Filomat 28:3 (2014), 523–529 DOI 10.2298/FIL1403523D

Bounding the Paired-Domination Number of a Tree in Terms of its Annihilation Number

Nasrin Dehgardi^a, Seyed Mahmoud Sheikholeslami^a, Abdollah Khodkar^b

^aDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran ^bDepartment of Mathematics, University of West Georgia, Carrollton, GA 30118

Abstract. A paired-dominating set of a graph G = (V, E) with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by $\gamma_{pr}(G)$, is the minimum cardinality of a paired-dominating set of G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T of order $n \ge 2$, $\gamma_{pr}(T) \le \frac{4a(T)+2}{3}$ and we characterize the trees achieving this bound.

1. Introduction

In this paper, *G* is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of *G* is denoted by n = n(G). For every vertex $v \in V(G)$, the *open neighborhood* $N_G(v) = N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the *closed neighborhood* of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The *degree* of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$. The *minimum* and *maximum degree* of a graph *G* are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. For a subset $S \subseteq V(G)$, we let

$$\sum(S,G) = \sum_{v \in S} \deg_G(v).$$

A *leaf* of a tree *T* is a vertex of degree 1, a *support vertex* is a vertex adjacent to a leaf and a *strong support vertex* is a vertex adjacent to at least two leaves. For a vertex *v* in a rooted tree *T*, let C(v) denote the set of children of *v*. Let D(v) denote the set of descendants of *v* and $D[v] = D(v) \cup \{v\}$. The *maximal subtree* at *v* is the subtree of *T* induced by D[v], and is denoted by T_v . We write P_n for a path of order *n*.

A paired-dominating set, abbreviated PDS, of a graph *G* is a set *S* of vertices of *G* such that every vertex is adjacent to some vertex in *S* and the subgraph *G*[*S*] induced by *S* contains a perfect matching (not necessary induced). Every graph without isolated vertices has a PDS since the end-vertices of any maximal matching form such a set. The paired-domination number of *G*, denoted by $\gamma_{pr}(G)$, is the minimum cardinality of a PDS. A PDS of cardinality $\gamma_{pr}(G)$ is called a $\gamma_{pr}(G)$ -set. Paired-domination was introduced by Haynes and

²⁰¹⁰ Mathematics Subject Classification. 05C69

Keywords. annihilation number, paired-dominating set, paired-domination number

Received: 23 August 2012; Accepted: 13 September 2013

Communicated by Dragan Stevanović

Research supported by Azarbaijan Shahid Madani University

Email addresses: ndehgardi@gmail.com (Nasrin Dehgardi), s.m.sheikholeslami@azaruniv.edu (Seyed Mahmoud Sheikholeslami), akhadkar@ugtaa.edu (Ahdollah Khadkar)

 $Sheikholeslami), {\tt akhodkar@westga.edu} \ (Abdollah \ Khodkar)$

Slater (1995, 1998) as a model for assigning backups to guards for security purposes, since this time many results have been obtained on this parameter (see for instance [2–5, 7–11].

Let $d_1 \le d_2 \le \ldots \le d_n$ be the degree sequence of a graph *G*. Pepper [13] defined the annihilation number of *G*, denoted a(G), to be the largest integer *k* such that the sum of the first *k* terms of the degree sequence is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest integer *k* such that

$$\sum_{i=1}^k d_i \le \sum_{i=k+1}^n d_i.$$

We observe that if *G* has *m* edges and annihilation number *k*, then $\sum_{i=1}^{k} d_i \le m$. As an immediate consequence of the definition of the annihilation number, we observe that

$$a(G) \ge \lfloor \frac{n}{2} \rfloor.$$
⁽¹⁾

The relation between annihilation number and some graph parameters have been studied by several authors (see for example [1, 6, 12]).

If *G* is a connected graph of order $n \ge 6$ with $\delta(G) \ge 2$, then it is known ([8]) that $\gamma_{pr}(G) \le \frac{2n}{3}$. Hence if *G* is a connected graph of order $n \ge 6$ with minimum degree at least 2, then

$$\gamma_{pr}(G) \le \frac{4a(G)+2}{3}.$$

Our purpose in this paper is to establish the above upper bound on the paired-domination number for trees.

We make use of the following results in this paper.

