \notin \mathcal{T}_d^{1,*}$. Then $NK(T) \ge NK(T_2^*)$, where $T_2^* \in \mathcal{T}_d^{2,*}$ and $\mathcal{T}_d^{2,*}$ (Fig. 5) is the set of trees with given diameter *d* and *in* the diametral path, S_{n-d-1} and a vertex are rooted in two different vertices.

Proof. Similar to the proof in Theorem 2.4, by repeating operations in Lemmas 2.2 and 2.3, the *NK*-index of *T* is decreasing. Note that $T \notin \mathcal{T}_d^{1,*}$, in the diametral path $v_1v_2 \cdots v_{d+1}$, the star S_{n-d-1} is rooted in a vertex v_k . The only one remaining vertex *u* is adjacent to v_i ($i = 2, ..., d, i \neq k$) or one of pendent vertices of S_{n-d-1} . The resulting graphs are denoted by T_2^* and T_3^* . By direct calculations, $NK(T_3^*) = 2^{d-1} \cdot (n-d) > NK(T_2^*) = 3 \cdot 2^{d-3} \cdot (n-d)$.

Hence $NK(T) \ge NK(T_2^*)$. \Box

Lemma 2.6 [7] Let *G* be a connected unicyclic graph with at least one pendent vertex, and the diameter of G be D. If d(u, v) = D, where $u, v \in V(G)$, then u or v should be a pendent vertex.

Theorem 2.7 Let $U \not\cong C_n$ be a unicyclic graph with given diameter d and n vertices. Then $NK(U) \ge NK(U_j^*) = NK(U^{**})$, where U_j^* $(j = 2, ..., \lfloor \frac{d+1}{2} \rfloor)$ is a unicyclic graph with diameter d, S_{n-d-2} and C_3 rooted in the same vertex of the diametral path $v_1v_2 \cdots v_dv_{d+1}$ except two end vertices. U_2^* and U^{**} are depicted in Figure 6.

Figure 6: U_2^* and U^{**} (diameter *d*)

533

Proof. By Lemma 2.6, for $U \not\cong C_n$, one of endpoints in a diametral path of unicyclic graph is a pendent vertex. There are two cases:

Case 1: A diametral path has an endpoint in the cycle.

For a unicyclic graph U, let a diametral path be $u_1u_2 \cdots u_kv_1v_2 \cdots v_l$ (without loss of generation, let $k \ge l$), where v_1, v_2, \ldots, v_l are the vertices in the cycle with k + l = d + 1. T_{u_i} ($i = 2, \ldots, k$) are the tree branches rooted in u_i with $max\{(u_2, v) | v \in V(T_{u_2})\} \le 1, ..., max\{(u_k, v) | v \in V(T_{u_k})\} \le d - (k - 1).$

If U_1 is obtained from U by transforming the branches in Path $u_2 \cdots u_k v_1$ and the cycle to stars, by Lemma 2.2, then $NK(U) \ge NK(U_1)$. If the graph U_1 is transformed to U_2 , where U_2 is the unicyclic graph that a star rooted in u_i of Path $u_2 \cdots u_k$, a star rooted in v_1 and a star rooted in v_i of the cycle, by Lemma 2.3, then $NK(U_1) \ge NK(U_2).$

By repeating Operation C in Lemma 2.3, the graph U_3 , U_4 and U_5 are obtained.

Figure 7: U_i , i = 2, 3, 4, 5.

Note that $NK(U_2) \ge NK(U_3)$ and $NK(U_2) \ge NK(U_4) = NK(U_5)$. By direct calculation,

$$NK(U_{3}) - NK(U_{4}) = \prod_{v \in V(U_{3}) \setminus \{v_{i}, v_{1}\}} deg(v) \cdot [2 \cdot deg_{U_{3}}(v_{1}) - 3 \cdot (2 + deg_{U_{3}}(v_{1}) - 3)]$$

$$= \prod_{v \in V(U_{3}) \setminus \{v_{i}, v_{1}\}} deg(v) \cdot (3 - deg_{U_{3}}(v_{1})) \le 0.$$

If $deg_{U_{4}}(v_{1}) = 3$ then $U_{2} \cong U_{4}$

If $aeg_{U_3}(v_1) = 3$, then U_3

If $deg_{U_3}(v_1) > 3$, then $NK(U_3) \le NK(U_4) \le NK(U_2) \le NK(U_1) \le NK(U)$.

