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On the Edge Wiener Index
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Abstract. Let G be a simple connected graph. The Wiener index of G is the sum of all distances between
vertices of G. Whereas, the edge Wiener index of G is defined as the sum of distances between all pairs of
edges of G where the distance between the edges f and 1 in E(G) is defined as the distance between the
vertices f and 1 in the line graph of G. In this paper we will describe a new method for calculating the edge
Wiener index. Then find this index for the triangular graphs. Also, we obtain an explicit formula for the
Wiener index of the Cartesian product of two graphs using the group automorphisms of graphs.

1. Introduction

Graph invariants are properties of graphs that are invariant under graph isomorphisms. There are many
examples of graph invariants, especially those based on distances, which are applicable in chemistry. Let G
be a simple connected graph with the vertex set V = V(G) and the edge set E = E(G). The distance between
the vertices u and v of G is denoted as d(u, v |G) or d(u, v). It is defined as the length of a minimum path
connecting them. The first, and most well-known parameter, the Wiener index, was introduced in the late
1940s in an attempt to analyze the chemical properties of paraffins (alkanes) [27]. This is a distance-based
index, whose mathematical properties and chemical applications have been widely researched. In our
notation, it can be described as follows:

W(G) =
∑

{u,v}∈V(G)

d(u, v |G) =
1
2

∑
u∈V(G)

d(u |G) (1)

where d(u |G) =
∑

v∈V(G) d(u, v |G). In mathematical research, the Wiener index has been first studied in [12],
and for a long time mathematicians were not aware of the importance of the Wiener index in mathematical
chemistry. However, because of the chemical facts about the Wiener index and also because it is an invariant
of the graph, various researches found methods to calculate this index. Among the important works on
finding the Wiener index of a general graph one is referred to the papers [7]–[11], [14]-[17],[24]-[26].

Another index that was recently defined in an analogous way, using the distance between the edges, is
called the edge Wiener index [20]. Let f = xy and 1 = uv be two edges of G. The distance between f and
1 is denoted by de( f , 1 |G) and defined as the distance between the vertices f and 1 in the line graph of G.
This distance is equal to min

{
d(x,u), d(x, v), d(y,u), d(y, v)

}
+ 1.
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Distance 1 means that the edges share a vertex, distance 2 means that at least two of the four end-vertices
of two edges are adjacent. The edge Wiener index of the graph G is denoted by We(G) and defined as the
sum of distances between all pairs of edges of the graph G. That is,

We(G) =
∑

{ f ,1}⊆E(G)

de( f , 1 |G) =
1
2

∑
f∈E(G)

de( f |G) (2)

where de( f |G) =
∑
1∈E(G) d( f , 1 |G).

We encourage the reader to consult [1, 2], [6] and [21, 22] for computational techniques and mathematical
properties of the edge Wiener index.

In this paper our aim is to use new method which applies group theory to graph theory. We improve
only mathematically computation of the edge Wiener index in certain graphs by this method.

First we need some concepts from the theory of groups and graph theory that we will give on the
following. Let A = Aut(G) be the automorphism of a graph G which is a group. A act transitive on V (or E)
if for any pair u, v of vertices (or f , 1 of edges) in G, there exists an automorphism σ such that σ(u) = v (or
σ( f ) = 1). In this case, G is called vertex-transitive (or edge-transitive) [3],[13].

The triangular graph T(n) is the line graph of the complete graph Kn. The vertices of T(n) may be identified
with the 2-subsets of Ω = {1, 2, . . . ,n} i.e., V = {{a, b} |a, b ∈ Ω, a , b }. Two distinct vertices {a, b} and {c, d} are
adjacent iff the 2-subsets have a nonempty intersection. We have |V| =

(n
2
)
, the degree of each vertex is 2n−4

and hence |E| = (n−2)
(n

2
)
. We can see easily that T(n) is an edge-transitive graph [8]. We will express explicit

formula for the edge Wiener index of this graph, based on the properties of the automorphism group of the
graph.

The next family of graphs we are going to consider is the hypercube of dimension r define as the graph Qr
whose vertex set consists of all 0, 1 vectors (v1, v2, . . . , vr), where two vertices are adjacent if and only if they
differ in precisely one coordinate [18], [19]. Therefore Qr is a graph with |V| = 2r vertices where the degree
of each vertex is n. The number of edges is equal to |E| = r2r−1. Acoording to concepts in graph theory, we
will show that Qr is vertex-transitive and using relation between Cartesian product and Wiener index we
compute the Wiener index of Qr by new way.