Proposition A. ([8]) For $n \ge 3$,

$$\gamma_{pr}(P_n)=2\left\lceil\frac{n}{4}\right\rceil.$$

Proposition B. For $n \ge 2$,

$$a(P_n)=\left\lceil\frac{n}{2}\right\rceil.$$

Corollary 1.1. For $n \ge 3$,

$$\gamma_{pr}(P_n) \le \frac{4a(P_n)}{3}$$

with equality if and only if $T = P_5$ or P_6 .

2. Main result

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a new vertex. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G. The subdivision star $S(K_{1,t})$ for $t \ge 2$, is called a *healthy spider* S_t . A *wounded spider* S_t is the graph formed by subdividing at most t - 1 of the edges of a star $K_{1,t}$ for $t \ge 2$. Note that stars are wounded spiders. A *spider* is a healthy or wounded spider.

Lemma 2.1. If *T* is a spider, then $\gamma_{pr}(T) \leq \frac{4a(T)+2}{3}$ with equality if and only if *T* is a healthy spider *S*_t, where *t* is odd.

Proof. First let $T = S_t$ be a healthy spider for some $t \ge 2$. Then obviously $\gamma_{pr}(T) = 2t$. If t is even, then

 $a(T) = t + \frac{t}{2} \text{ and hence } \gamma_{pr}(T) = 2t = \frac{4a(T)+2}{3} \cdot \frac{4a(T)+2}{3}. \text{ If } t \text{ is odd, then } a(T) = t + \frac{t-1}{2} \text{ and hence } \gamma_{pr}(T) = 2t = \frac{4a(T)+2}{3}.$ Now let *T* be a wounded spider obtained from $K_{1,t}$ ($t \ge 2$) by subdividing $0 \le s \le t - 1$ edges. If s = 0, then *T* is a star and we have $\gamma_{pr}(T) = 2$ and a(T) = t. Hence $\gamma_{pr}(T) = 2 < \frac{4a(T)+2}{3}.$ Suppose s > 0. If (t,s) = (2,1), then $T = P_4$ and the result follows from Corollary 1.1. If $(t,s) \neq (2,1)$, then $\gamma_{pr}(T) = 2s$ and $a(T) = t + \lfloor \frac{s}{2} \rfloor$. It follows that $\gamma_{pr}(T) = 2s < \frac{4a(T)+2}{3}$. This completes the proof. \Box

Theorem 2.2. If *T* is a tree of order $n \ge 2$, then

$$\gamma_{pr}(T) \leq \frac{4a(T)+2}{3}.$$

This bound is sharp for healthy spider S_t , where *t* is odd.

Proof. The proof is by induction on *n*. The statement holds for all trees of order n = 2, 3, 4. For the inductive hypothesis, let $n \ge 5$ and suppose that for every nontrivial tree T of order less than n the result is true. Let *T* be a tree of order *n*. We may assume that *T* is not a path for otherwise the result follows by Corollary 1.1. If diam(*T*) = 2, then *T* is a star and so $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$ by Lemma 2.1. If diam(*T*) = 3, then *T* is a double star S(r,s). In this case, $a(T) = r + s \ge 3$ and $\gamma_{pr}(T) = 2$, implying that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Hence we may assume that diam $(T) \ge 4$.

In what follows, we will consider trees T' formed from T by removing a set of vertices. For such a tree T' of order n', let $d'_1, d'_2, \ldots, d'_{n'}$ be the non-decreasing degree sequence of T', and let S' be a set of vertices corresponding to the first a(T') terms in the degree sequence of T'. We denote the size of T' by m'. We proceed further with a series of claims that we may assume satisfied by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the leaves adjacent to *u* is connected.

