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Abstract. A paired-dominating set of a graph G = (V,E) with no isolated vertex is a dominating set of
vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted
by γpr(G), is the minimum cardinality of a paired-dominating set of G. The annihilation number a(G) is the
largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most
the number of edges in G. In this paper, we prove that for any tree T of order n ≥ 2, γpr(T) ≤ 4a(T)+2

3 and we
characterize the trees achieving this bound.

1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V|
of G is denoted by n = n(G). For every vertex v ∈ V(G), the open neighborhood NG(v) = N(v) is the set
{u ∈ V(G) | uv ∈ E(G)} and the closed neighborhood of v is the set NG[v] = N[v] = N(v) ∪ {v}. The degree of a
vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by
δ = δ(G) and ∆ = ∆(G), respectively. For a subset S ⊆ V(G), we let∑

(S,G) =
∑
v∈S

degG(v).

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support
vertex is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T, let C(v) denote the set of
children of v. Let D(v) denote the set of descendants of v and D[v] = D(v) ∪ {v}. The maximal subtree at v is
the subtree of T induced by D[v], and is denoted by Tv. We write Pn for a path of order n.

A paired-dominating set, abbreviated PDS, of a graph G is a set S of vertices of G such that every vertex is
adjacent to some vertex in S and the subgraph G[S] induced by S contains a perfect matching (not necessary
induced). Every graph without isolated vertices has a PDS since the end-vertices of any maximal matching
form such a set. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a
PDS. A PDS of cardinality γpr(G) is called a γpr(G)-set. Paired-domination was introduced by Haynes and
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Slater (1995, 1998) as a model for assigning backups to guards for security purposes, since this time many
results have been obtained on this parameter (see for instance [2–5, 7–11].

Let d1 ≤ d2 ≤ . . . ≤ dn be the degree sequence of a graph G. Pepper [13] defined the annihilation number
of G, denoted a(G), to be the largest integer k such that the sum of the first k terms of the degree sequence
is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest
integer k such that

k∑
i=1

di ≤

n∑
i=k+1

di.

We observe that if G has m edges and annihilation number k, then
∑k

i=1 di ≤ m. As an immediate consequence
of the definition of the annihilation number, we observe that

a(G) ≥ b
n
2
c. (1)

The relation between annihilation number and some graph parameters have been studied by several
authors (see for example [1, 6, 12]).

If G is a connected graph of order n ≥ 6 with δ(G) ≥ 2, then it is known ([8]) that γpr(G) ≤ 2n
3 . Hence if G

is a connected graph of order n ≥ 6 with minimum degree at least 2, then

γpr(G) ≤
4a(G) + 2

3
.

Our purpose in this paper is to establish the above upper bound on the paired-domination number for
trees.

We make use of the following results in this paper.

Proposition A. ([8]) For n ≥ 3,

γpr(Pn) = 2
⌈n

4

⌉
.

Proposition B. For n ≥ 2,

a(Pn) =
⌈n

2

⌉
.

Corollary 1.1. For n ≥ 3,

γpr(Pn) ≤
4a(Pn)

3

with equality if and only if T = P5 or P6.

2. Main result

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a new vertex.
The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G. The subdivision
star S(K1,t) for t ≥ 2, is called a healthy spider St. A wounded spider St is the graph formed by subdividing at
most t − 1 of the edges of a star K1,t for t ≥ 2. Note that stars are wounded spiders. A spider is a healthy or
wounded spider.

