Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index

Hongbo Hua ${ }^{\text {a,b }}$, Xinli Xu ${ }^{\text {b }}$, Hongzhuan Wang ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
${ }^{b}$ Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, P. R. China

Abstract

The Merrifield-Simmons index of a graph G, denoted by $i(G)$, is defined to be the total number of independent sets in G, including the empty set. A connected graph is called a unicyclic graph, if it possesses equal number of vertices and edges. In this paper, we characterize the maximal unicyclic graph w.r.t. $i(G)$ within all unicyclic graphs with given order and number of cut vertices. As a consequence, we determine the connected graph with at least one cycle, given number of cut vertices and the maximal Merrifield-Simmons index.

1. Introduction

In this paper only simple graphs without loops and multiple edges are considered. For terminology and notation not defined here, the reader is referred to Bondy and Murty [2].

Given a graph G with vertex set $V(G)$ and edge set $E(G)$. If $S \subseteq V(G)$ and the subgraph induced by S has no edges, then S is said to be an independent set of G. Let $i(G)$ denote the total number of independent sets, including the empty set, in G.

Since, for the n-vertex path $P_{n}, i\left(P_{n}\right)$ is exactly equal to the Fibonacci number F_{n+1}, some researchers also call $i(G)$ the Fibonacci number of a graph G (see $[1,17]$). Nowdays, $i(G)$ is commonly termed as 'MerrifieldSimmons index', which originated from [15]. This index is one of the most popular topological indices in chemistry, which has been extensively studied, as can be seen in the monograph [13]. During the past several decades, a number of research results on the Fibonacci number or Merrifield-Simmons index of graphs have been obtained, among which characterization of graphs with extremal $i(G)$ within a given class of graphs with special structure has been one of the most popular tendency. For instance, see [11] and [17] for trees, [16] for trees with given number of pendent vertices, [10] for trees with a given diameter, [7] for trees with bounded degree, [14] for unicyclic graphs, [9] for the unicyclic graphs with a given diameter, [12] for the cacti, [8] for the quasi-tree graphs, [4] for connected graphs with given number of cut edges, [5] for connected graphs with given number of cut vertices, [6] for 3-connected and 3-edge-connected graphs, [1] for maximal outerplanar graphs, and so on.

[^0]In the current paper, we characterize the maximal unicyclic graph w.r.t. $i(G)$ within all unicyclic graphs with given order and number of cut vertices. As a consequence, we determine the connected graph with at least one cycle, given number of cut vertices and the maximal Merrifield-Simmons index.

Before proceeding, we introduce some notation and terminology. For a vertex $v \in V(G)$, we use $N_{G}(v)$ to denote the set of neighbors of v, and let $N_{G}[v]=N_{G}(v) \cup\{v\}$. For the sake of brevity, we write $[v]$ instead of $N_{G}[v]$. The degree of v in G, denoted by $d(v)$, is the number of its neighbors. A vertex v is said to be a branched vertex, if $d(v) \geq 3$. A vertex v is said to be a pendent vertex, if $d(v)=1$. A cut vertex of a graph is any vertex that when removed increases the number of connected components of this graph. If S is a subset of $V(G)$, we use $G-S$ to denote the subgraph of G obtained by deleting the vertices in S and the edges incident with them. Suppose that $P=v_{1} v_{2} \cdots v_{s}(s \geq 2)$ is a path lying within a graph G. If $d\left(v_{1}\right) \geq 3, d\left(v_{s}\right)=1$ and $d\left(v_{j}\right)=2(1<j<s)$, then we call P a pendant path of G.

Denote, as usual, by S_{n} and C_{n} the star and cycle on n vertices, respectively. Let S_{n}^{l} denote the graph obtained from the cycle C_{l} by attaching $n-l$ pendent vertices to any one vertex of it. Let $P_{n, t}$ be the tree obtained by attaching $t-2$ pendent edges to the second vertex (natural ordering) of the path P_{n-t+2}.

Let $\mathcal{U}_{n, k}$ denote the set of connected unicyclic graphs with n vertices and k cut vertices, and $\mathcal{U}_{n, k}^{l}$ denote a subset of $\mathcal{U}_{n, k}$, in which every graph has girth l. If $k=0$, then $\mathcal{U}_{n, k}$ contains a single element C_{n}. So we will assume that $k \geq 1$. Obviously, we have $k \leq n-3$, since $n \geq l+k \geq k+3$.

For any graph G in $\mathcal{U}_{n, k}$, we let $P(G)$ be the set of pendent vertices in G and $C(G)$ be the set of cut vertices in G. For any graph G in $\mathcal{U}_{n, k^{\prime}}^{l}$ we let $O C(G)$ be the number of cut vertices in G lying outside of the unique cycle C_{l}.

2. Preliminary results

The following lemmas are needed in the proof of main results.
Lemma 2.1 ([3]). Let G be a graph with m components $G_{1}, G_{2}, \ldots, G_{m}$. Then

$$
i(G)=\prod_{i=1}^{m} i\left(G_{i}\right)
$$

Lemma 2.2 ([3]). Let G be a graph, u be a vertex and vw be an edge of G. Then
(i) $i(G)=i(G-u)+i(G-[u])$;
(ii) $i(G)=i(G-v w)-i(G-\{[v] \cup[w]\})$.

