Bounding the Paired-Domination Number of a Tree in Terms of its Annihilation Number

Nasrin Dehgardi ${ }^{\text {a }}$, Seyed Mahmoud Sheikholeslami ${ }^{\text {a }}$, Abdollah Khodkar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran
${ }^{b}$ Department of Mathematics, University of West Georgia, Carrollton, GA 30118

Abstract

A paired-dominating set of a graph $G=(V, E)$ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by $\gamma_{p r}(G)$, is the minimum cardinality of a paired-dominating set of G. The annihilation number $a(G)$ is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T of order $n \geq 2, \gamma_{p r}(T) \leq \frac{4 a(T)+2}{3}$ and we characterize the trees achieving this bound.

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. For a subset $S \subseteq V(G)$, we let

$$
\sum(S, G)=\sum_{v \in S} \operatorname{deg}_{G}(v)
$$

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v. Let $D(v)$ denote the set of descendants of v and $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. We write P_{n} for a path of order n.

A paired-dominating set, abbreviated PDS, of a graph G is a set S of vertices of G such that every vertex is adjacent to some vertex in S and the subgraph $G[S]$ induced by S contains a perfect matching (not necessary induced). Every graph without isolated vertices has a PDS since the end-vertices of any maximal matching form such a set. The paired-domination number of G, denoted by $\gamma_{p r}(G)$, is the minimum cardinality of a PDS. A PDS of cardinality $\gamma_{p r}(G)$ is called a $\gamma_{p r}(G)$-set. Paired-domination was introduced by Haynes and

[^0]Slater $(1995,1998)$ as a model for assigning backups to guards for security purposes, since this time many results have been obtained on this parameter (see for instance [2-5, 7-11].

Let $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$ be the degree sequence of a graph G. Pepper [13] defined the annihilation number of G, denoted $a(G)$, to be the largest integer k such that the sum of the first k terms of the degree sequence is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest integer k such that

$$
\sum_{i=1}^{k} d_{i} \leq \sum_{i=k+1}^{n} d_{i}
$$

We observe that if G has m edges and annihilation number k, then $\sum_{i=1}^{k} d_{i} \leq m$. As an immediate consequence of the definition of the annihilation number, we observe that

$$
\begin{equation*}
a(G) \geq\left\lfloor\frac{n}{2}\right\rfloor \tag{1}
\end{equation*}
$$

The relation between annihilation number and some graph parameters have been studied by several authors (see for example $[1,6,12]$).

If G is a connected graph of order $n \geq 6$ with $\delta(G) \geq 2$, then it is known ([8]) that $\gamma_{p r}(G) \leq \frac{2 n}{3}$. Hence if G is a connected graph of order $n \geq 6$ with minimum degree at least 2 , then

$$
\gamma_{p r}(G) \leq \frac{4 a(G)+2}{3}
$$

Our purpose in this paper is to establish the above upper bound on the paired-domination number for trees.

We make use of the following results in this paper.
Proposition A. ([8]) For $n \geq 3$,

$$
\gamma_{p r}\left(P_{n}\right)=2\left\lceil\frac{n}{4}\right\rceil
$$

Proposition B. For $n \geq 2$,

$$
a\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil
$$

Corollary 1.1. For $n \geq 3$,

$$
\gamma_{p r}\left(P_{n}\right) \leq \frac{4 a\left(P_{n}\right)}{3}
$$

with equality if and only if $T=P_{5}$ or P_{6}.

2. Main result

A subdivision of an edge $u v$ is obtained by replacing the edge $u v$ with a path $u w v$, where w is a new vertex. The subdivision graph $S(G)$ is the graph obtained from G by subdividing each edge of G. The subdivision star $S\left(K_{1, t}\right)$ for $t \geq 2$, is called a healthy spider S_{t}. A wounded spider S_{t} is the graph formed by subdividing at most $t-1$ of the edges of a star $K_{1, t}$ for $t \geq 2$. Note that stars are wounded spiders. A spider is a healthy or wounded spider.

Lemma 2.1. If T is a spider, then $\gamma_{p r}(T) \leq \frac{4 a(T)+2}{3}$ with equality if and only if T is a healthy spider S_{t}, where t is odd.

Proof. First let $T=S_{t}$ be a healthy spider for some $t \geq 2$. Then obviously $\gamma_{p r}(T)=2 t$. If t is even, then $a(T)=t+\frac{t}{2}$ and hence $\gamma_{p r}(T)=2 t=\frac{4 a(T)}{3}<\frac{4 a(T)+2}{3}$. If t is odd, then $a(T)=t+\frac{t-1}{2}$ and hence $\gamma_{p r}(T)=2 t=\frac{4 a(T)+2}{3}$.