Lemma 2.1. If T is a spider, then γpr(T) ≤ 4a(T)+2
3 with equality if and only if T is a healthy spider St, where

t is odd.
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Proof. First let T = St be a healthy spider for some t ≥ 2. Then obviously γpr(T) = 2t. If t is even, then
a(T) = t+ t

2 and henceγpr(T) = 2t =
4a(T)

3 < 4a(T)+2
3 . If t is odd, then a(T) = t+ t−1

2 and henceγpr(T) = 2t =
4a(T)+2

3 .
Now let T be a wounded spider obtained from K1,t (t ≥ 2) by subdividing 0 ≤ s ≤ t − 1 edges. If

s = 0, then T is a star and we have γpr(T) = 2 and a(T) = t. Hence γpr(T) = 2 < 4a(T)+2
3 . Suppose s > 0. If

(t, s) = (2, 1), then T = P4 and the result follows from Corollary 1.1. If (t, s) , (2, 1), then γpr(T) = 2s and
a(T) = t + b s

2 c. It follows that γpr(T) = 2s < 4a(T)+2
3 . This completes the proof.

Theorem 2.2. If T is a tree of order n ≥ 2, then

γpr(T) ≤
4a(T) + 2

3
.

This bound is sharp for healthy spider St, where t is odd.

Proof. The proof is by induction on n. The statement holds for all trees of order n = 2, 3, 4. For the inductive
hypothesis, let n ≥ 5 and suppose that for every nontrivial tree T of order less than n the result is true. Let
T be a tree of order n. We may assume that T is not a path for otherwise the result follows by Corollary 1.1.
If diam(T) = 2, then T is a star and so γpr(T) < 4a(T)+2

3 by Lemma 2.1. If diam(T) = 3, then T is a double star
S(r, s). In this case, a(T) = r + s ≥ 3 and γpr(T) = 2, implying that γpr(T) < 4a(T)+2

3 . Hence we may assume
that diam(T) ≥ 4.

In what follows, we will consider trees T′ formed from T by removing a set of vertices. For such a tree
T′ of order n′, let d′1, d

′

2, . . . , d
′

n′ be the non-decreasing degree sequence of T′, and let S′ be a set of vertices
corresponding to the first a(T′) terms in the degree sequence of T′. We denote the size of T′ by m′. We
proceed further with a series of claims that we may assume satisfied by the tree.
Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the
leaves adjacent to u is connected.
Let T have a strong support vertex u such that the graph obtained from T by removing u and the leaves
adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root T at w and
let v be the parent of u. Assume T′ = T − Tu. It is easy to see that γpr(T) ≤ γpr(T′) + 2. If v < S′, then∑

(S′,T) =
∑

(S′,T′) and if v ∈ S′, then
∑

(S′,T) =
∑

(S′,T′)+1. Thus,
∑

(S′,T) ≤
∑

(S′,T′)+1 ≤ m′+1 ≤ m−2.
Let z1, z2 be two leaves adjacent to u and assume S = S′ ∪ {z1, z2}. Then

∑
(S,T) =

∑
(S′,T) + 2 ≤ m implying

that a(T) ≥ a(T′) + 2. By inductive hypothesis, we obtain

γpr(T) ≤ γpr(T′) + 2 ≤
4a(T′) + 2

3
+ 2 ≤

4(a(T) − 2) + 2
3

+ 2 <
4a(T) + 2

3
,

as desired. (�)
Let v1v2 . . . vD be a diametral path in T and root T at vD. If diam(T) = 4, then T is a spider by Claim 1,

and the result follows by Lemma 2.1. Assume diam(T) ≥ 5. It follows from Claim 1 that Tv3 is a spider.
Claim 2. deg(v3) ≤ 3.
Let deg(v3) ≥ 4. We consider three cases.

Case 2.1 Tv3 is a healthy spider St, where t is even.
Assume T′ = T−Tv3 . Then obviously γpr(T) ≤ γpr(T′) + 2t. As above, we have

∑
(S′,T) ≤

∑
(S′,T′) + 1. Let S

be the set obtained from S′ by adding all the leaves and half of the support vertices of Tv3 . Then
∑

(S,T) ≤ m.
Therefore, a(T) ≥ |S| = |S′| + 3t

2 = a(T′) + 3t
2 . By inductive hypothesis, we obtain

γpr(T) ≤ γpr(T′) + 2t ≤
4a(T′) + 2

3
+ 2t ≤

4(a(T) − 3t
2 ) + 2

3
+ 2t =

4a(T) + 2
3

.

