On the Extremal Narumi-Katayama Index of Graphs

Zhifu You ${ }^{\text {a }}$, Bolian Liu ${ }^{\text {b }}$
${ }^{a}$ School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, P.R. China
${ }^{b}$ School of Mathematical Science, South China Normal University, Guangzhou, 510631, P.R. China

Abstract

The Narumi-Katayama index of a graph G, denoted by $N K(G)$, is defined as $\prod_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)$. In this paper, we determine the extremal $N K(G)$ of trees, unicyclic graphs with given diameter and vertices. Moreover, the second and third minimal $N K(G)$ of unicyclic graphs with given vertices and the minimal $N K(G)$ of bicyclic graphs with given vertices are obtained.

1. Introduction

Let G be a simple graph with the vertex set $V(G)$ and edge set $E(G)$. A connected graph G with n vertices is a tree (unicyclic or bicyclic graph) if $|E(G)|=n-1(|E(G)|=n$ or $|E(G)|=n+1)$. Denote by $\operatorname{deg}\left(v_{i}\right)$ or d_{i} the degree of vertex v_{i}. The distance between two vertices is defined as the length of a shortest path between them. The diameter of G is the maximum distance over all pairs of vertices u and v of G. In 1984, Narumi and Katayama [1] proposed a definition "simple topological index":

$$
N K(G)=\prod_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)
$$

On this graph invariant, several works $[2,3,4,5,6]$ are reported and the name "Narumi-Katayama index" is used.

In [6], I. Gutman et al. considered the problem of extremal Narumi-Katayama index and offered a few results filling the gap. For graphs without isolated vertices, I. Gutman et al. [6] presented the minimal, second-minimal and third-minimal (maximal, second-maximal, and third-maximal, resp.) NK-values and extremal graphs. Moreover, the maximal (second-maximal) Narumi-Katayama index of n-vertex tree (unicyclic graph) is determined [6]. And the maximal Narumi-Katayama index of n-vertex bicyclic graphs is given. For connected n-vertex graphs, the minimal and second minimal Narumi-Katayama index are showed [6]. Consequently, the second-minimal Narumi-Katayama index among n-vertex trees and the minimal Narumi-Katayama index among n-vertex unicyclic graphs are presented [6].

In this paper, we determine the extremal $N K(G)$ of trees, unicyclic graphs with given diameter and vertices. Moreover, the second and third minimal $N K(G)$ of unicyclic graphs with given vertices and the minimal $N K(G)$ of bicyclic graphs with given vertices are obtained.

[^0]
2. The minimal Narumi-Katayama index of trees and unicyclic graphs with given diameter

Lemma 2.1 Operation A: For an edge uv of Graph G, let u be a vertex with all adjacency vertices are pendent vertices except a vertex v. If all pendent edges incident with u are grafted to v, then the resulting graph G^{*} (Fig. 1) satisfies $N K(G)>N K\left(G^{*}\right)$.

Figure 1: Operation A
Proof. By the definition of NK-index,

$$
\begin{aligned}
N K(G)-N K\left(G^{*}\right) & =\prod_{v_{i} \in V(G) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{G}(u) \cdot \operatorname{deg}_{G}(v)-1 \cdot\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)-1\right)\right] \\
& =\prod_{v_{i} \in V(G) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left(\operatorname{deg}_{G}(u)-1\right) \cdot\left(\operatorname{deg}_{G}(v)-1\right)>0 .
\end{aligned}
$$

Hence the result holds.

Lemma 2.2 Operation B: Let G be a connected graph. For a cut vertex v of G (we say v is an root of G), if T_{1} is a tree branch of G including v (see Fig. 2), we transform T_{1} to the star with same order $S_{\left|T_{1}\right|}$ and obtain G^{*}, then $N K(G) \geq N K\left(G^{*}\right)$, with the equality holds if and only if $T_{1} \cong S_{\left|T_{1}\right|}$.

Figure 2: Operation B
Proof. T_{1} is a tree including vertex v. By the definition of $N K$-index and repeating the operation in Lemma 2.1,
$N K(G)=\prod_{v_{i} \in V(G) \backslash T_{1}} \operatorname{deg}\left(v_{i}\right) \cdot \prod_{v_{i} \in T_{1}} \operatorname{deg}\left(v_{i}\right) \geq \prod_{v_{i} \in V(G) \backslash T_{1}} \operatorname{deg}\left(v_{i}\right) \cdot \prod_{v_{i} \in S_{\left|T_{1}\right|}} \operatorname{deg}\left(v_{i}\right)=N K\left(G^{*}\right)$.
Obviously, the equality holds if and only if $T_{1} \cong S_{\left|T_{1}\right|}$.
Lemma 2.3 Operation C: Let S_{k+1} and S_{l+1} be two stars rooted in u and v, respectively. If all edges incident to v are grafted to u with $d(u) \geq d(v)$, denoted by the resulting graph $G^{*}\left(\right.$ Fig. 3), then $N K(G)>N K\left(G^{*}\right)$.