For even positive integer l, the graph U_3 consists of a path with length $d - \frac{l}{2}$, a cycle C_l and a star $S_{n-d-\frac{l}{2}+1}$ rooted in the same endpoint of the path.

 $NK(U_3) = 2^{d-2+\frac{1}{2}} \cdot (n-d-\frac{1}{2}+3).$

Let $f(l) = 2^{d-2+\frac{l}{2}}(n-d-\frac{l}{2}+3)$. Then $f'(l) = \frac{1}{2} \cdot 2^{d-2+\frac{l}{2}}[(n-d-\frac{l}{2}+3)ln2-1] > 0$. f(l) is an increasing function in *l*. Then $f(l) \ge f(4) = 2^d(n - d + 1)$ for $l \ge 4$, i.e., U^{**} attains the minimal *NK*-index.

For odd positive integer *l*, the graph U_3 consists of a path with length $d - \frac{l-1}{2}$, a cycle C_l and a star $S_{n-d-\frac{l-1}{2}}$ rooted in the same endpoint of the path.

 $NK(U_3) = 2^{d + \frac{l-3}{2}} \cdot (n - d - \frac{l-5}{2}).$

Let $h(l) = 2^{d + \frac{l-3}{2}}(n - d - \frac{l-5}{2})$. Obviously, h(l) is an increasing function in l. Then $h(l) \ge h(3) = 2^d(n - d + 1)$ for $l \ge 3$, i.e., U_2^* attains the minimal *NK*-index.

Case 2: Two endpoints of each diametral path are pendent vertices.

In order to decrease the NK-value of U, we can transform a unicyclic graph U to U_6 , where a star S' and a unicyclic graph U' are rooted in v and w of a diametral path. By Lemma 2.2, $NK(U) \ge NK(U_6)$.

By transforming tree branches to stars in U' and grafting stars to a star, we obtain the graphs U_7 and U_8 .

Figure 9: U₈

Let U_9 be the unicyclic graph obtained by adding a pendent vertex at w, and identifying u with w from U_8 .

 $deg(v)[deg_{U_8}(u) + 2 - 3 \cdot deg_{U_8}(u)] < 0.$ Then $NK(U_9) - NK(U_8) =$ $v \in V(\overline{U}_8) \setminus \{u, w\}$

Let $U_{10}(U_{11})$ be the unicyclic graph obtained by grafting all pendent edges of vertex v(u) to vertex u(v)from U_9 . Then $NK(U_{10}) - NK(U_9) =$ $deg(x)[2 \cdot (deg_{U_9}(u) + deg_{U_9}(v) - 2) - deg_{U_9}(u) \cdot deg_{U_9}(v)] < 0.$ $x \in V(\overline{U_9}) \setminus \{u, v\}$ Obviously, $NK(U_{10}) \leq NK(U_{11})$.

Figure 10: U_9 and U_{10}

Hence $NK(U_{10}) \leq NK(U_9) \leq NK(U_8) \leq NK(U_7) \leq NK(U_6) \leq NK(U)$.

The graph U_{10} consists of a path with length d, a cycle C_l with $l \le d$ and a star $S_{n-d-l+1}$ rooted in the same vertex of the path except two end vertices. And $NK(U_{10}) = 2^{d-2} \cdot 2^{l-1} \cdot (n-d-l+4) = 2^{d+l-3} \cdot (n-d-l+4)$. Let $g(l) = 2^{d+l-3}(n-d-l+4)$. Then $g'(l) = 2^{d+l-3}[(n-d-l+4)ln2-1] > 0$. g(l) is an increasing function

in *l*. Then $g(l) \ge g(3) = 2^d(n - d + 1)$ for $l \ge 3$, i.e., U_i^* attains the minimal *NK*-index.

By above discussions, $NK(U) \ge NK(U_i^*) = NK(U^{**}) = 2^d(n-d+1)$. \Box

Let $f(x) = 2^x(n - x + 1)$. Then $f'(x) = 2^x[ln2 \cdot (n - x + 1) - 1] > 0$. f(x) is an increasing function in x. Then $f(x) \ge f(2)$, i.e., the following corollary holds:

Corollary 2.8 [6] Among all connected n-vertex unicyclic graphs, the graph Y_n (Fig. 11) has minimal Narumi-Katayama index (equal to 4(n - 1)). This graph is unique.