Case 2.2 Tv3 is a healthy spider St, where t is odd.
First let deg(v4) = 2. In this case, assume T′ = T − Tv4 . Then obviously γpr(T) ≤ γpr(T′) + 2t. As above,
we have

∑
(S′,T) ≤

∑
(S′,T′) + 1. Let S be the set obtained from S′ by adding all the leaves and t+1

2 of the



N. Dehgardi et al. / Filomat 28:3 (2014), 523–529 526

support vertices of Tv3 . Then
∑

(S,T) ≤ m and hence a(T) ≥ |S| = |S′| + 3t+1
2 = a(T′) + 3t+1

2 . It follows from
inductive hypothesis that

γpr(T) ≤ γpr(T′) + 2t ≤
4a(T′) + 2

3
+ 2t ≤

4(a(T) − 3t+1
2 ) + 2

3
+ 2t <

4a(T) + 2
3

.

Now let deg(v4) ≥ 3. Assume T′ = T − Tv3 . Then γpr(T) ≤ γpr(T′) + 2t. If v4 < S′, then let S be the set
obtained from S′ by adding all the leaves and t+1

2 of the support vertices of Tv3 . If v4 ∈ S′, then let S be the
set obtained from S′ − {v4} by adding all the leaves and t+3

2 of the support vertices of Tv3 . Then
∑

(S,T) ≤ m
and hence a(T) ≥ |S| = |S′| + 3t+1

2 = a(T′) + 3t+1
2 . By inductive hypothesis, we obtain γpr(T) < 4a(T)+2

3 .
Case 2.3 Tv3 is a wounded spider obtained from K1,t by subdividing 1 ≤ s ≤ t − 1 edges.

As in Lemma 2.1, we can see that γpr(T) ≤ γpr(T′) + 2s and a(T) ≥ a(T′) + t + b s
2 c. It follows from inductive

hypothesis that

γpr(T) ≤ γpr(T′) + 2s ≤
4a(T′) + 2

3
+ 2s ≤

4(a(T) − t − b s
2 c) + 2

3
+ 2s <

4a(T) + 2
3

. (�)

Claim 3. deg(v3) = 2.
Assume that deg(v3) = 3. First let v3 is adjacent to a support vertex z2 , v2. Suppose z1 is the leaf
adjacent to z2 and let T′ = T − Tv3 . Then every γpr(T′)-set can be extended to a PDS of T by adding
v1, v2, z1, z2, implying that γpr(T) ≤ γpr(T′) + 4. If v4 < S′, then

∑
(S′,T) =

∑
(S′,T′) and if v4 ∈ S′, then∑

(S′,T) =
∑

(S′,T′) + 1. Thus,
∑

(S′,T) ≤
∑

(S′,T′) + 1 ≤ m′ + 1 = m − 4. Let S = S′ ∪ {v1, v2, z1}. Then∑
(S,T) =

∑
(S′,T) + degT(v1) + degT(v2) + degT(z1) ≤ m. Therefore, a(T) ≥ |S| = |S′|+ 3 = a(T′) + 3. It follows

from inductive hypothesis that

γpr(T) ≤ γpr(T′) + 4 ≤
4a(T′) + 2

3
+ 4 ≤

4(a(T) − 3) + 2
3

+ 4 =
4a(T) + 2

3
.