Lemma 2.2 (ii) implies the following lemma.
Lemma 2.3. Let G_{1} and G_{2} be two graphs. If G_{1} can be obtained from G_{2} by deleting some edges, then $i\left(G_{2}\right)<i\left(G_{1}\right)$.
Recall that $F_{n}=F_{n-1}+F_{n-2}$ with initial conditions $F_{0}=F_{1}=1$. Thus,

$$
i\left(P_{n}\right)=F_{n+1}=\frac{\sqrt{5}}{5}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right]
$$

Prodinger and Tichy [13] gave an upper bound for the $i(G)$ of trees, and later Lin and Lin [6] characterized the unique tree attaining this upper bound. Their results are summarized as follows:

Lemma 2.4. Let T be a tree on n vertices. Then $i(T) \leq 2^{n-1}+1$, with the equality if and only if $T \cong S_{n}$.
Yu and Lv proved the following result concerning the $i(G)$ of trees with k pendent vertices.
Lemma 2.5 ([16]). Let T be a tree with n vertices and k pendent vertices. Then
(i) $i(T) \leq 2^{k-1} F_{n-k+1}+F_{n-k}$, with equality if and only if $T \cong P_{n, k}$;
(ii) $i\left(P_{n, k}\right)>i\left(P_{n, k-1}\right)$.

By means of Lemma 2.5, we obtain the following result.
Lemma 2.6. Let T be a tree, not isomorphic to S_{n}, with n vertices. Then $i(T) \leq 3 \cdot 2^{n-3}+2$, with equality if and only if $T \cong P_{n, n-2}$.
Proof. Let T be a tree, not isomorphic to S_{n}, with n vertices. Then T has $k^{\prime} \leq n-2$ pendent vertices. By Lemma 2.5, we have

$$
i(T) \leq i\left(P_{n, k^{\prime}}\right) \leq i\left(P_{n, n-2}\right)
$$

This completes the proof.
Lemma 2.7 ([12]). Let X, Y and Z be three pairwise disjoint connected graphs with $|X|,|Y|,|Z| \geq 2$. Suppose that u, v are two vertices of Z, v^{\prime} is a vertex of X, u^{\prime} is a vertex of Y. Let G be the graph obtained from X, Y and Z by identifying v with v ' and u with u^{\prime}, respectively. Also, we let G_{1} be the graph obtained from X, Y and Z by identifying vertices $u, v^{\prime}, u^{\prime}$ and G_{2} be the graph obtained from X, Y and Z by identifying vertices $v, v^{\prime}, u^{\prime}$; see Fig. 1 for instance. Then

$$
i\left(G_{1}\right)>i(G) \text { or } i\left(G_{2}\right)>i(G)
$$

Fig. 1. The graphs G, G_{1} and G_{2}.

We call the graph transformation from G to $G_{1}\left(\right.$ or $\left.G_{2}\right)$ Operation I. From Lemma 2.7, we know that Operation I increases the $i(G)$ of graphs under consideration.

3. Unicyclic graph with given number of cut vertices and the maximal Merrifield-Simmons index

Lemma 2.5 implies the following result.
Proposition 3.1. Let T be a tree with n vertices and k cut vertices. Then $i(T) \leq 2^{n-k-1} F_{k+1}+F_{k}$, with equality if and only if $T \cong P_{n, n-k}$.
Proposition 3.2. Let T be a tree with n vertices and at least k cut vertices. Then $i(T) \leq 2^{n-k-1} F_{k+1}+F_{k}$, with equality if and only if $T \cong P_{n, n-k}$.

Proof. For each $1 \leq k \leq n-3$,

$$
\begin{aligned}
i\left(P_{n, n-k}\right)-i\left(P_{n, n-k-1}\right) & =\left(2^{n-k-1} F_{k+1}+F_{k}\right)-\left(2^{n-k-2} F_{k+2}+F_{k+1}\right) \\
& =2^{n-k-2}\left(2 F_{k+1}-F_{k+2}\right)-\left(F_{k+1}-F_{k}\right) \\
& =2^{n-k-2} F_{k-1}-F_{k-1}>0 .
\end{aligned}
$$

So, for any $1 \leq k<k^{\prime} \leq n-2$,

$$
\begin{equation*}
i\left(P_{n, n-k}\right)>i\left(P_{n, n-k-1}\right)>\ldots>i\left(P_{n, n-k^{\prime}}\right) \tag{1}
\end{equation*}
$$

Suppose that T is a tree of n vertices and $k^{\prime}(\geq k)$ cut vertices. Then by Proposition 3.1 and the above Ineq. (1), we have

$$
i\left(P_{n, n-k}\right) \geq i\left(P_{n, n-k^{\prime}}\right) \geq i(T)
$$

with equality if and only if $k=k^{\prime}$ and $T \cong P_{n, n-k^{\prime}}$, i.e., $T \cong P_{n, n-k}$.
This completes the proof.

