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Existence of µ-pseudo Almost Automorphic Solutions to a Neutral
Differential Equation by Interpolation Theory

Yong-Kui Changa, Xiao-Xia Luoa

aDepartment of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China

Abstract. In this paper, we shall deal with µ-pseudo almost automorphic solutions to a neutral differential
equation. To achieve this goal, we first prove a composition theorem forµ-pseudo almost automorphic func-
tions under suitable conditions, and then apply it to investigate some existence results by the interpolation
theory and fixed point methods.

1. Introduction

The concept of almost automorphy was first introduced in the literature by Bochner in [1], it is a natural
generalization of almost periodicity in the sense of Bohr [2], for more details about this topic we refer to
[3–8] and references therein. Since then, almost automorphy has become one of the most attractive topics in
the qualitative theory of evolution equations, and there have been several interesting, natural and powerful
generalizations of the classical almost automorphic functions. The concept of asymptotically almost auto-
morphic functions was introduced by N’Guérékata in [9]. Liang, Xiao and Zhang in [10, 11] presented the
concept of pseudo almost automorphy suggested by N’Guérékata in [4]. In [12], N’Guérékata and Pankov
introduced another generalization of almost automorphic functions–Stepanov-like almost automorphic
functions. Blot et al. introduced the notion of weighted pseudo almost automorphic functions with val-
ues in a Banach space in [13], which generalizes that of pseudo-almost automorphic functions. Zhang,
Chang and N’Guérékata investigated some properties and new composition theorems of Stepanov-like
weighted pseudo almost automorphic functions in [14] and investigated weighted pseudo almost auto-
morphic solutions to some nonlinear equations with Sp-weighted pseudo almost automorphic coefficients
in [15–17].

Recently, Blot, Cieutat and Ezzinbi in [18] applied the measure theory to define an ergodic function and
they investigated many interesting properties of µ-pseudo almost automorphic functions. In this work, we
first prove a composition theorem for µ-pseudo almost automorphic functions under suitable conditions,
and then apply it to investigate the existence of µ-pseudo almost automorphic solutions to the following
neutral differential equation:

d
dt

[u(t) + f (t,u(t))] = Au(t) + 1(t,u(t)), t ∈ R, (1)
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where A : D(A) ⊂ X → X is the generator of a hyperbolic analytic semigroup T(t)t≥0, and f : R × X →
Xβ(0 < α < β < 1), 1 : R × X → X are suitable continuous functions, Xβ is a suitable interpolation space
specified later. Our main results are based upon the interpolation theory developed in [19–21].

The rest of this paper is organized as follows. In Section 2, we present some basic definitions, lemmas,
and preliminary results which will be used throughout this paper. In Section 3, we prove some existence
results of µ-pseudo almost automorphic mild solutions to the neutral differential equation (1).

2. Preliminaries

This section is devoted to some preliminary results needed in the sequel. Throughout the paper, the
notations (X, ‖·‖) and (Y, ‖·‖Y) are two Banach spaces and BC(R,X) denotes the Banach space of all bounded
continuous functions from R to X, equipped with the supremum norm ‖ f ‖∞ = supt∈R ‖ f (t)‖. Let Xα is an
intermediate space between D(A) and X. B(R,Xα) for α ∈ (0, 1) stands for the Banach space of all bounded
continuous functions ϕ : R→ Xα when equipped with the α-sup norm:

‖ϕ‖α,∞ := sup
t∈R
‖ϕ(t)‖α

for ϕ ∈ BC(R,Xα).
Throughout this work, we denote by B the Lebesgue σ-field of R and by M the set of all positive

measures µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1. [1] A continuous function f : R → X is called almost automorphic if for every sequence of real
numbers (sn)n∈N there exists a subsequence (s′n)n∈N ⊂ (sn)n∈N such that

lim
n,m→∞

‖ f (t + sn − sm) − f (t)‖ = 0.