Let *T* have a strong support vertex *u* such that the graph obtained from *T* by removing *u* and the leaves adjacent to *u* is connected. Suppose *w* is a vertex in *T* with maximum distance from *u*. Root *T* at *w* and let v be the parent of u. Assume $T' = T - T_u$. It is easy to see that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. If $v \notin S'$, then $\sum(S', T) = \sum(S', T')$ and if $v \in S'$, then $\sum(S', T) = \sum(S', T') + 1$. Thus, $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 \leq m - 2$. Let z_1, z_2 be two leaves adjacent to u and assume $S = S' \cup \{z_1, z_2\}$. Then $\sum (S, T) = \sum (S', T) + 2 \le m$ implying that $a(T) \ge a(T') + 2$. By inductive hypothesis, we obtain

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2 \leq \frac{4a(T') + 2}{3} + 2 \leq \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3},$$

as desired. (∎)

Let $v_1v_2...v_D$ be a diametral path in *T* and root *T* at v_D . If diam(*T*) = 4, then *T* is a spider by Claim 1, and the result follows by Lemma 2.1. Assume diam(T) \geq 5. It follows from Claim 1 that T_{v_3} is a spider. Claim 2. deg(v_3) ≤ 3 .

Let $deg(v_3) \ge 4$. We consider three cases.

Case 2.1 T_{v_3} is a healthy spider S_t , where *t* is even.

Assume $T' = T - T_{v_3}$. Then obviously $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2t$. As above, we have $\sum (S', T) \le \sum (S', T') + 1$. Let *S* be the set obtained from *S'* by adding all the leaves and half of the support vertices of T_{v_3} . Then $\sum (S, T) \le m$. Therefore, $a(T) \ge |S| = |S'| + \frac{3t}{2} = a(T') + \frac{3t}{2}$. By inductive hypothesis, we obtain

$$\gamma_{pr}(T) \le \gamma_{pr}(T') + 2t \le \frac{4a(T') + 2}{3} + 2t \le \frac{4(a(T) - \frac{3t}{2}) + 2}{3} + 2t = \frac{4a(T) + 2}{3}.$$

Case 2.2 T_{v_3} is a healthy spider S_t , where *t* is odd.

First let deg(v_4) = 2. In this case, assume $T' = T - T_{v_4}$. Then obviously $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t$. As above, we have $\sum (S', T) \leq \sum (S', T') + 1$. Let S be the set obtained from S' by adding all the leaves and $\frac{t+1}{2}$ of the support vertices of T_{v_3} . Then $\sum(S, T) \le m$ and hence $a(T) \ge |S| = |S'| + \frac{3t+1}{2} = a(T') + \frac{3t+1}{2}$. It follows from inductive hypothesis that

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t \leq \frac{4a(T') + 2}{3} + 2t \leq \frac{4(a(T) - \frac{3t+1}{2}) + 2}{3} + 2t < \frac{4a(T) + 2}{3}$$

Now let deg(v_4) ≥ 3 . Assume $T' = T - T_{v_3}$. Then $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t$. If $v_4 \notin S'$, then let *S* be the set obtained from *S'* by adding all the leaves and $\frac{t+1}{2}$ of the support vertices of T_{v_3} . If $v_4 \in S'$, then let *S* be the set obtained from $S' - \{v_4\}$ by adding all the leaves and $\frac{t+3}{2}$ of the support vertices of T_{v_3} . Then $\sum(S, T) \leq m$ and hence $a(T) \geq |S| = |S'| + \frac{3t+1}{2} = a(T') + \frac{3t+1}{2}$. By inductive hypothesis, we obtain $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$.

Case 2.3 T_{v_3} is a wounded spider obtained from $K_{1,t}$ by subdividing $1 \le s \le t - 1$ edges. As in Lemma 2.1, we can see that $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2s$ and $a(T) \ge a(T') + t + \lfloor \frac{s}{2} \rfloor$. It follows from inductive hypothesis that

$$\gamma_{pr}(T) \le \gamma_{pr}(T') + 2s \le \frac{4a(T') + 2}{3} + 2s \le \frac{4(a(T) - t - \lfloor \frac{s}{2} \rfloor) + 2}{3} + 2s < \frac{4a(T) + 2}{3}. \tag{\blacksquare}$$

Claim 3. $deg(v_3) = 2$.