Lemma 3.3. For any $3 \leq l \leq n-1, i\left(S_{n}^{l}\right) \leq i\left(S_{n}^{3}\right)$, with equality if and only if $l=3$.
Proof. Let u be a vertex of degree 2, adjacent to the vertex of degree $n-l+2$ in S_{n}^{l}. Write $S_{n}^{l}-u=T_{n-1}$. Then we have

$$
i\left(S_{n}^{l}\right)=i\left(T_{n-1}\right)+i\left(P_{l-3} \cup(n-l) K_{1}\right)
$$

and

$$
i\left(S_{n}^{3}\right)=i\left(S_{n-1}\right)+i\left((n-3) K_{1}\right)
$$

By Lemma 2.4, $i\left(T_{n-1}\right) \leq i\left(S_{n-1}\right)$ with equality if and only if $T_{n-1} \cong S_{n-1}$, i.e., $l=3$. Note that $P_{l-3} \cup(n-l) K_{1}$ contains $(n-3) K_{1}$ as a proper spanning subgraph if $l \geq 4$. By Lemma 2.3, $i\left(P_{l-3} \cup(n-l) K_{1}\right) \leq i\left((n-3) K_{1}\right)$ with equality if and only if $l=3$. Consequently, $i\left(S_{n}^{l}\right) \leq i\left(S_{n}^{3}\right)$, with equality if and only if $l=3$. This completes the proof.

Let $C_{3}(n, k)$ be a unicyclic graph constructed as follows.

- For $k=1$, we let $Q_{3}(n, 1)=S_{n}^{3}$.
- For $k \geq 2$, we let $C_{3}(n, k)$ be the graph obtained by attaching a path of length $k-1$ to a vertex of degree 2 in $C_{3}(n-k+1,1)$.
See Fig. 2 for instance.

Fig. 2. The graph $C_{3}(n, k)$.

According to the above definition for $C_{3}(n, k)$, we have

$$
i\left(C_{3}(n, k)\right)= \begin{cases}3 \cdot 2^{n-3}+1, & k=1 \\ 2^{n-k-2} F_{k+2}+F_{k}, & k \geq 2\end{cases}
$$

Before proceeding, we prove the following two lemmas.
Lemma 3.4. Let G be a unicyclic graph in $\mathcal{U}_{n, k}^{l}$. If $|O C(G)|=0$, then $i(G) \leq i\left(C_{3}(n, k)\right)$, with equality if and only if $G \cong C_{3}(n, k)$.

Proof. If $k=1$, then $G \cong S_{n}^{l}$. Thus, by Lemma 3.3, we have

$$
i(G) \leq i\left(S_{n}^{3}\right)=i\left(C_{3}(n, 1)\right)
$$

with equality if and only if $l=3$, that is, $G \cong C_{3}(n, 1)$.
So, we may assume that $k \geq 2$. If $k=2$, then G is the graph $G_{s, t}(l)$, obtained by attaching s and t pendent edges to any two vertices of the cycle C_{l}, where $s+t+l=n$. If $\min \{s, t\} \geq 2$, then by Lemma 2.6, we have $i(G)=i\left(G_{s, t}(l)\right)<i\left(G_{1, s+t-1}(l)\right)$. Thus, $i(G)=i\left(G_{s, t}(l)\right) \leq i\left(G_{1, s+t-1}(l)\right)$.

In view of Lemmas 2.1 and 2.2(i),

$$
i\left(C_{3}(n, 2)\right)=i\left(S_{n-1}^{3}\right)+i\left(S_{n-2}\right)
$$

and

$$
i\left(G_{1, s+t-1}(l)\right)=i\left(S_{n-1}^{l}\right)+i\left(T_{n-2}\right)
$$

where T_{n-2} is a tree of order $n-2$.
Evidently, $i\left(T_{n-2}\right) \leq i\left(S_{n-2}\right)$, with equality if and only if $T_{n-2} \cong S_{n-2}$, and $i\left(S_{n-1}^{l}\right) \leq i\left(S_{n-1}^{3}\right)$, with equality if and only if $l=3$. So

$$
i(G) \leq i\left(G_{1, s+t-1}(l)\right) \leq i\left(C_{3}(n, 2)\right)
$$

with equality if and only if $T_{n-2} \cong S_{n-2}, l=3$ and $G \cong G_{1, s+t-1}(l)$, that is, $G \cong C_{3}(n, 2)$, as claimed.
So, we may assume that $k \geq 3$.
Since $|O C(G)|=0$, for $k \geq 3$, we must have $G \not \equiv C_{3}(n, k)$. By Lemmas 2.1 and 2.2(i),

$$
i\left(C_{3}(n, k)\right)=i\left(P_{n-1, n-k-1}\right)+2^{n-k-2} i\left(P_{k-1}\right)
$$

and

$$
i(G)=i\left(G-v_{0}\right)+i\left(G-\left[v_{0}\right]\right)
$$

Notice that $G-v_{0}$ is a tree of order $n-1$ and at least k cut vertices; then, by Proposition 3.2, we have

$$
i\left(G-v_{0}\right) \leq i\left(P_{n-1, n-k-1}\right)
$$

with equality if and only if $G-v_{0} \cong P_{n-1, n-k-1}$.
By our assumption that $|O C(G)|=0$, we know that all k cut vertices of G lie on C_{l}. If $k=2$, then $G-\left[v_{0}\right]$ is an empty graph of $n-3$ isolated vertices. If $k \geq 3, G-\left[v_{0}\right]$ is a forest composed of $x(0 \leq x \leq n-k-3)$ isolated vertices and a nontrivial component of $n-x-3$ vertices and at least $k-2$ cut vertices. Also, the largest component of $G-\left[v_{0}\right]$ contains the path P_{k} as a subgraph. Thus, $G-\left[v_{0}\right]$ contains $(n-k-2) K_{1} \cup P_{k-1}$ as a spanning subgraph. Then by Lemma 2.3,

$$
\begin{aligned}
i\left(G-\left[v_{0}\right]\right) & \leq i\left((n-k-2) K_{1} \cup P_{k-1}\right) \\
& =2^{n-k-2} i\left(P_{k-1}\right)
\end{aligned}
$$

with equality if and only if $k=2$.
So, $i(G) \leq i\left(C_{3}(n, k)\right)$, with equality if and only if $G \cong C_{3}(n, k)(k=2)$.
Lemma 3.5. Let G be a graph in $\mathcal{U}_{n, k}^{l}$. If $|O C(G)| \geq 1$ and there exists a pendent path of length ≥ 2 in G, then $i(G) \leq i\left(C_{3}(n, k)\right)$, with the equality if and only if $G \cong C_{3}(n, k)$.

