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Abstract. In this paper, we define various types of k-regularity of ordered semigroups and using gener-
alizations of some Green’s relations and its properties, are described the structure of band and complete
semilattice of Lk-simple, Ik-simple, Bk-simple,H k-simple ordered semigroups.

1. Introduction

The band and semilattice congruences play an important role in studying the decomposition of semi-
groups without order. Semigroups having a decomposition into a band and semilattice of some special
type semigroups have been studied in many papers (cf., for example, [1], [2], [3], [4], [5], [11]). In the case
of ordered semigroups, the same role is played by the complete semilattice and band congruences. The
complete semilattice and band congruences have been also proved to be useful in studying the structure,
especially the decomposition of ordered semigroups (cf., for example, [8]). But the concept of band con-
gruence without order is different from the case in an ordered semigroup. The characterization of bands
of ordered semigroups of a given type T has been considered in [9], where it is shown the way that band
congruences on an ordered semigroup S of type T decompose the ordered semigroup S into ordered sub-
semigroups of S of typeT . In this paper, we define various types of k-regularity of ordered semigroups and
using generalizations of some Green’s relations and its properties, are described the structure of band and
complete semilattice decomposition of Lk-simple (Ik-simple, Bk-simple,H k-simple) ordered semigroups.

2. Preliminaries

Throughout this paper, Z+ will denote the set of all positive integers. Let (S, ·,≤) be an ordered semigroup,
for A,B ⊆ S, let AB := {ab|a ∈ A, b ∈ B}. Let H be a nonempty subset of S, we denote: (H] := {t ∈ S|t ≤ h
for some h ∈ H}. Then we have H ⊆ (H] and A ⊆ B implies (A] ⊆ (B], for any nonempty subsets A,B of S.
We denote by I(a),L(a),R(a) and B(a) the ideal, the left ideal, the right ideal and the bi-ideal of S generated
by an element a of S, respectively. One can easily prove that: L(a) = (a

⋃
Sa],R(a) = (a

⋃
aS], I(a) =
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(a
⋃

aS
⋃

Sa
⋃

SaS](∀a ∈ S)[6], B(a) = (a
⋃

a2⋃ aSa] [13]. By L, R, I and H we denote the well known
Green’s relations. We define the relation B as follows: (a, b) ∈ B if and only if B(a) = B(b) [13].

Let (S, ·,≤) be an ordered semigroup. S is called a band if every element of S is idempotent, i.e. a2 = a for
every a ∈ S. As in [9], a congruence σ on S having the properties (a, a2) ∈ σ and (ab, ba) ∈ σ for all a, b ∈ S,
is called a semilattice congruence on S. A semilattice congruence σ on S is called complete if a ≤ b implies
(a, ab) ∈ σ. A congruence σ on S is called a band congruence if (a, a2) ∈ σ and a ≤ b implies (a, ab) ∈ σ and
(a, ba) ∈ σ. One can easily see that a complete semilattice congruence is a band congruence. An ordered
semigroup S is called a band (complete semilattice) of semigroups of a given type, say T , if there exists a band
(complete semilattice) congruence σ on S such that the σ-class (x)σ of S is a subsemigroup of S of type T
for each x ∈ S. In [9] N. Kehayopulu and M. Tsingelis proved that an ordered semigroup S is a band B of
semigroups Sα of a given type T if and only if it is decomposable into pairwise disjoint subsemigroups Sα,
α ∈ B, of S of type T . Also, then the following holds (i) SαSβ ⊆ Sαβ, for all α, β ∈ B and (ii) If Sα

⋂
(Sβ] , φ,

for α, β ∈ B, then α = αβ = βα. If σ is a band congruence on S, then the set S/σ = {(x)σ|x ∈ S} with the
multiplication “ ◦ ” on S/σ defined by (a)σ ◦ (b)σ := (ab)σ is a band [9].