Define

PAA0(R,X) =

φ ∈ BC(R,X) : lim
T→∞

1
2T

T∫
−T

‖φ(σ)‖dσ = 0

 .
In the same way, we define PAA0(R ×X,X) as the collection of jointly continuous functions f : R ×X→ X
which belong to BC(R ×X,X)) and satisfy

lim
T→∞

1
2T

T∫
−T

‖φ(σ, x)‖dσ = 0

uniformly in compact subset of X.

Definition 2.2. [22, 23] A continuous function f : R → X (respectively R × X → X) is called pseudo-almost
automorphic if it can be decomposed as f = 1 + φ, where 1 ∈ AA(R,X)(respectively AA(R × X,X)) and φ ∈
PAA0(R,X)(respectively PAA0(R×X,X)). Denote by PAA(R,X) (respectively PAA(R×X,X)) the set of all such
functions.

Definition 2.3. [18] Let µ ∈ M. A bounded continuous function f : R→ X is said to be µ-ergodic if

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖ f (t)‖dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).
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Definition 2.4. [18] Let µ ∈ M. A continuous function f : R→ X is said to be µ-pseudo almost automorphic if f
is written in the form f = 1 + φ, where 1 ∈ AA(R,X) and φ ∈ ε(R,X, µ). We denote the space of all such functions
by PAA(R,X, µ).

Obviously, we have AA(R,X) ⊂ PAA(R,X, µ) ⊂ BC(R,X).

Lemma 2.5. [18, Proposition 2.13] Let µ ∈ M, then (ε(R,X, µ), ‖ · ‖∞) is a Banach space.

Lemma 2.6. [18, Theorem 4.1] Let µ ∈ M and f ∈ PAA(R,X, µ) be such that f = 1 + φ, where 1 ∈ AA(R,X) and
φ ∈ ε(R,X, µ). If PAA(R,X, µ) is translation invariant, then {1(t) : t ∈ R} ⊂ { f (t) : t ∈ R}, (the closure of the range
of f ).

Lemma 2.7. [18, Theorem 2.14] Let µ ∈ M and I be the bounded interval (eventually I = ∅). Assume that
f ∈ BC(R,X). Then the following assertions are equivalent.
(i) f ∈ ε(R,X, µ);
(ii) lim

r→+∞

1
µ([−r,r]\I)

∫
[−r,r]\I

‖ f (t)‖dµ(t) = 0;

(iii) For any ε > 0, lim
r→+∞

µ({t ∈ [−r, r] \ I : ‖ f (t)‖ > ε})
µ([−r, r] \ I)

= 0.

Lemma 2.8. [18, Theorem 4.7] Let µ ∈ M. Assume that PAA(R,X, µ) is translation invariant. Then the decompo-
sition of a µ-pseudo almost automorphic function in the form f = 1 + φ where 1 ∈ AA(R,X) and φ ∈ ε(R,X, µ) is
unique.

Lemma 2.9. [18, Theorem 4.9] Letµ ∈ M. Assume that PAA(R,X, µ) is translation invariant. Then (PAA(R,X, µ), ‖·
‖∞) is a Banach space.

Now, we introduce some notions and properties about hyperbolic semigroups and intermediate spaces.
Let X and Z be Banach spaces, with norms ‖ · ‖, ‖ · ‖Z respectively, and suppose that Z is continuously

embedded in X , that is, Z ↪→ X.

Definition 2.10. [24, Definition 2.5] A Semigroup (T(t))t≥0 onX is said to be hyperbolic if there is a projection P and
constants M, δ > 0 such that each T(t) commutes with P, KerP is invariant with respect to T(t), T(t) : ImQ→ ImQ
is invertible and for every x ∈ X

‖T(t)Px‖ ≤Me−δt
‖x‖, for t ≥ 0; (2)

‖T(t)Qx‖ ≤Meδt
‖x‖, for t ≤ 0; (3)

where Q := I − P and, for t < 0, T(t) = T(−t)−1.