Proof. Obviously, $V(G) \backslash V\left(C_{l}\right) \neq \emptyset$. For any given vertex $x \in V(G) \backslash V\left(C_{l}\right)$, we let $d_{G}\left(x, C_{l}\right)=\min \left\{d_{G}(x, y) \mid y \in\right.$ $\left.V\left(C_{l}\right)\right\}$. By the assumption that $|O C(G)| \geq 1$, we have $k \geq 2$.

We shall complete the proof by induction on $|O C(G)|$.
We first check the validity of the lemma for $|O C(G)|=1$. Let v be the unique cut vertex, not belonging to C_{l}, in G. Since $|O C(G)|=1$, we have $d_{G}\left(v, C_{l}\right)=1$. Also, $d(v)=2$, for otherwise, G has no pendent path of length ≥ 2, a contradiction. Let u be the pendent vertex adjacent to v. Clearly, $|O C(G-u)|=|O C(G-[u])|=0$, $|C(G-u)|=k-1$ and $|C(G-[u])|=k-2$ or $k-1$.

If $k=2$, then $|C(G-u)|=1$ and $|C(G-[u])|=0$ or 1 . Thus, $G-u \cong S_{n-1}^{l}$ and $G-[u] \cong C_{n-2}$ or S_{n-2}^{l}. By Lemma 2.7, $i\left(S_{n-1}^{l}\right) \leq i\left(S_{n-1}^{3}\right)$. Also, $i\left(C_{n-2}\right)<i\left(P_{n-2}\right)<i\left(S_{n-2}\right)$ and $i\left(S_{n-2}^{l}\right) \leq i\left(S_{n-2}^{3}\right)<i\left(S_{n-2}\right)$ by Lemmas 2.3, 2.4 and 2.7. Thus,

$$
\begin{aligned}
i(G) & =i(G-u)+i(G-[u]) \\
& <i\left(S_{n-1}^{3}\right)+i\left(S_{n-2}\right) \\
& =i\left(C_{3}(n, 2)\right),
\end{aligned}
$$

as claimed.
Assume now that $k \geq 3$., Since $d_{G}\left(u, C_{l}\right)=2,|C(G-u)|=k-1$ and $|C(G-[u])|=k-2$ or $k-1$, we have $G-u \in \mathcal{U}_{n-1, k-1}^{l}$ and $G-[u] \in \mathcal{U}_{n-2, k-2}^{l}$ or $\mathcal{U}_{n-2, k-1}^{l}$.

Note that $|O C(G-u)|=|O C(G-[u])|=0$; then by Lemma 3.4,

$$
\begin{equation*}
i(G-u) \leq i\left(C_{3}(n-1, k-1)\right) \tag{2}
\end{equation*}
$$

with the equality if and only if $G-u \cong C_{3}(n-1, k-1)$.
Also, by Lemma 3.4,

$$
\begin{equation*}
i(G-[u]) \leq i\left(C_{3}(n-2, k-2)\right) \tag{3}
\end{equation*}
$$

with the equality if and only if $G-[u] \cong C_{3}(n-2, k-2)$, or

$$
\begin{equation*}
i(G-[u]) \leq i\left(C_{3}(n-2, k-1)\right) \tag{4}
\end{equation*}
$$

with the equality if and only if $G-[u] \cong C_{3}(n-2, k-1)$.
We shall prove that for $k \geq 3$,

$$
\begin{equation*}
i\left(C_{3}(n-2, k-1)\right)<i\left(C_{3}(n-2, k-2)\right) . \tag{5}
\end{equation*}
$$

The above Ineq. (5) is equivalent to

$$
\begin{gathered}
2^{n-k-3} F_{k+1}+2 F_{k-2}<2^{n-k-2} F_{k}+2 F_{k-3} \\
\Leftrightarrow 2^{n-k-3} F_{k+1}-2^{n-k-2} F_{k}<2 F_{k-3}-2 F_{k-2} \\
\Leftrightarrow 2^{n-k-3} F_{k-2}>2 F_{k-4}
\end{gathered}
$$