Remark 2.1 [9] Let S be an ordered semigroup and σ a band congruence on S. Then we have the following:
(i) (∀a ∈ S)(a, a2) ∈ σ and (a2, a) ∈ σ;
(ii) (∀a ∈ S)(∀n ∈ Z+)(an, a) ∈ σ and (a, an) ∈ σ;
(iii) if a ≤ b, then (ab, ba) ∈ σ;
(iv) (S/σ, ◦) is a band;
(v) (a)σ is a subsemigroup of S for all a ∈ S.

For an equivalence relation σ on an ordered semigroup S, by σ[ we denote the greatest congruence
relation on S contained in σ. The next lemma is a well-known result and its proof will be omitted.

Lemma 2.2 On any ordered semigroup S,
σ[ =: {(a, b)|(∀x, y ∈ S1)(xay, xby) ∈ σ}.

Lemma 2.3. Let S be an ordered semigroup. Then σ[ is a band congruence if and only if S satisfying the condition:
if a ≤ b, then (xay, xaby) ∈ σ and (xay, xbay) ∈ σ for x, y ∈ S1.

Proof Let σ[ be a band on S, and let a ≤ b and x, y ∈ S1. Since σ[ is a band, we have (a, ab), (a, ba) ∈ σ[.
Since σ[ is a congruence on S and x, y ∈ S1, we have (xay, xaby), (xay, xbay) ∈ σ[.

Conversely, let a, b ∈ S, x, y ∈ S1. By Lemma 2.2, σ[ is a congruence on S. We prove that the relation σ[

is a band congruence on S. Assume a ≤ b. By hypothesis, we have (xay, x(ab)y) ∈ σ and (xay, x(ba)y) ∈ σ.
Thus, we get (a, ab) ∈ σ[ and (a, ba) ∈ σ[, so σ[ is a band congruence on S.

The concept of k-regular semigroups were introduced by K. S. Harinath in [10]. The other types of
semigroups were introduce for the first time by S. Bogdanović, Ž. Popović and M. Ćirić in [4]. In this
paper we extend the concepts of k-regular and k-Archimedean in case of ordered semigroups. Let k ∈ Z+

be a fixed integer. An ordered semigroup S is: k-regular if (∀a ∈ S)ak
∈ (akSak], left k-regular if (∀a ∈ S)ak

∈

(Sak+1], right k-regular if (∀a ∈ S)ak
∈ (ak+1S], completely k-regular if (∀a ∈ S)ak

∈ (ak+1Sak+1], intra k-regular
if (∀a ∈ S)ak

∈ (Sa2kS], t-k-regular if (∀a ∈ S)ak
∈ (Sak+1]

⋂
(ak+1S]. k-Archimedean if (∀a, b ∈ S)ak

∈ (S1bS1],
left k-Archimedean if (∀a, b ∈ S)ak

∈ (S1b], right k-Archimedean if (∀a, b ∈ S)ak
∈ (bS1] and t-k-Archimedean if

(∀a, b ∈ S)ak
∈ (bS1]

⋂
(S1b].

Let k ∈ Z+ andX∈{L,R,H ,I,B}, whereL,R,H ,I and B be Green’s relations on an ordered semigroup
S. On S we define the following relations by

Xk =: {(a, b) ∈ S × S|(ak, bk) ∈ X},

X
[
k =: {(a, b) ∈ S × S|(∀x, y ∈ S1)(xay, xby) ∈ Xk}.

Then it is easy to verify that Xk is an equivalence relation on an ordered semigroup S. Also, it is evident
that Bk ⊆ Lk

⋂
Rk and Lk

⋂
Rk = H k. So, in this case these equivalences Xk are very similar to Green’s

equivalences and they can be consider as its generalizations. An ordered semigroup S is Xk-simple if



Q.S. Zhu, Ž. Popović / Filomat 28:3 (2014), 649–656 651

(a, b) ∈ Xk for all a, b ∈ S. It is clear that an ordered semigroup S is Lk- (Rk-) simple if and only if S is
left (right) k-Archimedean. S is Ik-simple if and only if S is k-Archimedean. S is H k-simple if it is both
Lk-simple and Rk-simple, and conversely.