Assume that deg(v_3) = 3. First let v_3 is adjacent to a support vertex $z_2 \neq v_2$. Suppose z_1 is the leaf adjacent to z_2 and let $T' = T - T_{v_3}$. Then every $\gamma_{pr}(T')$ -set can be extended to a PDS of T by adding v_1, v_2, z_1, z_2 , implying that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 4$. If $v_4 \notin S'$, then $\sum(S', T) = \sum(S', T')$ and if $v_4 \in S'$, then $\sum(S', T) = \sum(S', T') + 1$. Thus, $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 = m - 4$. Let $S = S' \cup \{v_1, v_2, z_1\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(z_1) \leq m$. Therefore, $a(T) \geq |S| = |S'| + 3 = a(T') + 3$. It follows from inductive hypothesis that

$$\gamma_{pr}(T) \le \gamma_{pr}(T') + 4 \le \frac{4a(T') + 2}{3} + 4 \le \frac{4(a(T) - 3) + 2}{3} + 4 = \frac{4a(T) + 2}{3}.$$

Now let v_3 is adjacent to a leaf w. Suppose $T' = T - T_{v_3}$. Then every $\gamma_{pr}(T')$ -set can be extended to a PDS of T by adding v_3 and v_2 , implying that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. Now let $S = S' \cup \{v_1, v_2\}$. Then we have $\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) \leq m' + 4 = m$, which implies that $a(T) \geq a(T') + 2$. By inductive hypothesis,

$$\gamma_{pr}(T) \le \gamma_{pr}(T') + 2 \le \frac{4a(T') + 2}{3} + 2 \le \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3}.$$
 (**■**)

Claim 4. $deg(v_4) = 2$.

Assume that $\deg(v_4) \ge 3$. Let $T' = T - T_{v_3}$. Then every $\gamma_{pr}(T')$ -set can be extended to a PDS of T by adding v_2 and v_3 . Thus $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. Suppose that $v_4 \notin S'$. Then $\sum(S', T) = \sum(S', T')$. In this case, let $S = S' \cup \{v_1, v_2\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) \le m' + 3 = m$, implying that $a(T) \ge |S| = |S'| + 2 = a(T') + 2$. Applying inductive hypothesis we obtain

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2 \leq \frac{4a(T') + 2}{3} + 2 \leq \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3},$$

as desired. Now we may assume $v_4 \in S'$. In this case, let $S = (S' - \{v_4\}) \cup \{v_1, v_2, v_3\}$. Since $\deg_T(v_3) = 2 \leq \deg_{T'}(v_4)$, we have $\sum(S,T) = \sum(S',T) - \deg_{T'}(v_4) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) \leq m$. Therefore, $a(T) \geq |S| = |S'| + 2 = a(T') + 2$. It follows from inductive hypothesis that

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2 \leq \frac{4a(T') + 2}{3} + 2 \leq \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3},$$

as desired. (\blacksquare)

We now return to the proof of theorem. Let $T' = T - T_{v_4}$, and hence m' = m - 4. Every $\gamma_{pr}(T')$ -set can be extended to a PDS of T by adding v_3, v_2 , which implies that $\gamma_{pr}(T) \le \gamma_{pr}(T') + 2$. Let $S = S' \cup \{v_1, v_2\}$.

Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) \le m' + 4 = m$, implying that $a(T) \ge |S| = |S'| + 2 = a(T') + 2$. Applying inductive hypothesis,

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2 \leq \frac{4a(T') + 2}{3} + 2 \leq \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3},$$

as desired. This completes the proof. \Box

To characterize all trees achieving the bound in Theorem 2.2 we start with the following propositions.

Proposition 2.3. Let *T* be a tree of order $n \ge 2$ with diam $(T) \le 4$. Then $\gamma_{pr}(T) = \frac{4a(T)+2}{3}$ if and only if $T = P_2$ or *T* is a healthy spider S_t , where *t* is odd.

Proof. If $T = P_2$, then obviously $\gamma_{pr}(T) = 2$ and a(T) = 1. Hence, $\gamma_{pr}(T) = \frac{4a(T)+2}{3}$. If *T* is a healthy spider *S*_t where *t* is odd, then the result follows by Lemma 2.1.