The last inequality holds due to the fact that $n-k-3 \geq 0$.
By Ineqs. (2)-(5), for $k \geq 4$, we obtain

$$
i(G) \leq i\left(C_{3}(n-1, k-1)\right)+i\left(C_{3}(n-2, k-2)\right)=i\left(C_{3}(n, k)\right)
$$

with the equality if and only if $G-u \cong C_{3}(n-1, k-1)$ and $G-[u] \cong C_{3}(n-2, k-2)$, i.e., $G \cong C_{3}(n, k)$.
If $k=3$, then $G \neq C_{3}(n, 3)$, as $|O C(G)|=s \geq 1$. Since $C_{3}(n-2,1)=S_{n-2}^{3}$ contains $P_{n-2, n-4}$ as a proper spanning subgraph, $i\left(C_{3}(n-2,1)\right)<i\left(P_{n-2, n-4}\right)$ by Lemma 2.3. By Ineqs. (2)-(5), for $k=3$, we have

$$
\begin{aligned}
i(G) & \leq i\left(C_{3}(n-1,2)\right)+i\left(C_{3}(n-2,1)\right) \\
& <i\left(C_{3}(n-1,2)\right)+i\left(P_{n-2, n-4}\right) \\
& =i\left(C_{3}(n, 3)\right)
\end{aligned}
$$

as claimed.
Suppose now that $|O C(G)|=s \geq 2$ and the statement of lemma is true for smaller values of $|O C(G)|$. Then $k \geq s+1 \geq 3$.

Let P be a pendent path of length ≥ 2 in G with pendent vertex u and $N(u)=v$. By the definition of pendent path, we have $d(v)=2$. Then we have $|O C(G-u)|=s-1$ and $|O C(G-[u])|=|O C(G-u-v)|=$ $s-2$ or $s-1,|C(G-u)|=k-1$ and $|C(G-[u])|=k-2$ or $k-1$.

Note that $G-u \in \mathcal{U}_{n-1, k-1}^{l}$ and $G-[u] \in \mathcal{U}_{n-2, k-1}^{l}$ or $\mathcal{U}_{n-2, k-2}^{l}$; thus by the induction hypothesis, we have

$$
i(G-u) \leq i\left(C_{3}(n-1, k-1)\right)
$$

with the equality if and only if $G-u \cong C_{3}(n-1, k-1)$.
Also, by Lemma 3.4 (when $|O C(G-[u])|=s-2=0$) or by the induction assumption (when $|O C(G-[u])|=$ $s-2 \geq 1$), we have: if $C(G-[u])=k-2$, then

$$
i(G-[u]) \leq i\left(C_{3}(n-2, k-2)\right)
$$

with the equality if and only if $G-[u] \cong C_{3}(n-2, k-2)$, and if $C(G-[u])=k-1$, then

$$
i(G-[u]) \leq i\left(C_{3}(n-2, k-1)\right)
$$

with the equality if and only if $G-[u] \cong C_{3}(n-2, k-1)$.
Now, by the same way as used in the case of $|O C(G)|=1$, we can obtain the desired result.
This completes the proof.

A graph is called a sun graph if it can be obtained by attaching a pendent edge to each vertex of a cycle. A damaged sun graph is a graph obtained from sun graph by deleting part of its pendent edges. Denoted by $\mathcal{D S G}(N, l)$ the set of damaged sun graphs having N vertices and a cycle of length l. Obviously, we have $l+1 \leq N \leq 2 l-1$.

Fig. 3. The graph occurred in the proof of Theorem 1.

Fig. 4. The graphs occurred in the proof of Theorem 1.

Fig. 5. The graph $H_{3}(n, k)$ occurred in the proof of Theorem 1.

Now, we are in a position to state and prove our maim theorem.
Theorem 3.6. Let G be a graph in $\mathcal{U}_{n, k}$. Then $i(G) \leq i\left(C_{3}(n, k)\right)$, with the equality if and only if $G \cong C_{3}(n, k)$.
Proof. Let $G_{\max }$ be a graph chosen from $\mathcal{U}_{n, k}^{l}$ for some $l(3 \leq l \leq n-k)$ such that $i\left(G_{\max }\right) \geq i(G)$ for any $G \in \mathcal{U}_{n, k} \backslash\left\{G_{\max }\right\}$. Next, we shall prove that $G_{\max } \cong C_{3}(n, k)$.

By contradiction. Suppose that $G_{\max } \neq C_{3}(n, k)$.
If $\left|O C\left(G_{\max }\right)\right|=0$, then $i\left(G_{\max }\right)<i\left(C_{3}(n, k)\right)$ by Lemma 3.4, a contradiction to our choice of $G_{\max }$. So we may suppose that $\left|O C\left(G_{\max }\right)\right| \geq 1$.

We first prove the following two claims.

Claim 3.1. $G_{m a x}$ has exactly one branched vertex lying outside C_{l}. Also, all neighbors but one of this branched vertex are pendent vertices.

Proof. If $G_{\max }$ has no branched vertices lying outside C_{l}, then $G_{\max }$ must contain a pendent path of length ≥ 2, as $\left|O C\left(G_{m a x}\right)\right| \geq 1$. Then by Lemma 3.5, $i\left(G_{\max }\right)<i\left(C_{3}(n, k)\right)$, a contradiction to our choice of $G_{\max }$. So $G_{\max }$ has at least one branched vertex lying outside C_{l}.

Suppose that $G_{\max }$ has two branched vertices lying outside C_{l}. Then we can employ Operation I on $G_{\max }$ and obtain a new graph G^{\prime} such that $G^{\prime} \in \mathcal{U}_{n, k}^{l}$. But, $i\left(G_{\max }\right)<i\left(G^{\prime}\right)$ by Lemma 2.6, a contradiction to the maximality of $G_{\max }$. Consequently, $G_{\max }$ has exactly one branched vertex lying outside C_{l}.