Now let v3 is adjacent to a leaf w. Suppose T′ = T − Tv3 . Then every γpr(T′)-set can be extended to a PDS
of T by adding v3 and v2, implying that γpr(T) ≤ γpr(T′) + 2. Now let S = S′ ∪ {v1, v2}. Then we have∑

(S,T) =
∑

(S′,T) + degT(v1) + degT(v2) ≤ m′ + 4 = m, which implies that a(T) ≥ a(T′) + 2. By inductive
hypothesis,

γpr(T) ≤ γpr(T′) + 2 ≤
4a(T′) + 2

3
+ 2 ≤

4(a(T) − 2) + 2
3

+ 2 <
4a(T) + 2

3
. (�)

Claim 4. deg(v4) = 2.
Assume that deg(v4) ≥ 3. Let T′ = T − Tv3 . Then every γpr(T′)-set can be extended to a PDS of T by
adding v2 and v3. Thus γpr(T) ≤ γpr(T′) + 2. Suppose that v4 < S′. Then

∑
(S′,T) =

∑
(S′,T′). In this

case, let S = S′ ∪ {v1, v2}. Then
∑

(S,T) =
∑

(S′,T) + degT(v1) + degT(v2) ≤ m′ + 3 = m, implying that
a(T) ≥ |S| = |S′| + 2 = a(T′) + 2. Applying inductive hypothesis we obtain

γpr(T) ≤ γpr(T′) + 2 ≤
4a(T′) + 2

3
+ 2 ≤

4(a(T) − 2) + 2
3

+ 2 <
4a(T) + 2

3
,

as desired. Now we may assume v4 ∈ S′. In this case, let S = (S′ − {v4}) ∪ {v1, v2, v3}. Since degT(v3) =
2 ≤ degT′ (v4), we have

∑
(S,T) =

∑
(S′,T) − degT′ (v4) + degT(v1) + degT(v2) + degT(v3) ≤ m. Therefore,

a(T) ≥ |S| = |S′| + 2 = a(T′) + 2. It follows from inductive hypothesis that

γpr(T) ≤ γpr(T′) + 2 ≤
4a(T′) + 2

3
+ 2 ≤

4(a(T) − 2) + 2
3

+ 2 <
4a(T) + 2

3
,

as desired. (�)
We now return to the proof of theorem. Let T′ = T − Tv4 , and hence m′ = m − 4. Every γpr(T′)-set can

be extended to a PDS of T by adding v3, v2, which implies that γpr(T) ≤ γpr(T′) + 2. Let S = S′ ∪ {v1, v2}.
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Then
∑

(S,T) =
∑

(S′,T) + degT(v1) + degT(v2) ≤ m′ + 4 = m, implying that a(T) ≥ |S| = |S′| + 2 = a(T′) + 2.
Applying inductive hypothesis,

γpr(T) ≤ γpr(T′) + 2 ≤
4a(T′) + 2

3
+ 2 ≤

4(a(T) − 2) + 2
3

+ 2 <
4a(T) + 2

3
,

as desired. This completes the proof.

To characterize all trees achieving the bound in Theorem 2.2 we start with the following propositions.

Proposition 2.3. Let T be a tree of order n ≥ 2 with diam(T) ≤ 4. Then γpr(T) =
4a(T)+2

3 if and only if T = P2
or T is a healthy spider St, where t is odd.

Proof. If T = P2, then obviously γpr(T) = 2 and a(T) = 1. Hence, γpr(T) =
4a(T)+2

3 . If T is a healthy spider St
where t is odd, then the result follows by Lemma 2.1.

Conversely, let γpr(T) =
4a(T)+2

3 . If diam(T) = 1, then T = P2 and we are done. If diam(T) = 2, then T is
a star and it follows from Lemma 2.1 that γpr(T) < 4a(T)+2

3 , a contradiction. Suppose diam(T) = 3. Then T
is a double star S(r, s). In this case, a(T) = r + s and γpr(T) = 2. If r + s = 2, then T = P4, which leads to a
contradiction by Corollary 1.1. If r + s ≥ 3, then we have γpr(T) < 4a(T)+2

3 , which is a contradiction again.
Finally, let diam(T) = 4. By the proof of Claim 1 in Theorem 2.2, we may assume that the degree of each
support vertex on a diametral path of T is two and hence T is a spider. Since γpr(T) =

4a(T)+2
3 , it follows from

Lemma 2.1 that T is a healthy spider St, where t is odd. This completes the proof.