Example 2.4 We consider the ordered semigroup S = {a, b, c, d, e}, defined by multiplication “ · ” and the
order “ ≤ ” below [7]:

. a b c d e
a a b c b b
b b b b b b
c a b c b b
d d b d b b
e e e e e e

≤:= {(a, a), (a, c), (b, b), (b, d), (c, c), (d, d), (e, b), (e, d), (e, e)}.

We give the covering relation “≺” and the figure of S.

≺=: {(a, c), (b, d), (e, b)}.

•

•

•
•

•

d

b
c

ea

A) By Re1(S) = {a, b, c, e} we denote the set of all regular elements of a semigroup S, since d < Re1(S),
then S is not regular. Since d2 = b ∈ Re1(S) and {a2, b2, c2, d2, e2

} = {a, b, c, e} = Re1(S), then S is a 2-regular
ordered semigroup. Also, S is not left regular, right regular and intra-regular (@x, y,u, v ∈ S : d ≤ xd2, d ≤
d2y, d ≤ ud2v), but S is left 2-regular, right 2-regular and intra-2-regular.

B) It is easy to see that S is not Archimedean (ak < (S1bS1] = {b, e} for any k ∈ Z+), but the subsemigroup
{b, d, e} of S is 2-Archimedean.

C) It is not hard to verify that the relation on S:

I = I1 = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a), (b, e), (e, b)},

is a congruence and it is not a band congruence and semilattice congruence, since (d, d2) = (d, b) < I.
Further, the relation

I2 = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a), (b, d), (d, b), (b, e),
(e, b), (d, e), (e, d)},

is a band congruence on S, and S is a band of 2-Archimedean semigroups {a, c} and {b, d, e}.

3. Bands and complete semilattice of Xk-simple ordered semigroups

In this section we give structural characterizations of bands and complete semilattices for different types
of simple ordered semigroups.

Theorem 3.1 Let k ∈ Z+ and Xk ∈{Lk,Rk,Ik,H k,Bk}. Then the following conditions on an ordered semigroup
S are equivalent:

(i) S is a band of Xk-simple ordered semigroups;
(ii) if a ≤ b, then (xay, xaby) ∈ Xk and (xay, xbay) ∈ Xk for x, y ∈ S1;
(iii) X[k is a band congruence on S.
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Proof (i)⇒(ii) Let S be a band Y of Xk-simple ordered semigroups Sα, α ∈ Y. Assume a, b, x, y ∈ S (in a
similar way we can prove the cases with x = 1 or y = 1). Let a ≤ b and a ∈ Sα, b ∈ Sβ, x ∈ Sγ, y ∈ Sδ. Then
since a ≤ b and Y is a band, we have α = αβ = βα, so xay, xaby, xbay ∈ Sγαδ and since Sγαδ is Xk-simple, then
(xay, xaby) ∈ Xk and (xay, xbay) ∈ Xk.

(ii)⇒(iii) This follows immediately by Lemma 2.3.

(iii)⇒(i) LetX[k be a band congruence on S and S a band ofX[k-classes. Suppose S =
⋃
α∈Y Sα, Y is a band

and Sα, α ∈ Y is a X[k-class of S, then Sα, α ∈ Y is Xk-simple. In fact: Let a, b ∈ Sα, α ∈ Y. Then (a, b) ∈ X[k, and
since X[k is the greatest congruence on S contained in Xk, then we have that (a, b) ∈ Xk, that is, Sα, α ∈ Y is
an Xk-simple semigroup. Thus, S is a band of Xk-simple semigroups.

Lemma 3.2 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is Lk-simple;
(ii) S is left Archimedean and left k-regular;
(iii) S is left k-Archimedean.

Proof (i)⇒(ii) Let S be Lk-simple and a, b ∈ S. Then (a, b) ∈ Lk, so ak
∈ (S1bk] ⊆ (Sb], that is S is left

Archimedean. Also, since a, a2
∈ S, we have (a, a2) ∈ Lk, so ak

∈ (S1a2k] ⊆ (Sak+1], that is S is left k-regular.