3. The second and third minimal Narumi-Katayama index of unicyclic graphs

In [6], the minimal Narumi-Katayama index of unicyclic graphs is presented. In this section, we discuss the second and third minimal Narumi-Katayama index of unicyclic graphs.

Theorem 3.1 Let $U \not\cong Y_n$. U_i^* (i = 3, 4, 5) is a unicyclic graph with n vertices and given cycle length k, where U_i^* (i = 3, 4, 5) are depicted in Fig. 12.

Then $NK(U) \ge NK(U_5^*) > NK(U_3^*) > NK(U_4^*)$.

Proof. Let C_k be the cycle of unicyclic graph U. In order to decrease *NK*-index, by Lemma 2.2, we can change the tree branches rooted in the cycle C_k to stars. By Operation C of Lemma 2.3, the Narumi-Katayama index is strictly decreasing. Repeated Operations *B* and *C*, then U_3^* is obtained.

 $\begin{array}{l} \text{Figure 12: } U_i^* \ (i=3,4,5) \\ \text{Let } U_4^* = U_3^* - uw + vw, \ U_5^* = U_3^* - uw + xw. \ NK(U_3^*) - NK(U_4^*) = \prod_{v_i \in V(U_3^*) \setminus \{u,v\}} deg(v_i)[3 \cdot deg_{U_3^*}(v) - 2 \cdot (deg_{U_3^*}(v) + 1)] > 0. \ NK(U_3^*) - NK(U_5^*) = \prod_{v_i \in V(U_3^*) \setminus \{u,x\}} deg(v_i)[3 \cdot 1 - 2 \cdot 2] < 0. \\ \text{Then } NK(U_4^*) < NK(U_3^*) < NK(U_5^*) \leq NK(U). \ \Box \end{array}$

Lemma 3.2 Let *U* be a unicyclic graph with the cycle C_k and other vertices are pendent vertices. U' is the unicyclic graph obtained by deleting a 2-degree vertex and adding a pendent vertex of C_k . Then NK(U) > NK(U'). *Proof.* Let u, v be a 2-degree and a vertex of C_k .

 $NK(U) - NK(U') = \prod_{v_i \in V(U) \setminus \{u,v\}} \deg(v_i) \cdot [2 \cdot \deg_U(v) - 1 \cdot (\deg_U(v) + 1)] > 0.$ Hence NK(U) > NK(U'). \Box

By Theorem 3.1 and Lemma 3.2, the following result holds:

Theorem 3.3 Let $U \not\cong Y_n$. W_n and M_n are the unicyclic graphs U_5^* and U_3^* in the case k = 3. Then $NK(U) > NK(W_n) > NK(M_n)$.

4. The minimal Narumi-Katayama index of bicyclic graphs

Bicyclic graphs are divided into three types:

Figure 13: I, II and III-type bicyclic graphs

Lemma 4.1 Let B be a I-type bicyclic graph with the cycles C_p , C_q and n vertices. Then $NK(B) \ge NK(B_4^*)$ (B_4^* is depicted in Fig. 14), where C_p and C_q have a common vertex u, and the other vertices are pendent vertices attached in u.

Proof. For a bicyclic graph *B* with the cycles C_p and C_q , the other vertices consist of some tree branches rooted in C_p , C_q and vertex *u*. By Lemma 2.2, if these tree branches are transformed into stars, then Narumi-Katayama index is decreasing. Then we can obtain B_1^* . And $NK(B) \ge NK(B_1^*)$.

Let B_2^* be the graph obtained by grafting all pendent edges incident with w to v from B_1^* . Then $NK(B_1^*) - NK(B_2^*) = \prod_{v_i \in V(B_1^*) \setminus \{v, w\}} deg(v_i) \cdot [deg_{B_1^*}(v) \cdot deg_{B_1^*}(w) - 2 \cdot (deg_{B_1^*}(v) + deg_{B_1^*}(w) - 2)] > 0$ for $deg_{B_1^*}(v) > 2$

and $deg_{B_1^*}(w) > 2$. If $deg_{B_1^*}(v) = 2$ or $deg_{B_1^*}(w) = 2$, then $B_1^* \cong B_2^*$. Let $B_3^*(B_4^*)$ be the graph obtained by grafting all pendent edges incident with u(v) to v(u) from B_2^* .