Proposition 2.4. If T is a tree of order n with diam(T) = 5, then γpr(T) < 4a(T)+2
3

Proof. Let v1v2 . . . v6 be a diametral path in T and root T at v6 (at v1, respectively). By a closer look at the
proof of Theorem 2.2 we may assume Tv3 and Tv4 are spiders St (if the root is v6) and Sr (if the root is v1) for
some even integers t and r, respectively. It is easy to see that γpr(T) = 2t + 2r and a(T) = 3t

2 + 3r
2 and hence

γpr(T) ≤ 4a(T)
3 < 4a(T)+2

3 , as desired.

Proposition 2.5. If T is a tree of order n with diam(T) = 6, then γpr(T) < 4a(T)+2
3

Proof. Let v1v2 . . . v7 be a diametral path in T and root T at v7 (at v1, respectively). As in Proposition 2.4,
we may assume Tv3 and Tv5 are healthy spider St (if the root is v7) and Sr (if the root is v1) for some even
integers t and r, respectively. Let ui (w j, respectively) be the leaves of Tv3 (Tv5 , respectively) and u′i (w′j,
respectively) be the support vertices of Tv3 (Tv5 , respectively). If deg(v4) = 2, then obviously γpr(T) = 2t + 2r
and a(T) = 3t

2 + 3r
2 + 1 and hence γpr(T) < 4a(T)

3 . If deg(v4) ≥ 4, then let T′ = T − (Tv3 ∪ Tv5 ). Clearly
γpr(T) ≤ γpr(T′) + 2t + 2r. Let S = S′ ∪ ({ui | 1 ≤ i ≤ t} ∪ {u′i | 1 ≤ i ≤ t

2 + 1} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ i ≤ r
2 }) if

v4 < S′ and S = (S′ − {v4}) ∪ ({ui | 1 ≤ i ≤ t} ∪ {u′i | 1 ≤ i ≤ t
2 + 1} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r

2 + 1}) when

v4 ∈ S′. It is easy to see that
∑

(S,T) ≤ m, implying that a(T) ≥ a(T′) + 3t
2 + 3s

2 + 1. It follows from Theorem
2.2 that

γpr(T) ≤ γpr(T′) + 2r + 2s ≤
4a(T′)+2

3 + 2r + 2s

≤
4(a(T)− 3t

2 −
3s
2 −1)+2

3 + 2r + 2s < 4(a(T)+2
3 .

Now let deg(v4) = 3. If v4 is adjacent to a leaf, a support vertex whose all neighbors are leaves except v4,
or there is a path v4z1z2z3 in T such that all neighbors of z1 except v4 and z2 are leaves, then obviously
γpr(T) = 2r + 2s + 2 and a(T) ≥ 3t

2 + 3s
2 + 2. Hence γpr(T) < 4a(T)+2

3 . Thus as above, we may assume Tz1

is a healthy spider Sk for some even integer k. In this case, we can see that γpr(T) = 2t + 2r + 2k and
a(T) =

3(t+r+k)
2 + 1 implying that γpr(T) < 4a(T)+2

3 . This completes the proof.

Proposition 2.6. If T is a tree of order n with diam(T) ≥ 7, then γpr(T) < 4a(T)+2
3



N. Dehgardi et al. / Filomat 28:3 (2014), 523–529 528

Proof. Let v1v2 . . . vD be a diametral path in T and root T at vD (at v1, respectively). As in Proposition 2.4 we
may assume Tv3 and TvD−2 are spiders St (if the root is vD) and Sr (if the root is v1) for some even integers t
and r, respectively. Suppose ui (1 ≤ i ≤ t) are the leaves of Tv3 and u′i is the support vertex of ui in Tv3 for
each i. Similarly, assume w j (1 ≤ j ≤ r) are the leaves of TvD−2 and w′j is the support vertex of w j in TvD−2 for
each j.