(ii)⇒(iii) Let S be left Archimedean and left k-regular. Assume a, b ∈ S. By S is left k-regular, we have
ak
∈ (Sak+1] ⊆ (S(Sak+1]a] ⊆ (Saka2], continuous use of this process, we have ak

∈ (Sakan] ⊆ (San] for all n ∈ Z+.
Since S is left Archimedean, we have am

∈ (Sb] for some m ∈ Z+, so ak
∈ (Sam] ⊆ (S(Sb]] ⊆ (Sb]. Hence S is

left k-Archimedean.

(iii)⇒(i) This implication immediately follows.

By the following theorem we describe the structure of an ordered semigroup which can be decompose
into a band of Lk-simple ordered semigroups.

Theorem 3.3 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a band of Lk-simple ordered semigroups;
(ii) L[k is a band congruence on S;
(iii) S is a band of left Archimedean and left k-regular ordered semigroups;
(iv) S is a band of left k-Archimedean ordered semigroups.

Proof (i)⇔(ii) This equivalence immediately follows by Theorem 3.1.

(iii)⇔(iv) and (iv)⇔(i) These equivalences follow by Lemma 3.2.

Lemma 3.4 Let k ∈ Z+ and Xk ∈{Lk,Rk,Ik,H k,Bk}. Assume S is a complete semilattice Y of Xk-simple
Sα, α ∈ Y and a ∈ Sα, b ∈ Sβ with α, β ∈ Y. If (a, b) ∈ Xk, then α = β.

Proof We deal with only the Lk-simple. The proof is similar for other cases. Let a, b ∈ S such that
(a, b) ∈ Lk. Assume a ∈ Sα, b ∈ Sβ for some α, β ∈ Y, and since ak

≤ xbk and bk
≤ yak, for some x ∈ S1

δ, y ∈ S1
θ,

where δ, θ ∈ Y, then we obtain that α = αδβ and β = βθα. By this we have that αβ = αδβ · β = αδβ = α and
βα = βθα · α = βθα = β. Since Y is a complete semilattice then it follows that α = αβ = βα = β.

By the following theorem we describe the structure of a semigroup which can be decompose into a
complete semilattice of Lk-simple semigroups. Also, here should be to emphasize that a semilattice of
Lk-simple ordered semigroups is coincident with a complete semilattice ofLk-simple ordered semigroups.

Theorem 3.5 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a complete semilattice of Lk-simple ordered semigroups;
(ii) L[k = Lk is a complete semilattice congruence on S;
(iii) Lk is a semilattice congruence on S;
(iv) S is a complete semilattice of left Archimedean and left k-regular ordered semigroups .
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Proof (i)⇒(ii) Let S be a complete semilattice Y of Lk-simple ordered semigroups Sα, α ∈ Y. Assume
a, b, c ∈ S such that (a, b) ∈ Lk. Let a ∈ Sα, b ∈ Sβ, c ∈ Sγ for some α, β, γ ∈ Y. By Lemma 3.4, we have α = β,
so a, b ∈ Sα, α ∈ Y. So, ac, bc ∈ Sαγ, α, γ ∈ Y, and since Sαγ is an Lk-simple semigroup, then (ac, bc) ∈ Lk.
Similarly we prove that (ca, cb) ∈ Lk. ThusLk is a congruence relation on S. Further, a, a2

∈ Sα, α ∈ Y and Sα
is Lk-simple, then (a, a2) ∈ Lk, for every a ∈ S. Also, since Y is a complete semilattice, let ab, ba ∈ Sα, α ∈ Y
and Sα isLk-simple, then (ab, ba) ∈ Lk for all a, b ∈ S, whenceLk is a semilattice congruence on S. Moreover,
if a ≤ b, then a, ab ∈ Sα, α ∈ Y and Sα is Lk-simple, then (a, ab) ∈ Lk, whence Lk is a complete semilattice
congruence on S. Since L[k is the greatest congruence relation on S contained in Lk, Thus L[k = Lk.

(ii)⇒(iii) This implication immediately follows.