Definition 2.11. [25] A linear operator A : D(A) ⊂ X→ X(not necessarily densely defined) is said to be sectorial if
the following hold: There exist constants ω ∈ R, θ ∈ (π2 , π), and M > 0 such that

ρ(A) ⊂ Sθ,ω := {λ ∈ C : λ , ω, | arg(λ − ω)| < θ},

‖R(λ,A)‖ ≤
M
|λ − ω|

, λ ∈ Sθ,ω.

Remark 2.12. [24, Remark 2.6] The existence of a hyperbolic semigroup on a Banach spaceX give us a nice algebraic
information about this vectorial space. In fact, let (T(t))t≥0 be a hyperbolic semigroup on X. Then there are (T(t))t≥0-
invariant closed subspaces Xs and Xu such that X = Xs

⊕
Xu. Furthermore, the restricted semigroups (Ts(t))t≥0 on

Xs and (Tu(t))t≥0 on Xu have the following properties:
(i)The semigroup (Ts(t))t≥0 is uniformly exponentially stable on Xs.
(ii)The operators Tu(t) are invertible on Xu, and (Tu(t)−1)t≥0 is uniformly exponentially stable on Xu.
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Definition 2.13. [24, Definition 2.7] Let 0 ≤ α ≤ 1. A Banach space Y such that Z ↪→ Y ↪→ X is said to the class
Jα between X and Z if there is a constant c > 0 such that

‖x‖Y ≤ c‖x‖1−α‖x‖αZ (x ∈ Z).

In this case we write Y ∈ Jα((X),Z).

Definition 2.14. [24, Definition 2.8] Let A : D(A) ⊂ X → X be a sectorial operator. A Banach space (Xα, ‖ · ‖α),
α ∈ (0, 1), is said to be an intermediate space between X and D(A) if Xα ∈ Jα(X,D(A)).

Examples of intermediate spaces betweenX and D(A) are the domains of the fractional powers D(−Aα) and
the interpolation spaces DA(α,∞), defined as follows

DA(α,∞) = {x ∈ X : [x]α = sup
0<t≤1

‖t1−αAT(t)x‖ < +(∞)}

‖x‖DA(α,∞) = ‖x‖ + [x]α.

Lemma 2.15. [24, Lemma 2.10] Let (T(t))t≥0 be a hyperbolic analytic semigroup on X with generator A. For
α ∈ (0, 1), let (Xα, ‖ · ‖α) be intermediate spaces between X and D(A). Then there are positive constants C(α), M(α),
δ and γ such that

‖T(t)Px‖α ≤M(α)t−αe−γt
‖x‖, (t > 0), (4)

and

‖T(t)Qx‖α ≤ C(α)eδt
‖x‖, (t ≤ 0). (5)

Lemma 2.16. [26] Let 0 < α, β < 1. Then

‖AT(t)Px‖α ≤ ctβ−α−1e−γt
‖x‖β, for t > 0, (6)

‖AT(t)Qx‖α ≤ ceδt
‖x‖β, for t ≤ 0. (7)

For the problem (1), we list the following assumptions:
(H1) If 0 ≤ α < β < 1, then we let k1 be the bound of the embedding Xα ↪→ X, that is

‖u‖ ≤ k1‖u‖α for u ∈ Xα.

(H2) Let 0 ≤ α < β < 1 and the function f : R × X → Xβ belongs to PAA(R,Xβ, µ) while 1 : R × X → X
belongs to PAA(R,X, µ). Moreover, the functions f , 1 are uniformly Lipschitz with respect to the second
argument in the following sense: there exist K > 0 such that

‖ f (t,u) − f (t, v)‖β ≤ K‖u − v‖

and

‖1(t,u) − 1(t, v)‖ ≤ K‖u − v‖

for all u, v ∈ X and t ∈ R.
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3. Main results

In this section, we first prove a composition theorem for µ-pseudo almost automorphic functions under
suitable conditions, and then apply it to establish some existence results for the problem (1).