First let deg(v4) = deg(vD−3) = 2. If diam(T) = 7, then vD−3 = v5 and it is easy to see that γpr(T) = 2t + 2r
and a(T) =

3(t+r)
2 + 1. Hence, γpr(T) < 4a(T)+2

3 . If diam(T) = 8 and deg(v5) ≥ 3 or diam(T) ≥ 9, then let
T′ = T − (Tv4 ∪ TvD−3 ). It is easy to check that γpr(T) ≤ γpr(T′) + 2t + 2r and a(T) ≥ a(T′) +

3(t+r)
2 + 1. It follows

from Theorem 2.2 that γpr(T) < 4a(T)+2
3 . Assume now that diam(T) = 8 and deg(v5) = 2. Then one can see

that γpr(T) = 2t + 2r + 2 and a(T) =
3(t+r)

2 + 2 and so γpr(T) < 4a(T)+2
3 .

Now let deg(v4) ≥ 3 and deg(vD−3) = 2 (the case deg(v4) = 2 and deg(vD−3) ≥ 3 is similar). Let
T′ = T − (Tv3 ∪ TvD−3 ). It is easy to see that γpr(T) ≤ γpr(T′) + 2t + 2r. If v4 < S′, then let S = S′ ∪ ({ui | 1 ≤ i ≤
t} ∪ {u′i | 1 ≤ i ≤ t

2 + 1} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r
2 }). If v4 ∈ S′, then let S = (S′ − {v4}) ∪ ({ui | 1 ≤ i ≤

t} ∪ {u′i | 1 ≤ i ≤ t
2 + 1} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r

2 + 1}). In each case, we have
∑

(S,T) ≤ m, implying

that a(T) ≥ a(T′) +
3(t+r)

2 + 1, hence by Theorem 2.2, γpr(T) < 4a(T)+2
3 .

Finally, let min{deg(v4),deg(vD−3)} ≥ 3. Consider two cases.
Case 1. Assume that t ≥ 4 (the case r ≥ 4 is similar).
Let T′ = T − (Tv3 ∪ TvD−2 ). Then every γpr(T′)-set can be extended to a PDS of T by adding all leaves
and their support vertices of Tv3 ∪ TvD−2 , hence γpr(T) ≤ γpr(T′) + 2t + 2r. If v4, vD−3 < S′, then let S =
S′ ∪ ({ui | 1 ≤ i ≤ t} ∪ {u′i | 1 ≤ i ≤ t

2 + 1} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r
2 }). If v4, vD−3 ∈ S′, then let

S = (S′ − {v4, vD−3}) ∪ ({ui | 1 ≤ i ≤ t} ∪ {u′i | 1 ≤ i ≤ t
2 + 2} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r

2 + 1}). Finally,
if v4 ∈ S′ and vD−3 < S′ (the case v4 < S′ and vD−3 ∈ S′ is similar), then let S = (S′ − {v4}) ∪ ({ui | 1 ≤ i ≤
t} ∪ {u′i | 1 ≤ i ≤ t

2 + 2} ∪ {w j | 1 ≤ j ≤ r} ∪ {w′j | 1 ≤ j ≤ r
2 }). In all cases, we have

∑
(S,T) ≤ m, implying that

a(T) ≥ a(T′) +
3(t+r)

2 + 1. By Theorem 2.2, we have

γpr(T) ≤ γpr(T′) + 2t + 2r ≤
4a(T′) + 2

3
+ 2t + 2r ≤

4(a(T) − 3(t+r)
2 − 1) + 2
3

+ 2t + 2r <
4a(T) + 2

3
.

Case 2. Assume that t = r = 2.
Consider two subcases.