2. Main results

Let E′ and E′′ be two subsets of E = E(G), we define de(E′,E′′) as follows:

de(E′,E′′) =
∑
f∈E′

∑
1∈E′′

de( f , 1). (3)

According to the above notation, we can write:

We(G) =
1
2

de(E,E). (4)

Define a distance number δe(σ) of σ ∈ A = Aut(G) as follows:

δe(σ) =
1
|E|

∑
f∈E

de( f , σ( f )). (5)

If Γ is a subgroup of A, we denote δe(Γ) as follows:

δe(Γ) =
1
|Γ|

∑
σ∈Γ

δe(σ) =
1
|Γ| |E|

∑
f∈E

∑
σ∈Γ

de( f , σ( f )). (6)

When Γ = A, the distance number of a graph G is denoted by δe(A).
Since Γ act on the set E, we denote the orbits of this action by Ei = O( fi) = { f σi |σ ∈ A}, 1 ≤ i ≤ r. Therefore,

we have E = E1 ∪ · · · ∪ Er. We will need the following well-known lemma [13].
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Lemma 2.1. (Orbit-stabilizer) Let G be a permutation group acting on Ω and let ω be a point in Ω. Then |G| =
|Gω|

∣∣∣ωG
∣∣∣ where ωG =

{
ω1

∣∣∣ 1 ∈ G
}

is an orbit of G and Gω =
{
1 ∈ G |ω1 = ω

}
is the stabilizer of ω in G.

So if Γi =
{
σ ∈ Γ

∣∣∣ fi
σ

= fi
}

denotes a stabilizer of an edge fi from Ei then by the above Lemma, |Γ| = |Ei| |Γi|.
In the following Theorem, we shows that the edge Wiener index of an edge-transitive graph G can be

expressed in terms of the distance number of G.

Theorem 2.2. For a connected graph G with the edge set E we have:

|E| δe(A) =

r∑
i=1

2 We(Ei)
|Ei|

. (7)

Proof. Take Γ = A and for two edges f and 1 of G, let Σ = {σ ∈ Γ| f σ = 1} and n( f , 1) = |Σ|. We denote by Γ f
the stabilizer group for f . If f and 1 belong to the same orbit Ei, we can construct a bijection between Σ and
Γ f and so n( f , 1) =

∣∣∣Γ f

∣∣∣ =
∣∣∣Γ1∣∣∣ (= |Γi|). Now we have

δe(A) =
1
|Γ|

∑
σ∈Γ

δe(σ) =
1
|Γ| |E|

∑
f∈E

∑
σ∈Γ

de( f , σ( f )) =
1
|Γ| |E|

∑
f∈E

∑
1∈E

de( f , 1) n( f , 1)

=
1
|Γ| |E|

r∑
i=1

∑
f∈Ei

∑
1∈Ei

de( f , 1) |Γi| =
1
|E|

r∑
i=1

|Γi|

|Γ|
d(Ei,Ei) =

1
|E|

r∑
i=1

1
|Ei|

d(Ei,Ei).

Therefore

|E| δe(A) =

r∑
i=1

1
|Ei|

d(Ei,Ei) =

r∑
i=1

2 We(Ei)
|Ei|

,

and so we have the desired result.

Corollary 2.3. If G is an edge-transitive graph, then

We(G) =
|E|2 δe(A)

2
. (8)

Now let us introduce another useful concept. For a subset U of E, define

ωe(U) =
1

|U|2
∑
f∈U

∑
1∈U

de( f , 1) =
1

|U|2
de(U,U). (9)

Clearly we have

ωe(U) =
2 We(U)

|U|2
. (10)

By this definition and Theorem 2.2, δe(A) becomes a weighted average of ωe(Ei), that is,

δe(A) =
1
|E|

r∑
i=1

|Ei| ωe(Ei). (11)

Theorem 2.4. If Ei, 1 ≤ i ≤ r, is an orbit, then for each edge f ∈ Ei

ωe(Ei) =
1
|Ei|

de( f |E i). (12)
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Proof. We have

ωe(Ei) =
1

|Ei|
2 de(Ei,Ei).

However, if f and 1 are two elements from Ei, then for some σ ∈ Aut(G), f σ = 1 and we have

de( f |Ei) =
∑
h∈Ei

d( f , h) =
∑
h∈Ei

d( f σ, hσ) =
∑
h∈Ei

d(1, hσ) =
∑
h′∈Ei

d(1, h′) = de(1 |Ei) ,

therefore ωe(Ei) = 1
|Ei |

2 |Ei| de( f |Ei ) = 1
|Ei |

de( f |E i).