Theorem 3.1. Let µ ∈ M and f = 1 + h ∈ PAA(R ×X,X, µ). Assume that
(H3) f (t, x) is uniformly continuous on any bounded subset K ⊂ X uniformly in t ∈ R.
(H4) 1(t, x) is uniformly continuous on any bounded subset K ⊂ X uniformly in t ∈ R.
Then the function defined by F(·) := f (·, φ(·)) ∈ PAA(R,X, µ) if φ ∈ PAA(R,X, µ).

Proof. Let f = 1 + h with 1 ∈ AA(R × X,X), h ∈ ε(R × X,X, µ), and φ = u + v, with u ∈ AA(R,X), and
v ∈ ε(R,X, µ).
Now we define

F(t) = 1(t,u(t)) + f (t, φ(t)) − 1(t,u(t))
= 1(t,u(t)) + f (t, φ(t)) − f (t,u(t)) + h(t,u(t)).

Let us rewrite

G(t) = 1(t,u(t)),Φ(t) = f (t, φ(t)) − f (t,u(t)),H(t) = h(t,u(t)).

Thus, we have F(t) = G(t) + Φ(t) + H(t). In view of [11, Lemma 2.2], G(t) ∈ AA(R,X). Next we prove that
Φ(t) ∈ ε(R,X, µ). Clearly , Φ(t) ∈ BC(R,X). For Φ to be in ε(R,X, µ), it is enough to show that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖Φ(t)‖dµ(t) = 0.

By Lemma 2.6, u(R) ⊂ φ(R) which is a bounded set. From assumption (H3) with K = φ(R), we conclude
that for each ε > 0, there exists a constant δ > 0 such that for all t ∈ R,

‖φ − u‖ ≤ δ⇒ ‖ f (t, φ(t)) − f (t,u(t))‖ ≤ ε.

Denote by the following set Ar,ε =
{
t ∈ [−r, r] : ‖ f (t)‖ > ε

}
. Thus we obtain

Ar,ε(Φ) = Ar,ε( f (t, φ(t)) − f (t,u(t))) ⊂ Ar,δ(φ(t) − u(t))
= Ar,δ(v).

Therefore the following inequality holds

µ({t ∈ [−r, r] : ‖ f (t, φ(t)) − f (t,u(t))‖ > ε})
µ([−r, r])

≤
µ({t ∈ [−r, r] : ‖φ(t) − u(t)‖ > δ})

µ([−r, r])
.

Since φ(t) = u(t) + v(t) and v ∈ ε(R,X, µ), Lemma 2.7 yields that for the above-mentioned δ we have

lim
r→∞

µ({t ∈ [−r, r] : ‖φ(t) − u(t)‖ > δ})
µ([−r, r])

= 0,

and then we obtain

lim
r→∞

µ({t ∈ [−r, r] : ‖ f (t, φ(t)) − f (t,u(t))‖ > ε})
µ([−r, r])

= 0. (8)

From Lemma 2.7 and relation (8), we draw a conclusion that Φ(t) ∈ ε(R,X, µ).
Finally, it is only to show that H(t) = h(t,u(t)) ∈ ε(R,X, µ). We have the set u([−r, r]) is compact since u

is continuous on R as an almost automorphic function. So, the function 1 belongs to AA(R × X,X), and 1
is uniformly continuous on [−r, r] × u([−r, r]). Then it follows from (H3) that h(t, x) is uniformly continuous
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with x ∈ u([−r, r]) uniformly in t ∈ [−r, r]. Thus for any ε > 0, there exists a constant δ > 0 such that for
x1, x2 ∈ u([−r, r]) with ‖x1 − x2‖ < δ we have

‖h(t, x1) − h(t, x2)‖ <
ε
2
, ∀t ∈ [−r, r]. (9)

On the other hand, since the set u([−r, r]) is compact, there exist finite balls Ok with βk ∈ u([−r, r]), k =
1, · · · ,m, and radius δ given above, such that u([−r, r]) ⊂ ∪m

k=1Ok. Then the sets Uk := {t ∈ [−r, r] : u(t) ∈ Ok},
k = 1, · · · ,m are open in [−r, r] and [−r, r] = ∪m

k=1Uk.
Define Vk by

V1 = U1, Vk = Uk − ∪
k−1
i=1 Ui, 2 ≤ k ≤ m.