Figure 3: Operation C
Proof. By the definition of NK-index, then

$$
\begin{aligned}
N K(G)-N K\left(G^{*}\right) & =\prod_{v_{i} \in V(G) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{G}(u) \cdot \operatorname{deg}_{G}(v)-\left(\operatorname{deg}_{G}(u)+l\right) \cdot\left(\operatorname{deg}_{G}(v)-l\right)\right] \\
& =\prod_{v_{i} \in V(G) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot l \cdot\left[\operatorname{deg}_{G}(u)-\operatorname{deg}_{G}(v)+l\right] .
\end{aligned}
$$

Since $d e g_{G}(u) \geq d e g_{G}(v)$ and $l \geq 1, N K(G)-N K\left(G^{*}\right)>0$.
Hence the result follows.
Theorem 2.4 Let T be a tree with given diameter d and n vertices. Then $N K(T) \geq N K\left(T_{1}^{*}\right)$, where $T_{1}^{*} \in \mathcal{T}_{d}^{1, *}$ and $\mathcal{T}_{d}^{1, *}$ (Fig. 4) is the set of trees with given diameter d and S_{n-d} rooted in the diametral path excepting the two end vertices.

Figure 4: A tree T_{1}^{*} in $\mathcal{T}_{d}^{1, *}$

Proof. For a tree T with given diameter d, choose a diametral path $P_{d+1}=v_{1} \cdots v_{d+1}$, and replace tree branches rooted in v_{2}, \ldots, v_{d} by stars, then graft two stars to a star. Repeat the operations B and C. By Lemmas 2.2 and 2.3 , the result follows.

Theorem 2.5 Let T be a tree with given diameter d, n vertices and $T \notin \mathcal{T}_{d}^{1, *}$. Then $N K(T) \geq N K\left(T_{2}^{*}\right)$, where $T_{2}^{*} \in \mathcal{T}_{d}^{2, *}$ and $\mathcal{T}_{d}^{2, *}$ (Fig. 5) is the set of trees with given diameter d and in the diametral path, S_{n-d-1} and a vertex are rooted in two different vertices.

Figure 5: A tree T_{2}^{*} in $\mathcal{T}_{d}^{2, *}$
Proof. Similar to the proof in Theorem 2.4, by repeating operations in Lemmas 2.2 and 2.3, the NK-index of T is decreasing. Note that $T \notin \mathcal{T}_{d}^{1, *}$, in the diametral path $v_{1} v_{2} \cdots v_{d+1}$, the star S_{n-d-1} is rooted in a vertex v_{k}. The only one remaining vertex u is adjacent to $v_{i}(i=2, \ldots, d, i \neq k)$ or one of pendent vertices of S_{n-d-1}. The resulting graphs are denoted by T_{2}^{*} and T_{3}^{*}. By direct calculations, $N K\left(T_{3}^{*}\right)=2^{d-1} \cdot(n-d)>N K\left(T_{2}^{*}\right)=$ $3 \cdot 2^{d-3} \cdot(n-d)$.

Hence $N K(T) \geq N K\left(T_{2}^{*}\right)$.
Lemma 2.6 [7] Let G be a connected unicyclic graph with at least one pendent vertex, and the diameter of G be D. If $d(u, v)=D$, where $u, v \in V(G)$, then u or v should be a pendent vertex.

Theorem 2.7 Let $U \not \equiv C_{n}$ be a unicyclic graph with given diameter d and n vertices. Then $N K(U) \geq N K\left(U_{j}^{*}\right)=$ $N K\left(U^{* *}\right)$, where $U_{j}^{*}\left(j=2, \ldots,\left\lfloor\frac{d+1}{2}\right\rfloor\right)$ is a unicyclic graph with diameter d, S_{n-d-2} and C_{3} rooted in the same vertex of the diametral path $v_{1} v_{2} \cdots v_{d} v_{d+1}$ except two end vertices. U_{2}^{*} and $U^{* *}$ are depicted in Figure 6.