Conversely, let $\gamma_{pr}(T) = \frac{4a(T)+2}{3}$. If diam(T) = 1, then $T = P_2$ and we are done. If diam(T) = 2, then T is a star and it follows from Lemma 2.1 that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$, a contradiction. Suppose diam(T) = 3. Then T is a double star S(r, s). In this case, a(T) = r + s and $\gamma_{pr}(T) = 2$. If r + s = 2, then $T = P_4$, which leads to a contradiction by Corollary 1.1. If $r + s \ge 3$, then we have $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$, which is a contradiction again. Finally, let diam(T) = 4. By the proof of Claim 1 in Theorem 2.2, we may assume that the degree of each support vertex on a diametral path of T is two and hence T is a spider. Since $\gamma_{pr}(T) = \frac{4a(T)+2}{3}$, it follows from Lemma 2.1 that T is a healthy spider S_t , where t is odd. This completes the proof. \Box

Proposition 2.4. If *T* is a tree of order *n* with diam(*T*) = 5, then $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$

Proof. Let $v_1v_2...v_6$ be a diametral path in T and root T at v_6 (at v_1 , respectively). By a closer look at the proof of Theorem 2.2 we may assume T_{v_3} and T_{v_4} are spiders S_t (if the root is v_6) and S_r (if the root is v_1) for some even integers t and r, respectively. It is easy to see that $\gamma_{pr}(T) = 2t + 2r$ and $a(T) = \frac{3t}{2} + \frac{3r}{2}$ and hence $\gamma_{pr}(T) \leq \frac{4a(T)+2}{3} < \frac{4a(T)+2}{3}$, as desired. \Box

Proposition 2.5. If *T* is a tree of order *n* with diam(*T*) = 6, then $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$

Proof. Let $v_1v_2...v_7$ be a diametral path in T and root T at v_7 (at v_1 , respectively). As in Proposition 2.4, we may assume T_{v_3} and T_{v_5} are healthy spider S_i (if the root is v_7) and S_r (if the root is v_1) for some even integers t and r, respectively. Let u_i (w_j , respectively) be the leaves of T_{v_3} (T_{v_5} , respectively) and u'_i (w'_j , respectively) be the support vertices of T_{v_3} (T_{v_5} , respectively). If deg(v_4) = 2, then obviously $\gamma_{pr}(T) = 2t + 2r$ and $a(T) = \frac{3t}{2} + \frac{3r}{2} + 1$ and hence $\gamma_{pr}(T) < \frac{4a(T)}{3}$. If deg(v_4) ≥ 4 , then let $T' = T - (T_{v_3} \cup T_{v_5})$. Clearly $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t + 2r$. Let $S = S' \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u'_i \mid 1 \leq i \leq \frac{t}{2} + 1\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w'_j \mid 1 \leq i \leq \frac{r}{2}\}$) if $v_4 \notin S'$ and $S = (S' - \{v_4\}) \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u'_i \mid 1 \leq i \leq \frac{t}{2} + 1\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w'_j \mid 1 \leq j \leq \frac{r}{2} + 1\})$ when $v_4 \in S'$. It is easy to see that $\sum (S, T) \leq m$, implying that $a(T) \geq a(T') + \frac{3t}{2} + \frac{3s}{2} + 1$. It follows from Theorem 2.2 that

$$\begin{array}{rcl} \gamma_{pr}(T) & \leq & \gamma_{pr}(T') + 2r + 2s & \leq & \frac{4a(T') + 2}{3} + 2r + 2s \\ & \leq & \frac{4(a(T) - \frac{3t}{2} - \frac{3s}{2} - 1) + 2}{2} + 2r + 2s & < & \frac{4(a(T) + 2}{2}. \end{array}$$

Now let $\deg(v_4) = 3$. If v_4 is adjacent to a leaf, a support vertex whose all neighbors are leaves except v_4 , or there is a path $v_4z_1z_2z_3$ in T such that all neighbors of z_1 except v_4 and z_2 are leaves, then obviously $\gamma_{pr}(T) = 2r + 2s + 2$ and $a(T) \ge \frac{3t}{2} + \frac{3s}{2} + 2$. Hence $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Thus as above, we may assume T_{z_1} is a healthy spider S_k for some even integer k. In this case, we can see that $\gamma_{pr}(T) = 2t + 2r + 2k$ and $a(T) = \frac{3(t+r+k)}{2} + 1$ implying that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. This completes the proof. \Box

Proposition 2.6. If *T* is a tree of order *n* with diam(*T*) \geq 7, then $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$

527

Proof. Let $v_1v_2...v_D$ be a diametral path in T and root T at v_D (at v_1 , respectively). As in Proposition 2.4 we may assume T_{v_3} and $T_{v_{D-2}}$ are spiders S_t (if the root is v_D) and S_r (if the root is v_1) for some even integers t and r, respectively. Suppose u_i ($1 \le i \le t$) are the leaves of T_{v_3} and u'_i is the support vertex of u_i in T_{v_3} for each i. Similarly, assume w_j ($1 \le j \le r$) are the leaves of $T_{v_{D-2}}$ and w'_j is the support vertex of w_j in $T_{v_{D-2}}$ for each j.