Corollary 2.5. If G is an edge-transitive graph, then for each f ∈ E, we have

δe(A) = ωe(E) =
1
|E|

de( f |G) . (13)

Corollary 2.6. If G is an edge-transitive graph, then for each f ∈ E, we have

We(G) =
1
2
|E| de( f |G) . (14)

Proof. According to Corollary 2.3 and Corollary 2.5, we have the desired result.

In the next examples, we will consider a few well-known graphs [13], and find their edge Wiener index
using the result mentioned in Corollary 2.6. For these graphs, this index was computed directly in [20].
Here we only change our computation.

Example 2.7. The automorphism group of Kn is the symmetric group Sn. So the complete graph Kn is edge-transitive
graph. Thus we have

We(Kn) =
1
2
|E(Kn)| de( f |Kn) =

1
2

(
n
2

)
(n2
− 3n + 2) =

(
n
2

)(
n − 1

2

)
.

Example 2.8. Suppose Cn be a cyclic of length n. We labeling its vertices by 1, 2, ...,n. Therefore 〈(12 . . . n)〉 ≤
Aut(Cn) is a cyclic group that acting transitive on edge set of Cn. So according to Corollary 2.6, We(Cn) = 1

2 n de( f |G)
where e is any edge of Cn. With a simple calculation we have:

de( f |G) =


n2

4
, n even

n2
− 1
4

, n odd

Now, we can compute the Wiener index of Cn by substituting the above formula in We(Cn) = 1
2 n de( f |G).

Example 2.9. The Petersen graph is edge-transitive.
We have We(P) = 1

2 |E|de( f |P), where f is an arbitrary edge of P. One can see that de( f |P) = 26 and so we
conclude that We(P) = 195.

All graphs expressed in Examples 2.7, 2.8 and 2.9 are both vertex- and edge-transitive. A graph that is
both vertex- and edge-transitive is called a symmetric graph.

The graph O, in Figure 2, is vertex-transitive but not edge-transitive.
Let f1 and f2 be representatives of two orbits E1 and E1, respectively. We have:

We(P) =
1
2

[|E1| de( f1 |O) + |E2| de( f2 |O)] =
1
2

[6 · 12 + 3 · 12] = 54
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Figure 1: The Petersen graph (P).

2
f

1
f

Figure 2: The graph O.

Another example of a vertex-transitive graph with two edge orbits is the Heawood graph [29]. There
are also numerous examples of cubic vertex-transitive graphs with three edge orbits, called zero-symmetric
graphs [5].

The next Theorem shows that an edge-transitive graph that is not vertex-transitive is necessarily bipartite.

Theorem 2.10. ([3] Theorem 15.1) If a connected graph G is edge-transitive but not vertex-transitive, then it is
bipartite.

The converse of the above theorem is false. For example, one can find many trees, such as any path
of order n ≥ 4, that are not vertex- and edge-transitive. Also, many molecular graph are not vertex- and
edge-transitive. We refer to reader references [1, 2], [20, 22] for more details about the computation of the
edge Wiener index of some molecular graphs.

Example 2.11. Since the complete bipartite graph Km,n with m , n is an edge-transitive, we have

We(Km,n) =
1
2

∣∣∣E(Km,n)
∣∣∣ de( f

∣∣∣Km,n
)

(15)

where f is any edge of Km,n. We have de( f
∣∣∣Km,n

)
=

∑
1∈E de( f , 1) = 2mn−n−m and so We(Km,n) =

mn (2mn − n −m)
2

.

The complete bipartite graph Km,n with m , n is a simple example of a graph which is edge-transitive but
not vertex-transitive, although examples of this type are by no means easy to find [4]. However, the graph
Kn,n is a symmetric graph and according to the above formula when m = n, we have We(Kn,n) = n3 (n − 1).

Now in the following, we give the formula of the edge Wiener index of the triangular graph T(n)
according to concepts in transitive graph.

Theorem 2.12. The edge Wiener index of the triangular graph G = T(n) is

We(G) =
1
4

(n − 2)
(
n
2

)
(3n3
− 18n2 + 43n − 44). (16)

Proof. The distance between any two distinct vertices of V is either 1 or 2. The vertices z whose distance
from u = {a, b} ∈ V is 1 should meet u in one element, hence the number of them is 2n − 4. If v is another
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vertex of V with u ∩ v = ∅, then v = {c, d}, where c and d are distinct elements of Ω disjoint from a and b.
Now if we take w = {a, c}, then u→ w→ v is a path of length 2 from u to v.