Figure 6: U_{2}^{*} and $U^{* *}$ (diameter d)

Proof. By Lemma 2.6, for $U \not \equiv C_{n}$, one of endpoints in a diametral path of unicyclic graph is a pendent vertex. There are two cases:

Case 1: A diametral path has an endpoint in the cycle.
For a unicyclic graph U, let a diametral path be $u_{1} u_{2} \cdots u_{k} v_{1} v_{2} \cdots v_{l}$ (without loss of generation, let $k \geq l$), where $v_{1}, v_{2}, \ldots, v_{l}$ are the vertices in the cycle with $k+l=d+1 . T_{u_{i}}(i=2, \ldots, k)$ are the tree branches rooted in u_{i} with $\max \left\{\left(u_{2}, v\right) \mid v \in V\left(T_{u_{2}}\right)\right\} \leq 1, \ldots, \max \left\{\left(u_{k}, v\right) \mid v \in V\left(T_{u_{k}}\right)\right\} \leq d-(k-1)$.

If U_{1} is obtained from U by transforming the branches in Path $u_{2} \cdots u_{k} v_{1}$ and the cycle to stars, by Lemma 2.2, then $N K(U) \geq N K\left(U_{1}\right)$. If the graph U_{1} is transformed to U_{2}, where U_{2} is the unicyclic graph that a star rooted in u_{i} of Path $u_{2} \cdots u_{k}$, a star rooted in v_{1} and a star rooted in v_{i} of the cycle, by Lemma 2.3, then $N K\left(U_{1}\right) \geq N K\left(U_{2}\right)$.

By repeating Operation C in Lemma 2.3, the graph U_{3}, U_{4} and U_{5} are obtained.

Figure 7: $U_{i}, i=2,3,4,5$.
Note that $N K\left(U_{2}\right) \geq N K\left(U_{3}\right)$ and $N K\left(U_{2}\right) \geq N K\left(U_{4}\right)=N K\left(U_{5}\right)$.
By direct calculation,

$$
\begin{aligned}
N K\left(U_{3}\right)-N K\left(U_{4}\right) & =\prod_{v \in V\left(U_{3}\right) \backslash\left\{v_{i}, v_{1}\right\}} \operatorname{deg}(v) \cdot\left[2 \cdot \operatorname{deg}_{u_{3}}\left(v_{1}\right)-3 \cdot\left(2+\operatorname{deg}_{U_{3}}\left(v_{1}\right)-3\right)\right] \\
& =\prod_{v \in V\left(U_{3}\right) \backslash\left\{v_{i}, v_{1}\right\}} \operatorname{deg}(v) \cdot\left(3-\operatorname{deg}_{u_{3}}\left(v_{1}\right)\right) \leq 0 .
\end{aligned}
$$

If $\operatorname{deg}_{U_{3}}\left(v_{1}\right)=3$, then $U_{3} \cong U_{4}$.
If $\operatorname{deg}_{u_{3}}\left(v_{1}\right)>3$, then $N K\left(U_{3}\right) \leq N K\left(U_{4}\right) \leq N K\left(U_{2}\right) \leq N K\left(U_{1}\right) \leq N K(U)$.
For even positive integer l, the graph U_{3} consists of a path with length $d-\frac{l}{2}$, a cycle C_{l} and a star $S_{n-d-\frac{l}{2}+1}$ rooted in the same endpoint of the path.

$$
N K\left(U_{3}\right)=2^{d-2+\frac{l}{2}} \cdot\left(n-d-\frac{l}{2}+3\right)
$$

Let $f(l)=2^{d-2+\frac{l}{2}}\left(n-d-\frac{l}{2}+3\right)$. Then $f^{\prime}(l)=\frac{1}{2} \cdot 2^{d-2+\frac{l}{2}}\left[\left(n-d-\frac{l}{2}+3\right) \ln 2-1\right]>0 . f(l)$ is an increasing function in l. Then $f(l) \geq f(4)=2^{d}(n-d+1)$ for $l \geq 4$, i.e., $U^{* *}$ attains the minimal NK-index.

For odd positive integer l, the graph U_{3} consists of a path with length $d-\frac{l-1}{2}$, a cycle C_{l} and a star $S_{n-d-\frac{l-1}{2}}$ rooted in the same endpoint of the path.
$N K\left(U_{3}\right)=2^{d+\frac{l-3}{2}} \cdot\left(n-d-\frac{l-5}{2}\right)$.
Let $h(l)=2^{d+\frac{l-3}{2}}\left(n-d-\frac{l-5}{2}\right)$. Obviously, $h(l)$ is an increasing function in l. Then $h(l) \geq h(3)=2^{d}(n-d+1)$ for $l \geq 3$, i.e., U_{2}^{*} attains the minimal $N K$-index.

Case 2: Two endpoints of each diametral path are pendent vertices.
In order to decrease the $N K$-value of U, we can transform a unicyclic graph U to U_{6}, where a star S^{\prime} and a unicyclic graph U^{\prime} are rooted in v and w of a diametral path. By Lemma 2.2, NK $(U) \geq N K\left(U_{6}\right)$.

By transforming tree branches to stars in U^{\prime} and grafting stars to a star, we obtain the graphs U_{7} and U_{8}.