$$NK(B_{2}^{*}) - NK(B_{4}^{*}) = \prod_{\substack{v_{i} \in V(B_{2}^{*}) \setminus \{u,v\}}} deg(v_{i}) \cdot [deg_{B_{2}^{*}}(u) \cdot deg_{B_{2}^{*}}(v) - 2 \cdot (deg_{B_{2}^{*}}(v) + deg_{B_{2}^{*}}(u) - 2)]$$

$$= \prod_{\substack{v_{i} \in V(B_{2}^{*}) \setminus \{u,v\}}} deg(v_{i}) \cdot [(deg_{B_{2}^{*}}(u) - 2) \cdot (deg_{B_{2}^{*}}(v) - 2)].$$
If $deg_{B_{2}^{*}}(v) = 2$, then $B_{2}^{*} \cong B_{4}^{*}$. If $deg_{B_{2}^{*}}(v) > 2$, then $NK(B_{2}^{*}) > NK(B_{4}^{*}).$

$$NK(B_{3}^{*}) - NK(B_{4}^{*}) = \prod_{\substack{v_{i} \in V(B_{3}^{*}) \setminus \{u,v\}}} deg(v_{i}) \cdot [4 \cdot deg_{B_{3}^{*}}(v) - 2 \cdot (deg_{B_{3}^{*}}(v) + 2)]$$

$$= \prod_{\substack{v_{i} \in V(B_{3}^{*}) \setminus \{u,v\}}} deg(v_{i}) \cdot [2 \cdot (deg_{B_{3}^{*}}(v) - 2)].$$
If $deg_{B_{3}^{*}}(v) = 2$, then $B_{3}^{*} \cong B_{4}^{*}$. If $deg_{B_{3}^{*}}(v) > 2$, then $NK(B_{3}^{*}) > NK(B_{4}^{*}).$
Combining above discussions, we have:
(1) If $deg_{B_{2}^{*}}(v) = 2$, then $B_{2}^{*} \cong B_{3}^{*} \cong B_{4}^{*}$.
(2) If $deg_{B_{2}^{*}}(v) > 2$, then $NK(B_{2}^{*}) > NK(B_{4}^{*})$. \square
Hence $NK(B) \ge NK(B_{4}^{*})$. \square

Lemma 4.2 For a bicyclic graph B_4^* , the minimal Narumi-Katayama index is attained when there are n - 5 pendent vertices, denoted by $B_4^*(3, 3, n - 5)$.

Proof. Suppose there are k 2-degree vertices in B_4^* . Then $NK(B_4^*) = 2^k \cdot (n - k + 3)$. Let $f(k) = 2^k(n - k + 3)$. Since $f'(k) = 2^k[(n - k + 3)ln2 - 1] > 0$, f(k) is an increasing function in k. Then $f(k) \ge f(4)$ for $k \ge 4$, i.e., when p = 3, q = 3 and n - 5 vertices are pendent vertices, i.e., $B_4^*(3, 3, n - 5)$ attains the minimal *NK*-value. \Box

Lemma 4.3 Let B be a II-type bicyclic graph. Then $NK(B) \ge NK(B_5^*)$, where B_5^* is depicted in Figure 15.

Figure 15: $B_5^{1,*}$ and B_5^*

Proof. Let *B* be a II-type bicyclic graph. In order to decrease NK(B), by repeating operations in Lemmas 2.2 and 2.3, we can obtain the bicyclic graph $B_5^{1,*}$ and $NK(B) \ge NK(B_5^{1,*})$.

Let $B_5^{2,*}(B_5^*)$ be the graph obtained by grafting all pendent vertices of vertex u(v) to v(u) from $B_5^{1,*}$. By Lemma 2.2, $NK(B_5^{1,*}) \ge NK(B_5^{2,*})$ and $NK(B_5^{1,*}) \ge NK(B_5^*)$.

$$NK(B_{5}^{*}) - NK(B_{5}^{2,*}) = \prod_{v_{i} \in V(B_{5}^{1,*}) \setminus \{u,v\}} deg(v_{i}) \cdot [2 \cdot (deg_{B_{5}^{1,*}}(u) + deg_{B_{5}^{1,*}}(v) - 2) - 3 \cdot (deg_{B_{5}^{1,*}}(v) + deg_{B_{5}^{1,*}}(u) - 3)].$$

If $deg_{B_{5}^{1,*}}(u) = 3$ and $deg_{B_{5}^{1,*}}(v) = 2$, then $B_{5}^{2,*} \cong B_{5}^{*}$.
Otherwise, $NK(B_{5}^{*}) \le NK(B_{5}^{2,*}) \le NK(B_{5}^{1,*}) \le NK(B)$. \Box

Lemma 4.4 For a bicyclic graph B_5^* , the minimal Narumi-Katayama index is attained when there are n - 4 pendent vertices, denoted by $B_5^*(n - 4)$.