First let deg(v_4) = deg(v_{D-3}) = 2. If diam(T) = 7, then $v_{D-3} = v_5$ and it is easy to see that $\gamma_{pr}(T) = 2t + 2r$ and $a(T) = \frac{3(t+r)}{2} + 1$. Hence, $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. If diam(T) = 8 and deg(v_5) \geq 3 or diam(T) \geq 9, then let $T' = T - (T_{v_4} \cup T_{v_{D-3}})$. It is easy to check that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t + 2r$ and $a(T) \geq a(T') + \frac{3(t+r)}{2} + 1$. It follows from Theorem 2.2 that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Assume now that diam(T) = 8 and deg(v_5) = 2. Then one can see that $\gamma_{pr}(T) = 2t + 2r + 2$ and $a(T) = \frac{3(t+r)}{2} + 2$ and so $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Now let deg(v_4) \geq 3 and deg(v_{D-3}) = 2 (the case deg(v_4) = 2 and deg(v_{D-3}) \geq 3 is similar). Let

Now let deg(v_4) ≥ 3 and deg(v_{D-3}) = 2 (the case deg(v_4) = 2 and deg(v_{D-3}) ≥ 3 is similar). Let $T' = T - (T_{v_3} \cup T_{v_{D-3}})$. It is easy to see that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t + 2r$. If $v_4 \notin S'$, then let $S = S' \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u_i' \mid 1 \leq i \leq \frac{t}{2} + 1\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w_j' \mid 1 \leq j \leq \frac{r}{2}\}$. If $v_4 \notin S'$, then let $S = (S' - \{v_4\}) \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u_i' \mid 1 \leq i \leq \frac{t}{2} + 1\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w_j' \mid 1 \leq j \leq \frac{r}{2} + 1\}$). In each case, we have $\sum (S, T) \leq m$, implying that $a(T) \geq a(T') + \frac{3(t+r)}{2} + 1$, hence by Theorem 2.2, $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$.

Finally, let min{deg(v_4), deg(v_{D-3})} ≥ 3 . Consider two cases.

Case 1. Assume that $t \ge 4$ (the case $r \ge 4$ is similar).

Let $T' = T - (T_{v_3} \cup T_{v_{D-2}})$. Then every $\gamma_{pr}(T')$ -set can be extended to a PDS of T by adding all leaves and their support vertices of $T_{v_3} \cup T_{v_{D-2}}$, hence $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t + 2r$. If $v_4, v_{D-3} \notin S'$, then let $S = S' \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u'_i \mid 1 \leq i \leq \frac{t}{2} + 1\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w'_j \mid 1 \leq j \leq \frac{r}{2}\})$. If $v_4, v_{D-3} \notin S'$, then let $S = (S' - \{v_4, v_{D-3}\}) \cup (\{u_i \mid 1 \leq i \leq t\} \cup \{u'_i \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w_j \mid 1 \leq j \leq r\} \cup \{w'_j \mid 1 \leq j \leq \frac{r}{2} + 1\})$. Finally, if $v_4 \in S'$ and $v_{D-3} \notin S'$ (the case $v_4 \notin S'$ and $v_{D-3} \in S'$ is similar), then let $S = (S' - \{v_4\}) \cup (\{u_i \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w'_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w'_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w'_j \mid 1 \leq i \leq \frac{t}{2} + 2\} \cup \{w'_j \mid 1 \leq j \leq \frac{r}{2}\}$). In all cases, we have $\sum (S, T) \leq m$, implying that $a(T) \geq a(T') + \frac{3(t+r)}{2} + 1$. By Theorem 2.2, we have

$$\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2t + 2r \leq \frac{4a(T') + 2}{3} + 2t + 2r \leq \frac{4(a(T) - \frac{3(t+r)}{2} - 1) + 2}{3} + 2t + 2r < \frac{4a(T) + 2}{3}.$$

Case 2. Assume that t = r = 2. Consider two subcases.