Figure 8: U_{6} and U_{7}
By Lemmas 2.2 and 2.3, $N K\left(U_{6}\right) \geq N K\left(U_{7}\right), N K\left(U_{6}\right) \geq N K\left(U_{8}\right)$ and
$N K\left(U_{7}\right)-N K\left(U_{8}\right)=\prod_{v \in V\left(U_{7}\right)\left\{\left\{v_{k}, u\right\}\right.} \operatorname{deg}(v)\left[3 \cdot \operatorname{deg}_{u_{7}}\left(v_{k}\right)-2 \cdot\left(\operatorname{deg}_{u_{7}}\left(v_{k}\right)+1\right)\right]>0$.

Figure 9: U_{8}
Let U_{9} be the unicyclic graph obtained by adding a pendent vertex at w, and identifying u with w from U_{8}.

$$
\text { Then } N K\left(U_{9}\right)-N K\left(U_{8}\right)=\prod_{v \in V\left(U_{8} \backslash \backslash\{u, w\}\right.} \operatorname{deg}(v)\left[\operatorname{deg}_{U_{8}}(u)+2-3 \cdot \operatorname{deg}_{U_{8}}(u)\right]<0 .
$$

Let $U_{10}\left(U_{11}\right)$ be the unicyclic graph obtained by grafting all pendent edges of vertex $v(u)$ to vertex $u(v)$ from U_{9}. Then $N K\left(U_{10}\right)-N K\left(U_{9}\right)=\prod_{x \in V\left(U_{9}\right) \backslash\{u, v\}} \operatorname{deg}(x)\left[2 \cdot\left(\operatorname{deg}_{U_{9}}(u)+\operatorname{deg}_{U_{9}}(v)-2\right)-\operatorname{deg}_{U_{9}}(u) \cdot \operatorname{deg}_{U_{9}}(v)\right]<0$. Obviously, $N K\left(U_{10}\right) \leq N K\left(U_{11}\right)$.

Figure 10: U_{9} and U_{10}
Hence $N K\left(U_{10}\right) \leq N K\left(U_{9}\right) \leq N K\left(U_{8}\right) \leq N K\left(U_{7}\right) \leq N K\left(U_{6}\right) \leq N K(U)$.
The graph U_{10} consists of a path with length d, a cycle C_{l} with $l \leq d$ and a star $S_{n-d-l+1}$ rooted in the same vertex of the path except two end vertices.

And $N K\left(U_{10}\right)=2^{d-2} \cdot 2^{l-1} \cdot(n-d-l+4)=2^{d+l-3} \cdot(n-d-l+4)$.
Let $g(l)=2^{d+l-3}(n-d-l+4)$. Then $g^{\prime}(l)=2^{d+l-3}[(n-d-l+4) \ln 2-1]>0 . g(l)$ is an increasing function in l. Then $g(l) \geq g(3)=2^{d}(n-d+1)$ for $l \geq 3$, i.e., U_{j}^{*} attains the minimal NK-index.

By above discussions, $N K(U) \geq N K\left(U_{j}^{*}\right)=N K\left(U^{* *}\right)=2^{d}(n-d+1)$.
Let $f(x)=2^{x}(n-x+1)$. Then $f^{\prime}(x)=2^{x}[\ln 2 \cdot(n-x+1)-1]>0 . f(x)$ is an increasing function in x. Then $f(x) \geq f(2)$, i.e., the following corollary holds:
Corollary 2.8 [6] Among all connected n-vertex unicyclic graphs, the graph Y_{n} (Fig. 11) has minimal NarumiKatayama index (equal to $4(n-1)$). This graph is unique.

Figure 11: Y_{n}

3. The second and third minimal Narumi-Katayama index of unicyclic graphs

In [6], the minimal Narumi-Katayama index of unicyclic graphs is presented. In this section, we discuss the second and third minimal Narumi-Katayama index of unicyclic graphs.

Theorem 3.1 Let $U \not \approx Y_{n}$. $U_{i}^{*}(i=3,4,5)$ is a unicyclic graph with n vertices and given cycle length k, where U_{i}^{*} ($i=3,4,5$) are depicted in Fig. 12.

Then $N K(U) \geq N K\left(U_{5}^{*}\right)>N K\left(U_{3}^{*}\right)>N K\left(U_{4}^{*}\right)$.
Proof. Let C_{k} be the cycle of unicyclic graph U. In order to decrease $N K$-index, by Lemma 2.2, we can change the tree branches rooted in the cycle C_{k} to stars. By Operation C of Lemma 2.3, the Narumi-Katayama index is strictly decreasing. Repeated Operations B and C, then U_{3}^{*} is obtained.