Subcase 2.1 max{deg(v4),deg(vD−3)} ≥ 4.
Let T′ = T−(Tv3∪TvD−2 ). Then clearly γpr(T) ≤ γpr(T′)+8. If v4, vD−3 < S′, then let S = S′∪{u1,u2,w1,w2,u′1,u

′

2,
w′1}. If v4, vD−3 ∈ S′, then let S = (S′ − {v4, vD−3}) ∪ ({v3} ∪ {u1,u2,w1,w2,u′1,u

′

2,w
′

1,w
′

2}). Finally, if v4 ∈ S′

and vD−3 < S′ (the case v4 < S′ and vD−3 ∈ S′ is similar), then let S = (S′ − {v4}) ∪ {ui,wi,u′i ,w
′

i | i = 1, 2}.
In all cases, we have

∑
(S,T) ≤ m, implying that a(T) ≥ a(T′) +

3(t+r)
2 + 7. It follows from Theorem 2.2 that

γpr(T) < 4a(T)+2
3 .

Subcase 2.2 deg(v4) = deg(vD−3) = 3.
If v4 is adjacent to a support vertex or there is a path v4z1z2z3 in T such that all neighbors of z1 except
z2 and v4 are leaves and deg(z3) = 1, then let T′ = T − Tv4 . It is easy to see that γpr(T) ≤ γpr(T′) + 6
and a(T) ≥ a(T′) + 5. It follows from Theorem 2.2 that γpr(T) < 4a(T)+2

3 . Let z ∈ N(v4) − {v5, v3}. If Tz
is a spider, then we may assume Tz = P5, for otherwise the result follows as above. Let T′ = T − Tv4 .
Then clearly γpr(T) ≤ γpr(T′) + 8 and a(T) ≥ a(T′) + 7, and by Theorem 2.2 we have γpr(T) < 4a(T)+2

3 .
Now let z be a leaf. Assume T′ = T − (Tv4 ∪ TvD−2 ). Then γpr(T) ≤ γpr(T′) + 10. If vD−3 < S′, then let
S = S′ ∪ {z,u1,u2,w1,w2,u′1,u

′

2,w
′

1}. If vD−3 ∈ S′, then let S = (S′ − {vD−3}) ∪ {z,u1,u2,w1,w2,u′1,u
′

2,w
′

1,w
′

2}.
In each case, we have

∑
(S,T) ≤ m, implying that a(T) ≥ a(T′) + 8 and it follows from Theorem 2.2 that

γpr(T) < 4a(T)+2
3 . This completes the proof.

Next result is an immediate consequence of Lemma 2.1 and Propositions 2.3, 2.4, 2.5 and 2.6.
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Theorem 2.7. Let T be a tree of order n ≥ 2. Then γpr(T) =
4a(T)+2

3 if and only if T is P2 or T is a healthy
spider St, where t is odd.

References

[1] N. Dehgardi, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a tree in terms of its annihilation
number, Trans. Comb. 2 (2013) 9–16.

[2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3–12.
[3] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs, Graphs Combin. 20 (2004) 447–456.
[4] O. Favaron, H. Karami and S. M. Sheikholeslami, Paired-domination number of a graph and its complement, Discrete Math. 308

(2008) 6601–6605.
[5] S. Fitzatrick and B. Hartnell, Paired-domination, Discuss. Math. Graph Theory 18 (1998) 63–72.
[6] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the total domination number of a

tree, Discrete Appl. Math. 161 (2013) 349–354.
[7] T. W. Haynes and M. A. Henning, Trees with large paired-domination number, Util. Math. 71 (2006) 3–12.
[8] T. W. Haynes and P. J. Slater, Paired domination in graphs, Networks 32 (1998) 199–206.
[9] T. W. Haynes and P. J. Slater, Paired domination and paired-domatic number, Congr. Numer. 109 (1995) 65–72.

[10] M. A. Henning, Graphs with large paired-domination number, J. Combin. Optim. 13 (2007) 61–78.
[11] M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Combin.

Optim. 10 (2005) 283–294.
[12] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, Electron. J. Combin. 18 (2011) #P180.
[13] R. Pepper, On the annihilation number of a graph, Recent Advances In Electrical Engineering: Proceedings of the 15th American

Conference on Applied Mathematics (2009) 217–220.