Now according to definition of the distance between f , 1 ∈ E, we have de( f , 1 |G) = 1, 2 or 3. Fixing
f = uv ∈ E where u = {a, b} and v = {a, c}. The edges whose distance from f is 1 should share with f in one
vertex. So the number of these edges is 4n−10. Suppose that 1 = xy is a different edge from f . We let x = {r, s}
and y = {r, t}where r, s, t are distinct elements of Ω disjoint from a, b, c. Therefore by the above arguments,
d(x,u) = d(x, v) = d(y,u) = d(y, v) = 2 and so we have de( f , 1 |G) = min

{
d(x,u), d(x, v), d(y,u), d(y, v)

}
+ 1 = 3.

The number of these edges is equal to the number of selections of1 = xy, which is equal to (n−3)(n−4)(n−5)/2.
In this manner the number of edge at distance 2 of f is

(|E| − 1) − ((4n − 10) + (
1
2

(n − 3)(n − 4)(n − 5)) =
1
2

(9n2
− 53n + 78),

therefore we have:

de( f |G) = (4n − 10) + 2
[1
2

(9n2
− 53n + 78)

]
+ 3

[1
2

(n − 3)(n − 4)(n − 5)
]

=
1
2

(3n3
− 18n2 + 43n − 44),

thus by Corollary 2.6,

We(G) =
1
2
|E| de( f |G) =

1
4

(n − 2)
(
n
2

)
(3n3
− 18n2 + 43n − 44),

and so we conclude the desired result.

2.1. Cartesian product and Wiener index
Many interesting classes of graphs arise from simpler graphs via binary operations known as graph

products. The Cartesian product of G and H is a graph, denoted by G × H, with vertex set is V(G × H) =
{(u, v)|u ∈ V(G), v ∈ V(H)}. Two vertices (u, x) and (v, y) are adjacent precisely if u = v and xy ∈ E(H), or
uv ∈ E(G) and x = y. The graphs G and H are called factors of the product G ×H. The nth power of G with
respect to the Cartesian product is denoted as G×,n, that is, G×,n = G × G × · · · × G (n factors) [18], [19].

The Wiener index of Cartesian product graphs, studied in [14], [28], is given by the formula W(G×H) =
|V(G)|2W(H) + |V(H)|2W(G). In this part, we study the Cartesian product of vertex-transitive graphs and
then give another formula for this product. This formula is better in vertex-transitive graphs. In [18], we
have the following results in relation to this product.

Lemma 2.13. ([18]) Let G and H be two graphs. Then we have:

1. |V(G × H)| = |V(G)| |V(H)| .
2. |E(G × H)| = |V(G)| |E(H)| + |E(G)| |V(H)| .
3. If (u, x) and (v, y) are vertices of G ×H, then

d((u, x), (v, y) |G ×H ) = d(u, v |G ) + d(x, y |H) .

Theorem 2.14. ([18]) A Cartesian product has transitive automorphism group if and only if every factor has transitive
automorphism group.

Corollary 2.15. ([18]) Let G and H be two vertex-transitive graphs. Then G ×H is a vertex-transitive graph.

Corollary 2.16. ([18]) For any transitive graph G, G×,n is a vertex-transitive graph.

Similar to computation of the edge Wiener index for edge-transitive graphs, we have the following
Corollary for the Wiener index for vertex-transitive graphs.

Corollary 2.17. ([7]) Let G be a simple transitive graph. Then W(G) = 1
2 |V|d(u|G) for any u ∈ V.

Using the above Theorem, we compute the Wiener index of product of vertex-transitive graphs.
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Theorem 2.18. Let G and H be two vertex-transitive graphs. Then for each two vertices w ∈ G and x ∈ H, we have:

W(G ×H) =
1
2
|V(G ×H)|2 ·

(
d(w |G)
|V(G)|

+
d(x |H )
|V(H)|

)
. (17)

Proof. For each vertex (w, z) in G ×H first we have:

d((w, x) |G ×H) =
∑

(z,y)∈V(G×H)

d((w, x), (z, y)) =
∑

(z,y)∈V(G×H)

(
d(w, z) + d(x, y)

)
=

∑
y∈V(H)

d(w |G) +
∑

z∈V(G)

d(x |H)

= |V(G ×H)|
(

d(w |G)
|V(G)|

+
d(x |H )
|V(H)|

)
.

Now, according to Corollary 2.15, G×H is a vertex-transitive graph, and so by Corollary 2.17 and the above
formula, we have

W(G ×H) = 1
2 |V(G ×H)| · d((w, x) |G ×H)= 1

2 |V(G ×H)| ·
(
|V(G ×H)| ·

(
d(w |G)
|V(G)|

+
d(x |H)
|V(H)|

))
= 1

2 |V(G ×H)|2 ·
(

d(w |G)
|V(G)|

+
d(x |H)
|V(H)|

)
.

and the Theorem is proved.