Then it is obvious that Vi ∩ V j = ∅, if i , j, 1 ≤ i, j ≤ m. So we get

Λ : = {t ∈ [−r, r] : ‖H(t)‖ ≥ ε} = {t ∈ [−r, r] : ‖h(t,u(t))‖ ≥ ε}
⊂ ∪

m
k=1{t ∈ Vk : ‖h(t,u(t)) − h(t, βk)‖ + ‖h(t, βk)‖ ≥ ε}

⊂ ∪
m
k=1

({
t ∈ Vk : ‖h(t,u(t)) − h(t, βk)‖ ≥

ε
2

}
∪

{
t ∈ Vk : ‖h(t, βk)‖ ≥

ε
2

})
.

It follows from relation (9) that{
t ∈ Vk : ‖h(t,u(t)) − h(t, βk)‖ ≥

ε
2

}
= ∅, k = 1, . . . ,m.

Thus, if we set Ar, ε2 (hk) := Ar, ε2 (h(t, βk)), then Ar,ε(H) ⊂ Um
k=1Ar, ε2 (hk) and

1
µ([−r, r])

∫
[−r,r]

‖H(t)‖dµ(t) ≤
m∑

k=1

1
µ([−r, r])

∫
[−r,r]

‖hk(t)‖dµ(t).

And since h ∈ ε(R ×X,X, µ), we have

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖hk(t)‖dµ(t) = 0, k = 1, · · · ,m.

It follows that lim
r→∞

1
µ([−r, r])

∫
[−r,r]
‖H(t)‖dµ(t) = 0. According to Lemma 2.7, we deduce that H(t) = h(t,u(t)) ∈

ε(R,X, µ). This completes the proof.

Throughout the rest of this paper we suppose that there exists two real numbers α, β such that 0 < α <
β < 1 with

2β > α + 1.

Moreover, we denote by Γ1, Γ2, Γ3, and Γ4 the nonlinear integral operators defined by

(Γ1(u)(t)) :=

t∫
−∞

AT(t − s)P f (s,u(s))ds,

(Γ2(u)(t)) :=

∞∫
t

AT(t − s)Q f (s,u(s))ds,
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(Γ3(u)(t)) :=

t∫
−∞

T(t − s)P1(s,u(s))ds,

(Γ4(u)(t)) :=

∞∫
t

T(t − s)Q1(s,u(s))ds.

Lemma 3.2. Let µ ∈ M, let u ∈ PAA(R,Xα, µ). Under assumptions (H1)-(H2), the integral operators Γ3 and Γ4
defined above map PAA(R,Xα, µ) into itself.

Proof. Let u ∈ PAA(R,Xα, µ). Setting h(t) = 1(t,u(t)) and by Theorem 3.1, it follows that h ∈ PAA(R,X, µ)
for each u ∈ PAA(R,Xα, µ). Now write h = φ + ζ where φ ∈ AA(R,X) and ζ ∈ ε(R,X, µ). Thus Γ3u can be
rewritten as

(Γ3(u)(t)) :=

t∫
−∞

T(t − s)Pφ(s)ds +

t∫
−∞

T(t − s)Pζ(s)ds.

Set Φ(t) =
t∫

−∞

T(t − s)Pφ(s)ds and Ψ(t) =
t∫

−∞

T(t − s)Pζ(s)ds for each t ∈ R.