Suppose that the unique branched vertex, lying outside C_{l}, has two neighbors of degree ≥ 2. Then $G_{\max }$ must contain a pendent path of length ≥ 2, as $G_{\max }$ has exactly one branched vertex lying outside C_{l}. As above, we can obtain a contradiction. This proves the claim.

Claim 3.2. Each vertex on the cycle C_{l} of $G_{\max }$ is either of degree 2 or of degree 3. Also, all vertices but one, of degree 3 , on the cycle C_{l} are adjacent to a pendent vertex.

Proof. Suppose to the contrary that $G_{\max }$ has a branched vertex, of degree ≥ 4, lying along C_{l}. By Claim 3.1, $G_{\max }$ has a branched vertex lying outside C_{l}. Then we can employ Operation I on $G_{\max }$ and obtain a new graph $G^{\prime \prime}$ such that $G^{\prime \prime} \in \mathcal{U}_{n, k}^{l}$. But then, $i\left(G_{\max }\right)<i\left(G^{\prime \prime}\right)$ by Lemma 2.6, a contradiction to the maximality of $G_{\max }$. Thus, each vertex on the cycle C_{l} of $G_{\max }$ is either of degree 2 or of degree 3.

Assume that there are two branched vertices on the cycle C_{l} whose all neighbors are not pendent vertices. By Claim 3.1, $G_{\max }$ has exactly one branched vertex lying outside C_{l}. Thus, $G_{\max }$ must contain a pendent path of length ≥ 2. Then by Lemma 3.5, $i\left(G_{\max }\right)<i\left(C_{3}(n, k)\right)$, a contradiction to the maximality of $G_{\max }$. This proves the claim.

By Claims 3.1 and 3.2, $G_{\max }$ must be isomorphic to the graph as shown in Fig. 3.
If $l=3$, then $G_{\max }$ must be isomorphic to one of the graphs $(a),(b)$ and (c), as shown in Fig. 4.

- $G_{\max }$ is the graph (a). By our assumption that $\left|O C\left(G_{\max }\right)\right| \geq 1$, we have $k \geq 2$. Also, we have $n-k \geq 3$, since $n \geq l+k$. Thus,

$$
\begin{aligned}
i\left(G_{\max }\right) & =i\left(P_{n-1, n-k-1}\right)+i\left(P_{n-3, n-k-1}\right) \\
& =2^{n-k-2} F_{k+1}+F_{k}+2^{n-k-2} F_{k-1}+F_{k-2} \\
& <2^{n-k-2} F_{k+2}+2 F_{k-1} \\
& =i\left(C_{3}(n, k)\right)
\end{aligned}
$$

a contradiction to the maximality of $G_{\max }$.

- $G_{\max }$ is the graph (b). Since $\left|O C\left(G_{\max }\right)\right| \geq 1$, we have $k \geq 3$. Also, we have $n-k \geq 3$.

Thus,

$$
\begin{aligned}
i\left(G_{\max }\right) & =i\left(P_{n-1, n-k-1}\right)+2 i\left(P_{n-4, n-k-1}\right) \\
& =2^{n-k-2} F_{k+1}+F_{k}+2\left(2^{n-k-2} F_{k-2}+F_{k-3}\right) \\
& <2^{n-k-2} F_{k+2}+2 F_{k-1} \\
& =i\left(C_{3}(n, k)\right),
\end{aligned}
$$

a contradiction to the maximality of $G_{\max }$.

- $G_{\max }$ is the graph (c). Since $\left|O C\left(G_{\max }\right)\right| \geq 1$, we have $k \geq 4$. Also, we have $n-k \geq 4$ (see Fig. 4).

Thus,

$$
\begin{aligned}
i\left(G_{\max }\right) & =2 i\left(P_{n-2, n-k-1}\right)+2 i\left(P_{n-5, n-k-1}\right) \\
& =2\left(2^{n-k-2} F_{k}+F_{k-1}\right)+2\left(2^{n-k-2} F_{k-3}+F_{k-4}\right) \\
& <2^{n-k-2} F_{k+2}+2 F_{k-1} \\
& =i\left(C_{3}(n, k)\right),
\end{aligned}
$$

a contradiction to the maximality of $G_{\max }$.
Now, we assume that $l \geq 4$.
Let w be the branched vertex of $G_{\max }$ such that w lies along C_{l} and the unique neighbor, not belonging to C_{l}, of w is of degree ≥ 2.

Since $l \geq 4$, there is always a vertex $v \in V\left(C_{l}\right)$ such that $d_{G_{\max }}(v, w) \geq 2$. Let $A=\left\{v \in V\left(C_{l}\right) \mid d_{G_{\max }}(v, w) \geq 2\right\}$. Consider the following two cases.