(iii)⇒(ii) Let Lk be a semilattice congruence on S. Since L[k is the greatest congruence relation on S
contained in Lk, thus L[k = Lk. Let a ≤ b. Since Lk is a semilattice congruence, then (a, a2) ∈ Lk, so
ak
∈ L(a2k), that is ak

≤ xa2k for some x ∈ S1. Since a ≤ b, then we have that ak
≤ xa2k

≤ x(ab)k
∈ L((ab)k),

so L((a)k) ⊆ L((ab)k). Conversely, since Lk is a semilattice congruence, then we have (ab, (ba)3) ∈ Lk, so
(ab)k

∈ (S1(ba)3k] = (S1b(ab)2k−1(ab)ka] ⊆ (S1b(ab)2k−1(S1(ba)3k]a] ⊆ (S(ab)ka2], continuous use of this process,
we have (ab)k

∈ (S(ab)kak] ⊆ (Sak]. Thus L((ab)k) ⊆ L(ak). Therefore, L(ak) = L((ab)k), i.e., (a, ab) ∈ Lk.

(ii)⇒(iv) Let (ii) hold. Then S is a complete semilattice ofLk-classes. Let a, b ∈ A, where A is an arbitrary
Lk-class of S. Since (a3, b) ∈ Lk, whence (a3k, bk) ∈ L, so bk

∈ (S1a3k] ⊆ (Sa2], that is bk
≤ xa2, for some x ∈ S.

Seeing thatLk is a complete semilattice congruence, then (b, bk) ∈ Lk, (bk, bkxa2) ∈ Lk and (bkxa2, bkxa) ∈ Lk, so
(b, bkxa) ∈ Lk. Since (bkxa, bxa) ∈ Lk, we get (b, bxa) ∈ Lk, so bxa ∈ A and bk+1

≤ (bxa)a ∈ (Aa]. Therefore, A is a
left Archimedean ordered subsemigroup. Also, since a, a2

∈ A, we have (a, a2) ∈ Lk, so ak
∈ (S1a2k] ⊆ (Sak+1],

that is A is left k-regular.

(iv)⇒(i) This follows by Lemma 3.2.

By the following result we describe the structure of an ordered semigroup which can be decompose into
a complete semilattice of Ik-simple ordered semigroups, and a band of Ik-simple ordered semigroups is
coincident with a complete semilattice of Ik-simple ordered semigroups.

Theorem 3.6 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a complete semilattice of Ik-simple ordered semigroups;
(ii) Ik is a band congruence;
(iii) Ik is a complete semilattice congruence;
(iv) S is a complete semilattice of Archimedean and intra k-regular ordered semigroups;
(v) S is a complete semilattice of k-Archimedean ordered semigroups.

Proof (i)⇒(ii) Let S be a complete semilattice Y of Ik-simple ordered semigroups Sα, α ∈ Y. Assume
a, b, c ∈ S, then a ∈ Sα, b ∈ Sβ and c ∈ Sγ for some α, β, γ ∈ Y. Let (a, b) ∈ Ik, then (ak, bk) ∈ I, whence α = β,
i.e. a, b ∈ Sα. Also, ac, bc ∈ Sαγ and ca, cb ∈ Sγα. Hence, (ac, bc) ∈ Ik and (ca, cb) ∈ Ik, i.e. Ik is a congruence.
Since I[k is the greatest congruence relation on S contained in Ik, thus Ik = I[k, by Theorem 3.1, Ik = I[k is a
band congruence on S.

(ii)⇒(iii) Let Ik be a band congruence and a, b ∈ S. Then (ab, (ab)2) ∈ Ik, that is ((ab)k, (ab)2k) ∈ I,
so (ab)k

∈ I((ab)2k) ⊆ (S1(ba)kS1] = I((ba)k). In a similar way we can prove that (ba)k
∈ I((ab)k). Thus

I((ba)k) = I((ab)k), that is (ab, ba) ∈ Ik, i.e. Ik is a semilattice congruence on S. Moreover, let a ≤ b. Since Ik
is a band congruence on S, so (a, ab) ∈ Ik. Hence, Ik is a complete semilattice congruence.