Now, we shall show that Φ ∈ AA(R,Xα). Let us take a sequence (s′n)n∈N, since φ ∈ AA(R,X), there is a
subsequence (sn)n∈N such that

lim
n,m→∞

‖φ(t + sn − sm) − φ(t)‖ = 0. (10)

Furthermore,

Φ(t + sn − sm) −Φ(t) =

t+sn−sm∫
−∞

T(t + sn − sm − s)Pφ(s)ds −

t∫
−∞

T(t − s)Pφ(s)ds

=

0∫
−∞

T(−s)P[φ(s + t + sn − sm) − φ(s + t)]ds.

Then, we obtain

‖Φ(t + sn − sm) −Φ(t)‖α ≤

0∫
−∞

‖T(−s)P[φ(s + t + sn − sm) − φ(s + t)]‖αds.

Hence, by (4) we deduce

‖Φ(t + sn − sm) −Φ(t)‖α ≤

0∫
−∞

M(α)s−αe−γs
‖φ(s + t + sn − sm) − φ(s + t)‖ds.

The result follows by (10) and the Lebesgue’s dominated convergence theorem.
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Finally, it is only to show that Ψ(t) ∈ ε(R,Xα, µ). We have

1
µ([−r, r])

∫
[−r,r]

‖Ψ(t)‖αdµ(t) =
1

µ([−r, r])

∫
[−r,r]

∥∥∥∥∥∥∥∥
t∫

−∞

T(t − s)Pζ(s)ds

∥∥∥∥∥∥∥∥
α

dµ(t)

≤
1

µ([−r, r])

∫
[−r,r]

t∫
−∞

‖T(t − s)Pζ(s)‖dsdµ(t)

≤
1

µ([−r, r])

∫
[−r,r]

t∫
−∞

M(α)(t − s)−αe−γ(t−s)
‖ζ(s)‖dsdµ(t)

≤ M(α)

∞∫
0

s−αe−γs

 1
µ([−r, r])

∫
[−r,r]

‖ζ(t − s)‖dµ(t)

 ds.

By the fact that the space ε(R,X, µ) is translation invariant, it follows that t 7→ ζ(t − s) belongs to ε(R,X, µ)
for each s ∈ R and hence

lim
r→∞

1
µ([−r, r])

∫
[−r,r]
‖ζ(t − s)‖dµ(t) = 0.

One completes the proof by using the well-known Lebesgue dominated convergence theorem and the fact

lim
r→∞

M(α)
∞∫
0

s−αe−γs

 1
µ([−r, r])

∫
[−r,r]
‖ζ(t − s)‖dµ(t)

 ds = 0. The proof is now completed.

The proof for Γ4u is similar to that Γ3u. However one makes use of (5) rather that (4).

Lemma 3.3. Let µ ∈ M, and let u ∈ PAA(R,X, µ). Under assumptions (H1)-(H2), the integral operators Γ1 and
Γ2 defined above map PAA(R,Xα, µ) into itself.

Proof. Let u ∈ PAA(R,Xα, µ). Setting h(t) = f (t,u(t)) and in view of Theorem 3.1, it follows that h ∈
PAA(R,Xβ, µ) whenever u ∈ PAA(R,Xα, µ). In particular,

‖h‖∞,β = sup
t∈R
‖ f (t,u(t))‖β < ∞.

Now write h = φ + ψ, where φ ∈ AA(R,Xβ), ψ ∈ ε(R,Xβ, µ), that is, Γ1h = Ξφ + Ξψ where

Ξφ(t) :=

t∫
−∞

AT(t − s)Pφ(s)ds,

Ξψ(t) :=

t∫
−∞

AT(t − s)Pψ(s)ds.

First, we need to prove that Ξφ(t) ∈ AA(R,Xα). Let us take a sequence (s′n)n∈N in t ∈ R, sinceφ(t) ∈ AA(R,Xβ),
there is a subsequence (sn)n∈N such that

lim
n,m→∞

‖φ(t + sn − sm) − φ(t)‖β = 0. (11)
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Furthermore, since

Ξφ(t + sn − sm) − Ξφ(t) =

t+sn−sm∫
−∞

AT(t + sn − sm − s)Pφ(s)ds −

t∫
−∞

AT(t − s)Pφ(s)ds

=

0∫
−∞

AT(−s)P[φ(s + t + sn − sm) − φ(s + t)]ds.