Case 3.1. There exists a vertex v in A such that $d(v)=3$.
By Claim 3.2, v has a pendent vertex as one of its neighbors in $G_{m a x}$. Let $u^{\prime} v^{\prime}$ be a pendent edge in $C_{3}(n, k)$ such that $d\left(u^{\prime}\right)=1$ and $d\left(v^{\prime}\right)=3$ (note that when $n=k+3$ or $k=3$, the way of choosing vertices v^{\prime} and u^{\prime} in $C_{3}(n, k)$ is not unique). By Lemmas 2.1 and 2.2(i), we obtain

$$
\begin{aligned}
i\left(C_{3}(n, k)\right) & =i\left(C_{3}(n, k)-v^{\prime}\right)+i\left(C_{3}(n, k)-\left[v^{\prime}\right]\right) \\
& =2 i\left(P_{n-2, n-k-1}\right)+2^{n-k-2} i\left(P_{k-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
i\left(G_{\max }\right) & =i\left(G_{\max }-v\right)+i\left(G_{\max }-[v]\right) \\
& =2 i\left(T_{1}\right)+i\left(G_{\max }-[v]\right),
\end{aligned}
$$

where T_{1} is a subtree of $G_{\max }-v$ with $n-2$ vertices.
Obviously, T_{1} has at least $k-1$ cut vertices. Let $G_{\max }-[v]=x K_{1} \cup T_{2}\left(0 \leq x \leq 2, x+n^{\prime}=n-4\right)$, where T_{2} is the largest component of $G_{\max }-[v]$ with n^{\prime} vertices. Then T_{2} has at least $k-3$ cut vertices.

By Proposition 3.2, we obtain

$$
i\left(T_{1}\right) \leq i\left(P_{n-2,(n-2)-(k-1)}\right)
$$

and

$$
i\left(T_{2}\right) \leq i\left(P_{n^{\prime}, n^{\prime}-(k-3)}\right) .
$$

Thus,

$$
\begin{aligned}
i\left(G_{\max }-[v]\right) & =i\left(x K_{1} \cup T_{2}\right) \\
& =2^{x} i\left(T_{2}\right) \\
& \leq 2^{x} i\left(P_{n^{\prime}, n^{\prime}-(k-3)}\right) \\
& =i\left(x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-3)}\right) .
\end{aligned}
$$

Note that $P_{n^{\prime}, n^{\prime}-(k-3)}$ contains $\left(n^{\prime}-k+1\right) K_{1} \cup P_{k-1}$ as a proper spanning subgraph. Thus, $x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-3)}$ contains $(n-k-2) K_{1} \cup P_{k-2}$ as a proper spanning subgraph. By Lemma 2.3, we have

$$
\begin{aligned}
i\left(G_{\max }-[v]\right) & \leq i\left(x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-3)}\right) \\
& <i\left((n-k-2) K_{1} \cup P_{k-2}\right) \\
& =2^{n-k-2} i\left(P_{k-2}\right) .
\end{aligned}
$$

So, $i\left(G_{\max }\right)<i\left(C_{3}(n, k)\right)$, a contradiction to our choice of $G_{\max }$.
Case 3.2. For each vertex v in A, we have $d(v)=2$.
Let v be a vertex in A. Then $G_{\max }-v$ is a tree having $n-1$ vertices and at least k cut vertices. Let $G_{\max }-[v]=x K_{1} \cup T_{0}\left(0 \leq x \leq 2, x+n^{\prime}=n-3\right)$, where T_{0} is the largest component of $G_{\max }-[v]$ with n^{\prime} vertices. Evidently, T_{0} has at least $k-2$ cut vertices.

We shall prove that $i\left(G_{\max }\right)<i\left(H_{3}(n, k)\right)$ in the following, see Fig. 5 for $H_{3}(n, k)$.
By Lemmas 2.1 and 2.2(i), we obtain

$$
i\left(H_{3}(n, k)\right)=i\left(P_{n-1, n-k-1}\right)+2^{n-k-2} i\left(P_{k-1}\right)
$$

and

$$
\begin{aligned}
i\left(G_{\max }\right) & =i\left(G_{\max }-v\right)+i\left(G_{\max }-[v]\right) \\
& =i\left(G_{\max }-v\right)+i\left(x K_{1} \cup T_{0}\right) .
\end{aligned}
$$

By Proposition 3.2, we obtain

$$
i\left(G_{\max }-v\right) \leq i\left(P_{n-1,(n-1)-k}\right)
$$

and

$$
i\left(T_{0}\right) \leq i\left(P_{n^{\prime}, n^{\prime}-(k-2)}\right)
$$

Thus,

$$
\begin{aligned}
i\left(G_{\max }-[v]\right) & =i\left(x K_{1} \cup T_{0}\right) \\
& =2^{x} i\left(T_{0}\right) \\
& \leq 2^{x} i\left(P_{n^{\prime}, n^{\prime}-(k-2)}\right) \\
& =i\left(x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-2)}\right) .
\end{aligned}
$$

Note that $P_{n^{\prime}, n^{\prime}-(k-2)}$ contains $\left(n^{\prime}-k+1\right) K_{1} \cup P_{k-1}$ as a proper spanning subgraph. Thus, $x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-2)}$ contains $(n-k-2) K_{1} \cup P_{k-1}$ as a proper spanning subgraph. By Lemma 2.3, we have

$$
\begin{aligned}
i\left(G_{\max }-[v]\right) & \leq i\left(x K_{1} \cup P_{n^{\prime}, n^{\prime}-(k-2)}\right) \\
& <i\left((n-k-2) K_{1} \cup P_{k-1}\right) \\
& =2^{n-k-2} i\left(P_{k-1}\right) .
\end{aligned}
$$

So, $i\left(G_{\max }\right)<i\left(H_{3}(n, k)\right)$, a contradiction to our choice of $G_{\max }$.
By discussions above, we conclude that $G_{\max } \cong C_{3}(n, k)$, as claimed.

4. Connected graph with at least one cycle, given number of cut vertices and the maximal MerrifieldSimmons index

Let $\mathcal{U}_{n, k^{+}}$be the set of unicyclic graphs of order n and at least k cut vertices. According to Theorem 3.6, we have the following consequence.