Subcase 2.1 max{deg(v_4), deg(v_{D-3})} ≥ 4 .

Let $T' = T - (T_{v_3} \cup T_{v_{D-2}})$. Then clearly $\gamma_{pr}(T) \le \gamma_{pr}(T') + 8$. If $v_4, v_{D-3} \notin S'$, then let $S = S' \cup \{u_1, u_2, w_1, w_2, u'_1, u'_2, w'_1\}$. w'_1 . If $v_4, v_{D-3} \in S'$, then let $S = (S' - \{v_4, v_{D-3}\}) \cup (\{v_3\} \cup \{u_1, u_2, w_1, w_2, u'_1, u'_2, w'_1, w'_2\})$. Finally, if $v_4 \in S'$ and $v_{D-3} \notin S'$ (the case $v_4 \notin S'$ and $v_{D-3} \in S'$ is similar), then let $S = (S' - \{v_4\}) \cup \{u_i, w_i, u'_i, w'_i \mid i = 1, 2\}$. In all cases, we have $\sum (S, T) \le m$, implying that $a(T) \ge a(T') + \frac{3(t+r)}{2} + 7$. It follows from Theorem 2.2 that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$.

Subcase 2.2 $\deg(v_4) = \deg(v_{D-3}) = 3.$

If v_4 is adjacent to a support vertex or there is a path $v_4z_1z_2z_3$ in T such that all neighbors of z_1 except z_2 and v_4 are leaves and $\deg(z_3) = 1$, then let $T' = T - T_{v_4}$. It is easy to see that $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 6$ and $a(T) \geq a(T') + 5$. It follows from Theorem 2.2 that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Let $z \in N(v_4) - \{v_5, v_3\}$. If T_z is a spider, then we may assume $T_z = P_5$, for otherwise the result follows as above. Let $T' = T - T_{v_4}$. Then clearly $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 8$ and $a(T) \geq a(T') + 7$, and by Theorem 2.2 we have $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$. Now let z be a leaf. Assume $T' = T - (T_{v_4} \cup T_{v_{D-2}})$. Then $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 10$. If $v_{D-3} \notin S'$, then let $S = S' \cup \{z, u_1, u_2, w_1, w_2, u'_1, u'_2, w'_1\}$. If $v_{D-3} \in S'$, then let $S = (S' - \{v_{D-3}\}) \cup \{z, u_1, u_2, w_1, w_2, u'_1, u'_2, w'_1, w'_2\}$. In each case, we have $\sum (S, T) \leq m$, implying that $a(T) \geq a(T') + 8$ and it follows from Theorem 2.2 that $\gamma_{pr}(T) < \frac{4a(T)+2}{3}$.

Next result is an immediate consequence of Lemma 2.1 and Propositions 2.3, 2.4, 2.5 and 2.6.

Theorem 2.7. Let *T* be a tree of order $n \ge 2$. Then $\gamma_{pr}(T) = \frac{4a(T)+2}{3}$ if and only if *T* is P_2 or *T* is a healthy spider S_t , where *t* is odd.

References

- N. Dehgardi, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a tree in terms of its annihilation number, Trans. Comb. 2 (2013) 9–16.
- [2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3–12.
- [3] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs, Graphs Combin. 20 (2004) 447–456.
- [4] O. Favaron, H. Karami and S. M. Sheikholeslami, Paired-domination number of a graph and its complement, Discrete Math. 308 (2008) 6601–6605.
- [5] S. Fitzatrick and B. Hartnell, Paired-domination, Discuss. Math. Graph Theory 18 (1998) 63-72.
- [6] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349–354.
- [7] T. W. Haynes and M. A. Henning, Trees with large paired-domination number, Util. Math. 71 (2006) 3–12.
- [8] T. W. Haynes and P. J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206.
- [9] T. W. Haynes and P. J. Slater, Paired domination and paired-domatic number, Congr. Numer. 109 (1995) 65-72.
- [10] M. A. Henning, Graphs with large paired-domination number, J. Combin. Optim. 13 (2007) 61–78.
- [11] M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Combin. Optim. 10 (2005) 283–294.
- [12] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, Electron. J. Combin. 18 (2011) #P180.
- [13] R. Pepper, On the annihilation number of a graph, Recent Advances In Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics (2009) 217–220.