Then, we obtain

‖Ξφ(t + sn − sm) − Ξφ(t)‖α ≤

0∫
−∞

‖AT(−s)P[φ(s + t + sn − sm) − φ(s + t)]‖αds.

Hence, by (6) we deduce

‖Ξφ(t + sn − sm) − Ξφ(t)‖α ≤

0∫
−∞

csβ−α−1e−γs
‖φ(s + t + sn − sm) − φ(s + t)‖βds.

The result follows by (11) and the Lebesgue’s dominated theorem.
Finally, it is only to show that Ξψ(t) ∈ ε(R,Xα, µ). We have

1
µ([−r, r])

∫
[−r,r]

‖Ξψ(t)‖αdµ(t) =
1

µ([−r, r])

∫
[−r,r]

∥∥∥∥∥∥∥∥
t∫

−∞

AT(t − s)Pψ(s)ds

∥∥∥∥∥∥∥∥
α

dµ(t)

≤
1

µ([−r, r])

∫
[−r,r]

∫ t

−∞

‖AT(t − s)Pψ(s)‖αdsdµ(t)

≤
1

µ([−r, r])

∫
[−r,r]

t∫
−∞

c(t − s)β−α−1e−γ(t−s)
‖ψ(s)‖βdsdµ(t)

≤ c

∞∫
0

sβ−α−1e−γs

 1
µ([−r, r])

∫
[−r,r]

‖ψ(t − s)‖βdµ(t)

 ds.

Now, lim
r→∞

1
µ([−r, r])

∫
[−r,r]
‖ψ(t − s)‖βdµ(t) = 0 as s→ ψ(t − s) ∈ ε(R,Xβ, µ) for every s ∈ R. One completes the

proof by using the Lebesgue dominated convergence theorem.

The proof for Γ2u is similar to that of Γ1u except that one makes use of (7) instead of (6).
The rest of this section is devoted to the existence of µ-pseudo almost automorphic solutions to the (1).

Definition 3.4. Let α ∈ (0, 1). A bounded continuous function u : R → Xα is said to be a mild solution to (1)
provide that the function s → AT(t − s)P f (s,u(s)) is integrable on (−∞, t) , s → AT(t − s)Q f (s,u(s)) is integrable
on (t,∞) and

u(t) = − f (t,u(t)) −

t∫
−∞

AT(t − s)P f (s,u(s))ds +

∞∫
t

AT(t − s)Q f (s,u(s))ds

+

t∫
−∞

T(t − s)P1(s,u(s))ds −

∞∫
t

T(t − s)Q1(s,u(s))ds
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for each t ∈ R.

Theorem 3.5. Let µ ∈ M. Under assumptions (H1)-(H2), the neutral differential equation (1) admits a unique
µ-pseudo almost aitomorphic mild solution whenever K is small enough.

Proof. Consider the operator Λ : PAA(R,Xα, µ)→ PAA(R,Xα, µ) such that

Λu(t) : = − f (t,u(t)) −

t∫
−∞

AT(t − s)P f (s,u(s))ds +

∞∫
t

AT(t − s)Q f (s,u(s))ds

+

t∫
−∞

T(t − s)P1(s,u(s))ds −

∞∫
t

T(t − s)Q1(s,u(s))ds.

As we have previously seen, for every u ∈ PAA(R,Xα, µ), f (·,u(·)) ∈ PAA(R,Xα, µ). In view of Lemmas 3.2
and 3.3, it follows that Λ maps PAA(R,Xα, µ) into itself. To complete the proof one has to show that Λ has
a unique fixed-point.
Let v, w ∈ PAA(R,Xα, µ)

‖Γ1(v)(t) − Γ1(w)(t)‖α

≤

t∫
−∞

‖AT(t − s)P[ f (s, v(s)) − f (s,w(s))]‖αds

≤

t∫
−∞

c(t − s)β−α−1e−γ(t−s)
‖ f (s, v(s)) − f (s,w(s))‖βds

≤ k1cK

t∫
−∞

(t − s)β−α−1e−γ(t−s)
‖v(s) − w(s)‖αds

≤ ck1Kγα−βΓ(β − α)‖v − w‖α,∞.