Corollary 4.1. Let G be a graph in $\mathcal{U}_{n, k^{+}}$. Then $i(G) \leq i\left(C_{3}(n, k)\right)$, with the equality if and only if $G \cong C_{3}(n, k)$.
Proof. Let G be a graph in $\mathcal{U}_{n, k^{\prime}}\left(1 \leq k^{\prime} \leq n-3\right)$. Then by Theorem 3.6 , we have $i(G) \leq i\left(C_{3}\left(n, k^{\prime}\right)\right)$, with the equality if and only if $G \cong C_{3}\left(n, k^{\prime}\right)$. We need only to prove that if $k^{\prime} \geq k$, then $i\left(C_{3}\left(n, k^{\prime}\right)\right) \leq i\left(C_{3}(n, k)\right)$.

If $k=1$, the result is obvious. So we may suppose that $k \geq 2$. Then $k^{\prime} \geq k \geq 2$. For $1 \leq k \leq n-4$, we have

$$
\begin{aligned}
i\left(C_{3}(n, k+1)\right) & =2^{n-(k+1)-2} F_{(k+1)+2}+2 F_{(k+1)-1} \\
& =2^{n-k-3} F_{k+3}+2 F_{k} \\
& <2^{n-k-2} F_{k+2}+2 F_{k-1} \\
& =i\left(C_{3}(n, k)\right) .
\end{aligned}
$$

Thus, for any $1 \leq k<k^{\prime} \leq n-3$, we have

$$
i\left(C_{3}\left(n, k^{\prime}\right)\right)<\cdots<i\left(C_{3}(n, k+1)\right)<i\left(C_{3}(n, k)\right),
$$

as claimed.
Theorem 4.2. Let G be a connected graph, not isomorphic to a tree, of n vertices and k cut vertices. Then $i(G) \leq$ $i\left(C_{3}(n, k)\right)$, with the equality if and only if $G \cong C_{3}(n, k)$.

Proof. If G is a graph in $\mathcal{U}_{n, k}$, then by Theorem 3.6, we have completed the proof. Now, we may assume that G is a connected graph of n vertices, k cut vertices and at least two cycles.

We can always obtain a connected unicyclic spanning subgraph of G by deleting edges along some cycles of G. Let $\operatorname{USS}(G)$ denote a connected unicyclic spanning subgraph of G. Note that $\operatorname{USS}(G)$ is a connected unicyclic graph of n vertices and at least k cut vertices. Thus, by Lemma 2.3 and Corollary 4.1, we have

$$
i(G)<i(\operatorname{USS}(G)) \leq i\left(C_{3}(n, k)\right)
$$

as claimed.

References

[1] A.F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, The Fibonacci Quarterly 36 (1998) 206-210.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.
[3] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[4] H. Hua, A sharp upper bound for the number of stable sets in graphs with given number of cut edges, Applied Mathematics Letters 22 (2009) 1380-1385.
[5] H. Hua, S. Zhang, Graphs with given number of cut vertices and extremal Merrifield-Simmons index, Discrete Applied Mathematics 159 (2011) 971-980.
[6] H. Hua, S. Zhang, The number of independent sets in 3-connected and 3-edge-connected graphs, submitted for publication.
[7] C. Heuberger and S. Wagner, Maximizing the number of independent subsets over trees with bounded degree, Journal of Graph Theory 44 (2008) 49-68.
[8] S. Li, X. Li, W. Jin, On the extremal Merrifield-Simmons index and Hosoya index of quasi-tree graphs, Discrete Applied Mathematics 157 (2009) 2887-2885.
[9] S. Li, Z. Zhu, The number of independent sets in unicyclic graphs with a given diameter, Discrete Applied Mathematics 157 (2009) 1387-1395.
[10] X. Li, H. Zhao, I. Gutman, On the Merrifield-Simmons index of trees, MATCH Communications in Mathematical and in Computer Chemistry 54 (2005) 389-402.
[11] S. Lin, C. Lin, Trees and forests with large and small independent indices, Chinese Journal of Mathematics 23 (1995) 199-210.
[12] H. Liu, M. Lu, A unified approach to extremal cacti for different indices, MATCH Communications in Mathematical and in Computer Chemistry 58 (2007) 193-204.
[13] R.E. Merrifield, H.E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[14] A.S. Pedersen, P.D. Vestergaard, The number of independent sets in unicyclic graphs, Discrete Applied Mathematics 152 (2005) 246-256.
[15] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982) 16-21.
[16] A. Yu, X. Lv, The Merrifield-Simmons and Hosoya indices of trees with k pendent vertices, Journal of Mathematical Chemistry 41 (2007) 33-43.
[17] H. Zhao, X. Li, On the Fibonacci numbers of trees, The Fibonacci Quarterly 44 (2006) 32-38.

[^0]: 2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C90
 Keywords. independent set; Merrifield-Simmons index; unicyclic graph; cut vertices; upper bound; extremal graph
 Received: 16 October 2012; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 Research supported in part by NSF of the Higher Education Institutions of Jiangsu Province (No. 12KJB110001), NNSF of China (No.s 11201227, 11171273), SRF of HIT (No. HGA1010) and Qing Lan Project of Jiangsu Province, PR China.

 Email address: hongbo.hua@gmail.com (Hongbo Hua)