(iii)⇒(iv) Let S be a complete semilattice Y of Ik-classes semigroups Sα, α ∈ Y. Assume a, b ∈ Sα for
some α ∈ Y. Then (a, b) ∈ Ik, so ak

∈ I(ak) = I(bk) = (S1
αbkS1

α] ⊆ (SαbSα], that is Sα is Archimedean. For
a, a4
∈ Sα, we have (a, a4) ∈ Ik, so ak

∈ (S1
αa4kS1

α] ⊆ (Sαa2kSα], that is Sα is intra k-regular.

(iv)⇒(v) Let S be a complete semilattice Y of Archimedean and intra k-regular ordered semigroups
Sα, α ∈ Y. Assume a, b ∈ Sα. By hypothesis, we have ak

∈ (Sαa2kSα], that is ak
≤ ua2kv for some u, v ∈ Sα,

so ak
≤ u2ak(akv)2

≤ · · · ≤ unak(akv)n for any n ∈ Z+. For akv, b ∈ Sα, since Sα is Archimedean, we have
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(akv)m
≤ wbd for some m ∈ Z+ and w, d ∈ Sα, so ak

≤ umak(akv)m
≤ umak(wbd) ∈ (SαbSα]. Thus Sα is

k-Archimedean.

(v)⇒(i) This follows immediately.

For an arbitrary relation ρ on an ordered semigroup S, the radical R(ρ) of ρ is a relation on S defined by:

(a, b) ∈ R(ρ)⇔ (∃m,n ∈ Z+)(am, bn) ∈ ρ.

The radical R(ρ) was introduced by L. N. Shevrin in [12] and it is clear that ρ ⊆ R(ρ).

Theorem 3.7 Let k ∈ Z+. Then Ik is a semilattice congruence on S if and only if R(Ik) = Ik and Ik is a
congruence on S.

Proof Let Ik be a semilattice congruence on S. Since the inclusion Ik ⊆ R(Ik) always holds, then it
remains to prove the opposite inclusion. Also, let a ∈ S, by Ik is a semilattice congruence on S, then we
have that (a, an) ∈ Ik for all n ∈ Z+. Now assume a, b ∈ S such that (a, b) ∈ R(Ik). Then (ai, b j) ∈ Ik, for some
i, j ∈ Z+, and by previous we have that (a, ai) ∈ Ik, (b j, b) ∈ Ik. Thus (a, b) ∈ Ik. Therefore, R(Ik) ⊆ Ik, i.e.
R(Ik) = Ik.

Conversely, let Ik = R(Ik) and Ik be a congruence on S. Since Ik is reflexive, then for every a ∈ S we
have that (a2, a2) ∈ Ik, so ((a1)2, (a2)1) ∈ Ik, that is (a, a2) ∈ R(Ik). Hence (a, a2) ∈ Ik. Further, let a, b ∈ S. Then
(ab, (ab)2) ∈ Ik, that is ((ab)k, (ab)2k) ∈ I, so (ab)k

∈ I((ab)2k) ⊆ (S1(ba)kS1] = I((ba)k). In a similar way we can
prove that (ba)k

∈ I((ab)k). Thus I((ba)k) = I((ab)k), that is (ab, ba) ∈ Ik, i.e. Ik is a semilattice congruence on S.

By the following theorems we describe the structure of a semigroup which can be decompose into a
band and complete semilattice of Bk-simple semigroups.

Theorem 3.8 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a band of Bk-simple ordered semigroups;
(ii) B[k is a band congruence on S;
(iii) S is a band of t-Archimedean and completely k-regular ordered semigroups;
(iv) S is a band of t-k-Archimedean and k-regular ordered semigroups.

Proof (i)⇔(ii) This equivalence immediately follows by Theorem 3.1.

(ii)⇒(iii) Let (ii) hold. Let S be a band of B[k-clesses. Assume a, b ∈ A, where A is an B[k-class of S.
By Remark 2.1, the B[k-class A is a subsemigroup of S. Since (a3, b) ∈ B[k ⊆ Bk, whence (a3, b) ∈ Bk, so
bk
∈ B(a3k), that is bk

≤ a3k or bk
∈ (a3kS1a3k]. If bk

≤ a3k, then bk
∈ (Aa]

⋂
(aA], thus A is t-Archimedean.