Now

‖Γ2(v)(t) − Γ2(w)(t)‖α

≤

∞∫
t

‖AT(t − s)Q[ f (s, v(s)) − f (s,w(s))]‖αds

≤

∞∫
t

ceδ(t−s)
‖ f (s, v(s)) − f (s,w(s))‖βds

≤ k1cK

∞∫
t

eδ(t−s)
‖v(s) − w(s)‖αds

≤ ck1Kδ−1
‖v − w‖α,∞.
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Now for Γ3 and Γ4, we have the following approximations:

‖Γ3(v)(t) − Γ3(w)(t)‖α

≤

t∫
−∞

‖T(t − s)P[1(s, v(s)) − 1(s,w(s))]‖αds

≤

t∫
−∞

M(α)(t − s)−αe−γ(t−s)
‖1(s, v(s)) − 1(s,w(s))‖ds

≤ k1M(α)K

t∫
−∞

(t − s)−αe−γ(t−s)
‖v(s) − w(s)‖αds

≤ k1M(α)Kγα−1Γ(1 − α)‖v − w‖α,∞.

and

‖Γ4(v)(t) − Γ4(w)(t)‖α

≤

∞∫
t

‖T(t − s)Q[1(s, v(s)) − 1(s,w(s))]‖αds

≤

∞∫
t

C(α)eδ(t−s)
‖1(s, v(s)) − 1(s,w(s))‖ds

≤ k1C(α)K

∞∫
t

eδ(t−s)
‖v(s) − w(s)‖αds

≤ k1C(α)Kδ−1
‖v − w‖α,∞.

Combining previous inequalities it follows that

‖Λv −Λw‖α,∞ ≤ KΘ‖v − w‖α,∞,

where

Θ := ck1γ
α−βΓ(β − α) + ck1δ

−1 + k1M(α)γα−1Γ(1 − α) + k1C(α)δ−1.

Therefore, if K is small enough, that is, K < Θ−1, then the Eq.(1) has unique solution, which obviously is its
only µ-pseudo almost automorphic mild solution.

From [24], we have the following results.

Remark 3.6. Throughout the rest of the paper, we consider a locally bounded function L : Xα ×Xα → [0,∞) such
that for every r ≥ 0 there is a constant k(r) ≥ 0 such thatL(x, y) ≤ k(r), for all x, y ∈ Xα with ‖x‖α ≤ r and ‖y‖α ≤ r.

Corollary 3.7. Let µ ∈ M. Let also f = 1 + h ∈ PAA(R,Xα, µ), assume that there is a locally bounded function
L : Xα ×Xα → [0,∞) such that for every x, y ∈ Xα we have

‖ f (t, x) − f (t, y)‖ ≤ L(x, y)(1 + ‖x‖l−1
α + ‖y‖l−1

α )‖x − y‖α, (t ∈ R),

‖1(t, x) − 1(t, y)‖ ≤ L(x, y)(1 + ‖x‖l−1
α + ‖y‖l−1

α )‖x − y‖α, (t ∈ R).

where l ≥ 1. If there is R ≥ 0 such that

Θ = K(R)
(
1 + cγα−βΓ(β − α) + cδ−1 + C(α)δ−1 + M(α)γα−1Γ(1 − α)

)
< 1,
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where K(R) := k(R)(1 + 2Rl−1), with k(R) as in Remark 3.6, and M(α) and C(α) are the constants given in Lemma
2.15. Then (1) has a unique µ-pseudo almost automorphic mild solution.

Acknowledgements: The authors are grateful to the anonymous referees for their valuable suggestions
to improve this paper.
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