Figure 12: $U_{i}^{*}(i=3,4,5)$
Let $U_{4}^{*}=U_{3}^{*}-u w+v w, U_{5}^{*}=U_{3}^{*}-u w+x w . N K\left(U_{3}^{*}\right)-N K\left(U_{4}^{*}\right)=\prod_{v_{i} \in V\left(U_{3}^{*}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right)\left[3 \cdot \operatorname{deg} g_{u_{3}^{*}}(v)-2\right.$.

$$
\left.\left(\operatorname{deg}_{U_{3}^{*}}(v)+1\right)\right]>0 . N K\left(U_{3}^{*}\right)-N K\left(U_{5}^{*}\right)=\prod_{v_{i} \in V\left(U_{3}^{*}\right) \backslash\{u, x\}} \operatorname{deg}\left(v_{i}\right)[3 \cdot 1-2 \cdot 2]<0 .
$$

Then $N K\left(U_{4}^{*}\right)<N K\left(U_{3}^{*}\right)<N K\left(U_{5}^{*}\right) \leq N K(U)$.
Lemma 3.2 Let U be a unicyclic graph with the cycle C_{k} and other vertices are pendent vertices. U^{\prime} is the unicyclic graph obtained by deleting a 2-degree vertex and adding a pendent vertex of C_{k}. Then $N K(U)>N K\left(U^{\prime}\right)$.
Proof. Let u, v be a 2-degree and a vertex of C_{k}.
$N K(U)-N K\left(U^{\prime}\right)=\prod_{v_{i} \in V(U) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[2 \cdot \operatorname{deg}_{U}(v)-1 \cdot\left(\operatorname{deg}_{U}(v)+1\right)\right]>0$.
Hence $N K(U)>N K\left(U^{\prime}\right)$.
By Theorem 3.1 and Lemma 3.2, the following result holds:
Theorem 3.3 Let $U \nsubseteq Y_{n} . W_{n}$ and M_{n} are the unicyclic graphs U_{5}^{*} and U_{3}^{*} in the case $k=3$. Then $N K(U)>$ $N K\left(W_{n}\right)>\operatorname{NK}\left(M_{n}\right)$.

4. The minimal Narumi-Katayama index of bicyclic graphs

Bicyclic graphs are divided into three types:

I

III

Figure 13: I, II and III-type bicyclic graphs
Lemma 4.1 Let B be a I-type bicyclic graph with the cycles C_{p}, C_{q} and n vertices. Then $N K(B) \geq N K\left(B_{4}^{*}\right)\left(B_{4}^{*}\right.$ is depicted in Fig. 14), where C_{p} and C_{q} have a common vertex u, and the other vertices are pendent vertices attached in u.
Proof. For a bicyclic graph B with the cycles C_{p} and C_{q}, the other vertices consist of some tree branches rooted in C_{p}, C_{q} and vertex u. By Lemma 2.2, if these tree branches are transformed into stars, then Narumi-Katayama index is decreasing. Then we can obtain B_{1}^{*}. And $N K(B) \geq N K\left(B_{1}^{*}\right)$.

B_{1}^{*}

B_{2}^{*}

B_{3}^{*}

B_{4}^{*}

Figure 14: $B_{i}^{*}(i=1,2,3,4)$
Let B_{2}^{*} be the graph obtained by grafting all pendent edges incident with w to v from B_{1}^{*}. Then $N K\left(B_{1}^{*}\right)-N K\left(B_{2}^{*}\right)=\prod_{v_{i} \in V\left(B_{1}^{*}\right) \backslash\{v, w\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{1}^{*}}(v) \cdot \operatorname{deg}_{B_{1}^{*}}(w)-2 \cdot\left(\operatorname{deg}_{B_{1}^{*}}(v)+\operatorname{deg}_{B_{1}^{*}}(w)-2\right)\right]>0$ for $\operatorname{deg}_{B_{1}^{*}}(v)>2$ and $\operatorname{deg}_{B_{1}^{*}}(w)>2$. If $\operatorname{deg}_{B_{1}^{*}}(v)=2$ or $\operatorname{deg}_{B_{1}^{*}}(w)=2$, then $B_{1}^{*} \cong B_{2}^{*}$.