Proof. Suppose there are *k* 2-degree vertices in B_5^* . Then $NK(B_5^*) = (n-k+1) \cdot 2^k \cdot 3$. Let $f(k) = 3 \cdot 2^k(n-k+1)$. Since $f'(k) = 3 \cdot 2^k[(n-k+1)ln2-1] > 0$, f(k) is an increasing function in *k*. Then $f(k) \ge f(2)$ for $k \ge 2$, i.e., when $B_5^* \cong B_5^*(n-4)$, $NK(B_5^*(n-4))$ attains the minimal value. \Box

Lemma 4.5 Let *B* be a III-type bicyclic graph with *n* vertices. Then $NK(B) \ge NK(B_6^*)$, where B_6^* is depicted in Figure 16.

Figure 16: $B_6^{1,*}$, $B_6^{4,*}$ and B_6^*

Proof. For a III-type bicyclic graph *B*, similar to the proof of Lemma 4.3, and repeating the operations in Lemmas 2.2 and 2.3, we can obtain the bicyclic graph $B_6^{1,*}$ with $NK(B) \ge NK(B_6^{1,*})$.

Let $B_6^{2,*}(B_6^{3,*})$ be the graph obtained by grafting all pendent vertices of vertex u(v) to v(u) from $B_6^{1,*}$. Since $deg_{B_6^{1,*}}(u) \ge 3$ and $deg_{B_6^{1,*}}(v) \ge 3$,

$$NK(B_{6}^{1,*}) - NK(B_{6}^{2,*}) = \prod_{v_{i} \in V(B_{6}^{1,*}) \setminus \{u,v\}} deg(v_{i}) \cdot [deg_{B_{6}^{1,*}}(u)deg_{B_{6}^{1,*}}(v) - 3 \cdot (deg_{B_{6}^{1,*}}(v) + deg_{B_{6}^{1,*}}(u) - 3)] \ge 0;$$

$$NK(B_{6}^{2,*}) - NK(B_{6}^{3,*}) = \prod_{v_{i} \in V(B_{6}^{2,*}) \setminus \{u,v\}} deg(v_{i}) \cdot [deg_{B_{6}^{2,*}}(v) \cdot 3 - 2 \cdot (deg_{B_{6}^{2,*}}(v) - 2 + 3)] \ge 0.$$

Then $NK(B_6^{1,*}) \ge NK(B_6^{2,*}) \ge NK(B_6^{3,*})$.

Similarly, by grafting all pendent vertices of vertex y to x from $B_6^{3,*}$, we obtain the graph $B_6^{4,*}$ and $NK(B_6^{3,*}) \ge NK(B_6^{4,*}).$

Let
$$B_{6}^{5,*}$$
 be the graph obtained by grafting all pendent vertices of vertex x to u from $B_{6}^{4,*}$.
 $NK(B_{6}^{4,*}) - NK(B_{6}^{5,*}) = \prod_{v_i \in V(B_{6}^{4,*}) \setminus \{u,x\}} deg(v_i) \cdot [deg_{B_{6}^{4,*}}(u)deg_{B_{6}^{4,*}}(x) - 3 \cdot (deg_{B_{6}^{4,*}}(u) + deg_{B_{6}^{4,*}}(x) - 3)] \ge 0.$

Then $NK(B_6^{4,*}) \ge NK(B_6^{5,*})$.