If bk
∈ (a3kS1a3k] ⊆ (a3kSa2], that is bk

≤ a3kxa2, for some x ∈ S. Seeing that B[k is a band congruence, then
(b, bk) ∈ B[k, (b

k, bka3kxa2) ∈ B[k and (bka3kxa2, bka3kxa) ∈ B[k, so (b, bka3kxa) ∈ B[k. Since (bka3kxa, ba3kxa) ∈ B[k,
we get (b, ba3kxa) ∈ B[k, so ba3kxa ∈ A and bk+1

≤ (ba3kxa)a ∈ (Aa]. Similarly we prove that bk+1
∈ (aA].

Therefore, A is a t-Archimedean ordered subsemigroup. Also, Since (a, a2) ∈ B[k ⊆ Bk, then ak
∈ B(a2k), so

ak
≤ a2k or ak

≤ a2kua2k for some u ∈ S1. If ak
≤ a2k, clearly, A is completely k-regular. If ak

≤ a2kua2k, then
ak
≤ ak+1

· a2k−1(ua2k)2ua2k−1
· ak+1. In a previous similar way we can prove that a2k−1(ua2k)2ua2k−1

∈ A, so A is
completely k-regular.

(iii)⇒(iv) Let S be a band Y of t-Archimedean and completely k-regular ordered semigroups Sα, α ∈ Y.
Let a, b ∈ Sα for some α ∈ Y. Since Sα is completely k-regular, then Sα is k-regular, and ak

∈ (ak+1Sαak+1] ⊆
(a(ak+1Sαak+1]Sα(ak+1Sαak+1]a] ⊆ (a2

· akSαak
· a2], continuous use of this process, we have ak

∈ (an
· akSαak

· an] ⊆
(anSαan] for all n ∈ Z+. For a, b ∈ Sα, since Sα is t-Archimedean, we have am

∈ (bSα]
⋂

(Sαb] for some m ∈ Z+,
so ak

∈ (amSαam] ⊆ ((bSα]Sα(Sαb]] ⊆ (bSαb]. Thus ak
∈ (Sαb]

⋂
(bSα], that is Sα is t-k-Archimedean.

(iv)⇒(i) Let S be a band Y of t-k-Archimedean and k-regular Sα, α ∈ Y. Assume a, b ∈ Sα. For ak, bk
∈ Sα,

by hypothesis, we have ak
∈ (bkSα]

⋂
(Sαbk]. Since Sα is k-regular, then ak

∈ (akSαak], so ak
∈ ((bkSα]Sα(Sαbk]] ⊆

(bkSαbk] ⊆ B(bk). Similarly, we can prove that bk
∈ B(ak). Hence (ak, bk) ∈ B, so (a, b) ∈ Bk. Therefore Sα is

Bk-simple.
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Theorem 3.9 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a complete semilattice of Bk-simple ordered semigroups;
(ii) B[k = Bk and Bk is a complete semilattice congruence on S;
(iii) Bk is a semilattice congruence on S;
(iv) S is a complete semilattice of t-Archimedean and completely k-regular ordered semigroups.

Proof (i)⇒(ii) Let S be a complete semilattice Y of Bk-simple semigroups Sα, α ∈ Y. Assume a, b, c ∈ S
such that (a, b) ∈ Bk. Let a ∈ Sα, b ∈ Sβ, c ∈ Sγ for some α, β, γ ∈ Y. By Lemma 3.4, we have α = β,
so a, b ∈ Sα, α ∈ Y. So, ac, bc ∈ Sαγ, α, γ ∈ Y, and since Sαγ is an Bk-simple semigroup, then (ac, bc) ∈ Bk.
Similarly, we can prove that (ca, cb) ∈ Bk. ThusBk is a congruence relation on S. Further, a, a2

∈ Sα, α ∈ Y and
Sα is Bk-simple, then (a, a2) ∈ Bk, for every a ∈ S. Also, by Y is a complete semilattice, let ab, ba ∈ Sα, α ∈ Y.
Since Sα isBk-simple, then (ab, ba) ∈ Bk for all a, b ∈ S, whenceBk is a semilattice congruence on S. Moreover,
if a ≤ b, then a, ab ∈ Sα, α ∈ Y and Sα is Bk-simple, then (a, ab) ∈ Bk, whence Bk is a complete semilattice
congruence on S. Since B[k is the greatest congruence relation on S contained in Bk, Thus B[k = Bk.