Corollary 2.19. Let G1, G2, . . . , Gn be vertex-transitive graphs with Vi = V(Gi), 1 ≤ i ≤ n, and V = V(G) such
that G = G1 × · · · × Gn. Then

W(G) =
1
2
|V|2

n∑
i=1

d(ui |Gi)
|Vi|

, (18)

In particular, W(G×,n) = n
2 |V(G)|2n−1 d(u |G ), for all u in V(G).

Proof. Applying an induction argument and Theorem 2.18, we have:

W(G) = W ((G1 × · · · × Gn−1) × Gn)

=
1
2

[|V(G1 × · · · × Gn−1)| |V(Gn)|] [|V(Gn)| d(w |G1 × · · · × Gn−1)]

+
1
2

[|V(G1 × · · · × Gn−1)| |V(Gn)|] [|V(G1 × · · · × Gn−1)| d(un |Gn)]

=
1
2
|V|

|V(Gn)| |V(G1 × · · · × Gn−1)| ·
n−1∑
i=1

d(ui |Gi)
|Vi|


+

1
2
|V| (|V(G1 × · · · × Gn−1)| · d(un |Gn))

=
1
2
|V|

|V| n−1∑
i=1

d(ui |Gi)
|Vi|

+ |V|
d(un |Gn)
|Vn|


=

1
2
|V|2

 n∑
i=1

d(ui |Gi)
|Vi|

 .
One of the graphs that is important in graph theory, is hypercube Qr. In [7], by materials in group

theory was showed that this graph is vertex-transitive and its Wiener index was computed. However now,
acoording to concepts in graph theory, we can simply show that Qr is vertex-transitive. So we have the
following Theorem:
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Theorem 2.20. The Wiener index of Qr is equal to W(Qr) = r22r−2.

Proof. We have Qr = K×, r2 and since K2 is vertex-transitive, by Corollary 2.16, Qr is also vertex-transitive.
Now according to Corollary 2.19, for all u in V(Qr) we have W(K×, r2 ) = r

2 |V(K2)|2r−1d(u|K2) that is equal to r22r−2.

Note that G and H may be both vertex- and edge-transitive and G ×H need not be edge-transitive. For
instance, let G = K2, H = K3. The Cartesian product K2 × K3 is vertex-transitive but has six edges in one
orbit and three edges in the other. Janez Žerovnik in [29] stated that for any vertex and edge-transitive
graph G, the nth Cartesian power G×,n is symmetric. So both vertex- and edge-transitivity are needed. Note
that the path on three vertices P3 is edge-transitive but P3 × P3 is not. Also, K2 × K3 is vertex-transitive but
K2 ×K3 × K2 ×K3 is not edge-transitive. However, according to results in the first part of Section 2.1, if G is
a simple connected graph and Aut(G) on E(G) has orbits E1, E2, · · · , Er, with representatives f1, f2, · · · , fr,
respectively, then we can say that We(G) = 1

2
∑r

i=1 |Ei|de( fi|G). According to the above arguments, we express the
following example:

2
f

1
f

Figure 3: The Cartesian product K2 × Cn.

Example 2.21. We compute the edge Wiener index of Cartesian product K2 ×Cn. This graph is vertex-transitive but
has n edges in one orbit and 2n edges in the other. Let f1 and f2 be representatives of two orbits E1 and E1, respectively.
Thus when n is even we have:

We(K2 × Cn) = 1
2
(
|E1| de( f1|K2 × Cn) + |E2| de( f2|K2 × Cn)

)
= 1

2

(
n
(

3n2

4 + 2n − 1
)

+ 2n
(

3n2

4 + 3n
2 + 1

))
= 1

2 n
(

9n2

4 + 5n + 1
)
.

Finally, we close the paper with a discussion of several open problems. In this paper, we discussed
about the edge Wiener index of edge-transitive graphs and computed explicit formul for the Wiener index
of the Cartesian product G × H in vertex-transitive graphs. There are still many composite graphs not
covered by our approach. It would be interesting to find explicit formula for the edge Wiener index of the
Cartesian product of edge-transitive graphs. Besides the Cartesian product, there are also other types of
operations resulting in composite graphs, such as: the strong product, the lexicographic product and also
corona. Since all of them have interesting properties for transitive graphs, it could be useful to investigate
the behavior of graph invariants for these composite graphs in transitive graphs.
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[10] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247–294.
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