Let $B_{3}^{*}\left(B_{4}^{*}\right)$ be the graph obtained by grafting all pendent edges incident with $u(v)$ to $v(u)$ from B_{2}^{*}.

$$
\begin{aligned}
N K\left(B_{2}^{*}\right)-N K\left(B_{4}^{*}\right) & =\prod_{v_{i} \in V\left(B_{2}^{*}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{2}^{*}}(u) \cdot \operatorname{deg}_{B_{2}^{*}}(v)-2 \cdot\left(\operatorname{deg}_{B_{2}^{*}}(v)+\operatorname{deg}_{B_{2}^{*}}(u)-2\right)\right] \\
& =\prod_{v_{i} \in V\left(B_{2}^{*}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\left(\operatorname{deg}_{B_{2}^{*}}(u)-2\right) \cdot\left(\operatorname{deg}_{B_{2}^{*}}(v)-2\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \operatorname{deg}_{B_{2}^{*}}(v)=2 \text {, then } B_{2}^{*} \cong B_{4}^{*} \text {. If } \operatorname{deg}_{B_{2}^{*}}(v)>2 \text {, then } N K\left(B_{2}^{*}\right)>N K\left(B_{4}^{*}\right) . \\
& \begin{aligned}
N K\left(B_{3}^{*}\right)-N K\left(B_{4}^{*}\right) & =\prod_{v_{i} \in V\left(B_{B^{*}}^{*}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[4 \cdot \operatorname{deg}_{B_{3}^{*}}(v)-2 \cdot\left(\operatorname{deg}_{B_{3}^{*}}(v)+2\right)\right] \\
& =\prod_{v_{i} \in V\left(B_{3}^{*}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[2 \cdot\left(\operatorname{deg}_{B_{3}^{*}}(v)-2\right)\right] .
\end{aligned}
\end{aligned}
$$

If $\operatorname{deg}_{B_{3}^{*}}(v)=2$, then $B_{3}^{*} \cong B_{4}^{*}$. If $\operatorname{deg}_{B_{3}^{*}}(v)>2$, then $N K\left(B_{3}^{*}\right)>N K\left(B_{4}^{*}\right)$.
Combining above discussions, we have:
(1) If $\operatorname{deg}_{B_{2}^{*}}(v)=2$, then $B_{2}^{*} \cong B_{3}^{*} \cong B_{4}^{*}$.
(2) If $\operatorname{deg}_{B_{2}^{*}}(v)>2$, then $N K\left(B_{2}^{*}\right)>\operatorname{NK}\left(B_{4}^{*}\right)$ and $N K\left(B_{3}^{*}\right)>N K\left(B_{4}^{*}\right)$.

Hence $N K(B) \geq N K\left(B_{4}^{*}\right)$.
Lemma 4.2 For a bicyclic graph B_{4}^{*}, the minimal Narumi-Katayama index is attained when there are $n-5$ pendent vertices, denoted by $B_{4}^{*}(3,3, n-5)$.

Proof. Suppose there are k 2-degree vertices in B_{4}^{*}. Then $N K\left(B_{4}^{*}\right)=2^{k} \cdot(n-k+3)$. Let $f(k)=2^{k}(n-k+3)$. Since $f^{\prime}(k)=2^{k}[(n-k+3) \ln 2-1]>0, f(k)$ is an increasing function in k. Then $f(k) \geq f(4)$ for $k \geq 4$, i.e., when $p=3, q=3$ and $n-5$ vertices are pendent vertices, i.e., $B_{4}^{*}(3,3, n-5)$ attains the minimal $N K$-value.

Lemma 4.3 Let B be a II-type bicyclic graph. Then $N K(B) \geq N K\left(B_{5}^{*}\right)$, where B_{5}^{*} is depicted in Figure 15.

Figure 15: $B_{5}^{1, *}$ and B_{5}^{*}
Proof. Let B be a II-type bicyclic graph. In order to decrease $N K(B)$, by repeating operations in Lemmas 2.2 and 2.3, we can obtain the bicyclic graph $B_{5}^{1, *}$ and $N K(B) \geq N K\left(B_{5}^{1, *}\right)$.

Let $B_{5}^{2, *}\left(B_{5}^{*}\right)$ be the graph obtained by grafting all pendent vertices of vertex $u(v)$ to $v(u)$ from $B_{5}^{1, *}$. By Lemma 2.2, $N K\left(B_{5}^{1, *}\right) \geq N K\left(B_{5}^{2, *}\right)$ and $N K\left(B_{5}^{1, *}\right) \geq N K\left(B_{5}^{*}\right)$.

$$
N K\left(B_{5}^{*}\right)-N K\left(B_{5}^{2, * *}\right)=\prod_{v_{i} \in V\left(B_{5}^{1, *}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[2 \cdot\left(d e g_{B_{5}^{1, *}}(u)+\operatorname{deg}_{B_{5}^{1, *}}(v)-2\right)-3 \cdot\left(\operatorname{deg}_{B_{5}^{1, *}}(v)+d e g_{B_{5}^{1, *}}(u)-3\right)\right] .
$$