(ii)⇒(iv) Let (ii) hold. Then S is a complete semilattice ofBk-classes. Let a, b ∈ A, where A is an arbitrary
Bk-class of S. Since (a3, b) ∈ Bk, whence (a3k, bk) ∈ B, that is bk

≤ a3k or bk
∈ (a3kS1a3k]. As same as (ii)⇒(iii)

of Theorem 3.8 we can prove that every complete semilattice component A of S is a t-Archimedean and
completely k-regular ordered subsemigroup.

(iv)⇒(i) Let S be a complete semilattice Y of t-k-Archimedean and completely k-regular Sα, α ∈ Y. As
same as (iv)⇒(i) of Theorem 3.8, we can prove that Sα is Bk-simple.

(ii)⇒(iii) This implication immediately follows.

(iii)⇒(ii) Let Bk be a semilattice congruence on S. Since B[k is the greatest congruence relation on S
contained in Bk, Thus B[k = Bk. Let a ≤ b. Since Bk is a semilattice congruence, then (a, a2) ∈ Bk, so
ak
∈ B(a2k), that is ak

≤ a2k or ak
≤ a2kxa2k for some x ∈ S1. By a ≤ b, we have ak

≤ (ab)k
∈ B((ab)k) or

ak
≤ (ab)kx(ab)k

∈ B((ab)k), so B(ak) ⊆ B((ab)k). Conversely, since Bk is a semilattice congruence, then we
have that (ab, (ba)3k) ∈ Bk and ((ab)3k, ba) ∈ Bk, so (ab)k

∈ B((ba)3k) and (ba)k
∈ B((ab)3k). For (ab)k

∈ B((ba)3k),
if (ab)k

≤ (ba)3k, then (ab)k
≤ (ba)3k

∈ (((ab)3k⋃(ab)3kS1(ab)3k](ba)2k
⊆ ((ab)2kS(ba)2k]. If (ab)k

∈ ((ba)3kS1(ba)3k],
also we have (ab)k

∈ ((ab)2kS(ba)2k]. For (ba)k
∈ B((ab)3k), similarly, we can prove that (ba)k

∈ ((ab)2kS(ba)2k].
Therefore,

(ab)k
∈ ((ab)2kS(ba)2k] = (a(ba)2k−1bSb(ab)2k−1a]

⊆ (a((ab)2kS(ba)2k](ba)k−1bSb(ab)k−1((ab)2kS(ba)2k]a] ⊆ (a2(ba)kS(ab)ka2],

continuous use of this process, we have (ab)k
∈ (ak(ba)kS(ab)kak] ⊆ (akSak]. Thus B((ab)k) ⊆ B(ak). Therefore,

B(ak) = B((ab)k), i.e., (a, ab) ∈ Bk.

By Theorem 3.3, Theorem 3.5 and their dual we describe the structure of a semigroup which can be
decompose into a band and complete semilattice ofH k-simple semigroups.

Theorem 3.10 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a band ofH k-simple ordered semigroups;
(ii)H [

k = H k is a band congruence on S;
(iii) S is a band of t-Archimedean and t-k-regular ordered semigroups;
(iv) S is a band of t-k-Archimedean ordered semigroups.

Theorem 3.11 Let k ∈ Z+. Then the following conditions on an ordered semigroup S are equivalent:
(i) S is a complete semilattice ofH k-simple ordered semigroups;
(ii)H k is a complete semilattice congruence on S;
(iii)H k is a semilattice congruence on S;
(iv) S is a complete semilattice of t-Archimedean and t-k-regular ordered semigroups;
(v) S is a complete semilattice of t-k-Archimedean ordered semigroups.
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