 $\begin{aligned} &\text{Interl } NK(B_{6}^{5,*}) \geq NK(B_{6}^{6}) \text{ is the graph obtained by grafting all pendent vertices of vertex } u(w) \text{ to } w(u) \text{ from } B_{6}^{5,*}.\\ &NK(B_{6}^{5,*}) - NK(B_{6}^{6,*}) = \prod_{v_{i} \in V(B_{6}^{5,*}) \setminus \{u,w\}} deg(v_{i}) \cdot [deg_{B_{6}^{5,*}}(u)deg_{B_{6}^{5,*}}(w) - 3 \cdot (deg_{B_{6}^{5,*}}(u) + deg_{B_{6}^{5,*}}(w) - 3)] \geq 0;\\ &NK(B_{6}^{6,*}) - NK(B_{6}^{*}) = \prod_{v_{i} \in V(B_{6}^{6,*}) \setminus \{u,w\}} deg(v_{i}) \cdot [3 \cdot deg_{B_{6}^{6,*}}(w) - 2 \cdot (deg_{B_{6}^{6,*}}(w) - 2 + 3)] \geq 0.\\ &\text{Then } NK(B_{6}^{5,*}) \geq NK(B_{6}^{6,*}) \geq NK(B_{6}^{*}).\\ &\text{Hence } NK(B) \geq NK(B_{6}^{1,*}) \geq NK(B_{6}^{2,*}) \geq NK(B_{6}^{3,*}) \geq NK(B_{6}^{3,*}) \geq NK(B_{6}^{5,*}) \geq NK(B_{6}^{6,*}) \geq NK(B_{6}^{6,*}) = NK(B_{6}^{2,*}) \geq NK(B_{6}^{3,*}) \geq NK(B_{6}^{3,*}) \geq NK(B_{6}^{3,*}) \geq NK(B_{6}^{6,*}) \geq NK(B$

Lemma 4.6 For a bicyclic graph B_{6}^{*} , the minimal Narumi-Katayama index is attained when p = 3, q = 3 and other *vertices are pendent vertices, denoted by* $B_6^*(3, 3, n - 6)$ *.*

Proof. Suppose there are k 2-degree vertices in B_6^* . Then $NK(B_6^*) = (n - k + 1) \cdot 2^k \cdot 3$. By the proof of Lemma 4.4, $NK(\tilde{B}_6^*)$ is increasing in k. For $k \ge 4$, i.e., when p = 3, q = 3 and n - 6 vertices are pendent vertices, i.e., $NK(B_6^*(3,3,n-6))$ attains the minimal value. \Box

Theorem 4.7 Let *B* a bicyclic graph with *n* vertices. Then $NK(B) \ge NK(B_5^*(n-4))$. The equality holds if and only if $B \cong B_5^*(n-4).$

Proof. For a bicyclic graph *B*, *B* belongs to one of three types of bicyclic graphs. By Lemmas 4.1-4.6, B attains the minimum NK-value in $B_4^*(3,3,n-5)$, $B_5^*(n-4)$ or $B_6^*(3,3,n-6)$. By direct calculations, $NK(B_4^*(3,3,n-5)) = 2^4 \cdot (n-1), NK(B_5^*(n-4)) = 2^2 \cdot 3 \cdot (n-1), \text{ and } NK(B_6^*(3,3,n-6)) = 3 \cdot 2^4 \cdot (n-3).$ Then $NK(B_4^*(3,3,n-5)) > NK(B_5^*(n-4))$ and $NK(B_6^*(3,3,n-6)) > NK(B_5^*(n-4))$.

Then $NK(B) > NK(B_{5}^{*}(n-4))$ if $B \cong B_{5}^{*}(n-4)$. Hence $NK(B) \ge NK(B_5^*(n-4))$. \Box

References

- [1] H. Narumi, M. Katayama, Simple topological index, A newly devised index characterizing the topological nature of sturctural isomers of saturated hydrocarbons, Memoirs of the Faculty of Engineering, Hokkaido University 16 (1984) 209–214.
- [2] D.J. Klein, V.R. Rosenfeld, The degree-product index of Narumi and Katayama, MATCH Communications in Mathematical and in Computer Chemistry 64 (2010) 607-618.
- [3] D.J. Klein, V.R. Rosenfeld, The Narumi-Katayama degree-product index and the degree-product polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
- [4] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
- [5] Ž. Tomović, I. Gutman, Narumi-Katayama index of phenylenes, Journal of The Serbian Chemical Society 66 (2001) 243–247.
- [6] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters 25 (2012) 1435–1438.
- [7] M. Zhang, B. Liu, On the Randić index and diameter, MATCH Communications in Mathematical and in Computer Chemistry 64 (2010) 433-442.

539