If $d e g_{B_{5}^{1, *}}(u)=3$ and $d e g_{B_{5}^{1, *}}(v)=2$, then $B_{5}^{2, *} \cong B_{5}^{*}$.
Otherwise, $N K\left(B_{5}^{*}\right) \leq N K\left(B_{5}^{2, *}\right) \leq N K\left(B_{5}^{1, *}\right) \leq N K(B)$.
Lemma 4.4 For a bicyclic graph B_{5}^{*}, the minimal Narumi-Katayama index is attained when there are $n-4$ pendent vertices, denoted by $B_{5}^{*}(n-4)$.
Proof. Suppose there are k 2-degree vertices in B_{5}^{*}. Then $N K\left(B_{5}^{*}\right)=(n-k+1) \cdot 2^{k} \cdot 3$. Let $f(k)=3 \cdot 2^{k}(n-k+1)$. Since $f^{\prime}(k)=3 \cdot 2^{k}[(n-k+1) \ln 2-1]>0, f(k)$ is an increasing function in k. Then $f(k) \geq f(2)$ for $k \geq 2$, i.e., when $B_{5}^{*} \cong B_{5}^{*}(n-4), N K\left(B_{5}^{*}(n-4)\right)$ attains the minimal value.

Lemma 4.5 Let B be a III-type bicyclic graph with n vertices. Then $N K(B) \geq N K\left(B_{6}^{*}\right)$, where B_{6}^{*} is depicted in Figure 16.

Figure 16: $B_{6}^{1, *}, B_{6}^{4, *}$ and B_{6}^{*}
Proof. For a III-type bicyclic graph B, similar to the proof of Lemma 4.3, and repeating the operations in Lemmas 2.2 and 2.3, we can obtain the bicyclic graph $B_{6}^{1, *}$ with $N K(B) \geq N K\left(B_{6}^{1, *}\right)$.

Let $B_{6}^{2, *}\left(B_{6}^{3, *}\right)$ be the graph obtained by grafting all pendent vertices of vertex $u(v)$ to $v(u)$ from $B_{6}^{1, *}$.
Since $\operatorname{deg}_{B_{6}^{1, *}}(u) \geq 3$ and $\operatorname{deg}_{B_{6}^{1, *}}(v) \geq 3$,

$$
N K\left(B_{6}^{1, *}\right)-N K\left(B_{6}^{2, * *}\right)=\prod_{v_{i} \in V\left(B_{6}^{1, *}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{6}^{1, *}}(u) \operatorname{deg}_{B_{6}^{1, *}}(v)-3 \cdot\left(\operatorname{deg}_{B_{6}^{1, *}}(v)+\operatorname{deg}_{B_{6}^{1, *}}(u)-3\right)\right] \geq 0 ;
$$

$N K\left(B_{6}^{2, *}\right)-N K\left(B_{6}^{3, *}\right)=\prod_{v_{i} \in V\left(B_{6}^{2, *}\right) \backslash\{u, v\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{6}^{2, *}}(v) \cdot 3-2 \cdot\left(\operatorname{deg}_{B_{6}^{2, *}}(v)-2+3\right)\right] \geq 0$.
Then $N K\left(B_{6}^{1, *}\right) \geq N K\left(B_{6}^{2, *}\right) \geq N K\left(B_{6}^{3, *}\right)$.
Similarly, by grafting all pendent vertices of vertex y to x from $B_{6}^{3, *}$, we obtain the graph $B_{6}^{4, *}$ and $N K\left(B_{6}^{3, *}\right) \geq N K\left(B_{6}^{4, *}\right)$.

Let $B_{6}^{5, *}$ be the graph obtained by grafting all pendent vertices of vertex x to u from $B_{6}^{4, *}$.

$$
N K\left(B_{6}^{4, *}\right)-N K\left(B_{6}^{5, *}\right)=\prod_{v_{i} \in V\left(B_{6}^{4, *}\right) \backslash\{u, x\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{6}^{4 * *}}(u) d e g_{B_{6}^{4, *}}(x)-3 \cdot\left(\operatorname{deg}_{B_{6}^{4, *}}(u)+\operatorname{deg}_{B_{6}^{4, *}}(x)-3\right)\right] \geq 0
$$

Then $N K\left(B_{6}^{4, *}\right) \geq N K\left(B_{6}^{5, *}\right)$.
Let $B_{6}^{6, *}\left(B_{6}^{*}\right)$ be the graph obtained by grafting all pendent vertices of vertex $u(w)$ to $w(u)$ from $B_{6}^{5, *}$.
$N K\left(B_{6}^{5, *}\right)-N K\left(B_{6}^{6, *}\right)=\prod_{v_{i} \in V\left(B_{6}^{5, *}\right) \backslash\{u, w\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[\operatorname{deg}_{B_{6}^{5, *}}(u) \operatorname{deg}_{B_{6}^{5, *}}(w)-3 \cdot\left(\operatorname{deg}_{B_{6}^{5, *}}(u)+\operatorname{deg}_{B_{6}^{5, *}}(w)-3\right)\right] \geq 0 ;$
$N K\left(B_{6}^{6, *}\right)-N K\left(B_{6}^{*}\right)=\prod_{v_{i} \in V\left(B_{6}^{6, *}\right) \backslash\{u, w\}} \operatorname{deg}\left(v_{i}\right) \cdot\left[3 \cdot \operatorname{deg}_{B_{6}^{6 * *}}(w)-2 \cdot\left(d e g_{B_{6}^{6, *}}(w)-2+3\right)\right] \geq 0$.
Then $N K\left(B_{6}^{5, *}\right) \geq N K\left(B_{6}^{6, *}\right) \geq N K\left(B_{6}^{*}\right)$.
Hence $N K(B) \geq N K\left(B_{6}^{1, *}\right) \geq N K\left(B_{6}^{2, *}\right) \geq N K\left(B_{6}^{3, *}\right) \geq N K\left(B_{6}^{4, *}\right) \geq N K\left(B_{6}^{5, *}\right) \geq N K\left(B_{6}^{6, *}\right) \geq N K\left(B_{6}^{*}\right)$.
Lemma 4.6 For a bicyclic graph B_{6}^{*}, the minimal Narumi-Katayama index is attained when $p=3, q=3$ and other vertices are pendent vertices, denoted by $B_{6}^{*}(3,3, n-6)$.
Proof. Suppose there are k 2-degree vertices in B_{6}^{*}. Then $N K\left(B_{6}^{*}\right)=(n-k+1) \cdot 2^{k} \cdot 3$. By the proof of Lemma 4.4, $N K\left(B_{6}^{*}\right)$ is increasing in k. For $k \geq 4$, i.e., when $p=3, q=3$ and $n-6$ vertices are pendent vertices, i.e., $N K\left(B_{6}^{*}(3,3, n-6)\right)$ attains the minimal value.

Theorem 4.7 Let B a bicyclic graph with n vertices. Then $N K(B) \geq N K\left(B_{5}^{*}(n-4)\right)$. The equality holds if and only if $B \cong B_{5}^{*}(n-4)$.
Proof. For a bicyclic graph B, B belongs to one of three types of bicyclic graphs. By Lemmas 4.1-4.6, B attains the minimum $N K$-value in $B_{4}^{*}(3,3, n-5), B_{5}^{*}(n-4)$ or $B_{6}^{*}(3,3, n-6)$. By direct calculations, $N K\left(B_{4}^{*}(3,3, n-5)\right)=2^{4} \cdot(n-1), N K\left(B_{5}^{*}(n-4)\right)=2^{2} \cdot 3 \cdot(n-1)$, and $N K\left(B_{6}^{*}(3,3, n-6)\right)=3 \cdot 2^{4} \cdot(n-3)$. Then $N K\left(B_{4}^{*}(3,3, n-5)\right)>N K\left(B_{5}^{*}(n-4)\right)$ and $N K\left(B_{6}^{*}(3,3, n-6)\right)>N K\left(B_{5}^{*}(n-4)\right)$.

Then $N K(B)>N K\left(B_{5}^{*}(n-4)\right)$ if $B \not \equiv B_{5}^{*}(n-4)$.
Hence $N K(B) \geq N K\left(B_{5}^{*}(n-4)\right)$.

References

[1] H. Narumi, M. Katayama, Simple topological index, A newly devised index characterizing the topological nature of sturctural isomers of saturated hydrocarbons, Memoirs of the Faculty of Engineering, Hokkaido University 16 (1984) 209-214.
[2] D.J. Klein, V.R. Rosenfeld, The degree-product index of Narumi and Katayama, MATCH Communications in Mathematical and in Computer Chemistry 64 (2010) 607-618.
[3] D.J. Klein, V.R. Rosenfeld, The Narumi-Katayama degree-product index and the degree-product polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
[4] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[5] Ž. Tomović, I. Gutman, Narumi-Katayama index of phenylenes, Journal of The Serbian Chemical Society 66 (2001) 243-247.
[6] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters 25 (2012) 1435-1438
[7] M. Zhang, B. Liu, On the Randić index and diameter, MATCH Communications in Mathematical and in Computer Chemistry 64 (2010) 433-442.

[^0]: 2010 Mathematics Subject Classification. Primary 92E10; Secondary 05C35
 Keywords. Narumi-Katayama index; Trees; Unicyclic graphs; Bicyclic graphs; Diameter
 Received: 08 July 2012; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 Research supported by the National Natural Science Foundation of China (Grant No. 11301093 and 11071088)
 Email address: liubl@scnu.edu.cn (Bolian Liu)