Now let T be a wounded spider obtained from $K_{1, t}(t \geq 2)$ by subdividing $0 \leq s \leq t-1$ edges. If $s=0$, then T is a star and we have $\gamma_{p r}(T)=2$ and $a(T)=t$. Hence $\gamma_{p r}(T)=2<\frac{4 a(T)+2}{3}$. Suppose $s>0$. If $(t, s)=(2,1)$, then $T=P_{4}$ and the result follows from Corollary 1.1. If $(t, s) \neq(2,1)$, then $\gamma_{p r}(T)=2 s$ and $a(T)=t+\left\lfloor\frac{s}{2}\right\rfloor$. It follows that $\gamma_{p r}(T)=2 s<\frac{4 a(T)+2}{3}$. This completes the proof.

Theorem 2.2. If T is a tree of order $n \geq 2$, then

$$
\gamma_{p r}(T) \leq \frac{4 a(T)+2}{3}
$$

This bound is sharp for healthy spider S_{t}, where t is odd.
Proof. The proof is by induction on n. The statement holds for all trees of order $n=2,3,4$. For the inductive hypothesis, let $n \geq 5$ and suppose that for every nontrivial tree T of order less than n the result is true. Let T be a tree of order n. We may assume that T is not a path for otherwise the result follows by Corollary 1.1. If $\operatorname{diam}(T)=2$, then T is a star and so $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$ by Lemma 2.1. If $\operatorname{diam}(T)=3$, then T is a double star $S(r, s)$. In this case, $a(T)=r+s \geq 3$ and $\gamma_{p r}(T)=2$, implying that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. Hence we may assume that $\operatorname{diam}(T) \geq 4$.

In what follows, we will consider trees T^{\prime} formed from T by removing a set of vertices. For such a tree T^{\prime} of order n^{\prime}, let $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n^{\prime}}^{\prime}$ be the non-decreasing degree sequence of T^{\prime}, and let S^{\prime} be a set of vertices corresponding to the first $a\left(T^{\prime}\right)$ terms in the degree sequence of T^{\prime}. We denote the size of T^{\prime} by m^{\prime}. We proceed further with a series of claims that we may assume satisfied by the tree.
Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the leaves adjacent to u is connected.
Let T have a strong support vertex u such that the graph obtained from T by removing u and the leaves adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root T at w and let v be the parent of u. Assume $T^{\prime}=T-T_{u}$. It is easy to see that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2$. If $v \notin S^{\prime}$, then $\sum\left(S^{\prime}, T\right)=\sum\left(S^{\prime}, T^{\prime}\right)$ and if $v \in S^{\prime}$, then $\sum\left(S^{\prime}, T\right)=\sum\left(S^{\prime}, T^{\prime}\right)+1$. Thus, $\sum\left(S^{\prime}, T\right) \leq \sum\left(S^{\prime}, T^{\prime}\right)+1 \leq m^{\prime}+1 \leq m-2$. Let z_{1}, z_{2} be two leaves adjacent to u and assume $S=S^{\prime} \cup\left\{z_{1}, z_{2}\right\}$. Then $\sum(S, T)=\sum\left(S^{\prime}, T\right)+2 \leq m$ implying that $a(T) \geq a\left(T^{\prime}\right)+2$. By inductive hypothesis, we obtain

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 \leq \frac{4(a(T)-2)+2}{3}+2<\frac{4 a(T)+2}{3}
$$

as desired.
Let $v_{1} v_{2} \ldots v_{D}$ be a diametral path in T and root T at v_{D}. If $\operatorname{diam}(T)=4$, then T is a spider by Claim 1, and the result follows by Lemma 2.1. Assume $\operatorname{diam}(T) \geq 5$. It follows from Claim 1 that $T_{v_{3}}$ is a spider.
Claim 2. $\operatorname{deg}\left(v_{3}\right) \leq 3$.
Let $\operatorname{deg}\left(v_{3}\right) \geq 4$. We consider three cases.
Case 2.1 $T_{v_{3}}$ is a healthy spider S_{t}, where t is even.
Assume $T^{\prime}=T-T_{v_{3}}$. Then obviously $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t$. As above, we have $\sum\left(S^{\prime}, T\right) \leq \sum\left(S^{\prime}, T^{\prime}\right)+1$. Let S be the set obtained from S^{\prime} by adding all the leaves and half of the support vertices of $T_{v_{3}}$. Then $\sum(S, T) \leq m$. Therefore, $a(T) \geq|S|=\left|S^{\prime}\right|+\frac{3 t}{2}=a\left(T^{\prime}\right)+\frac{3 t}{2}$. By inductive hypothesis, we obtain

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 t \leq \frac{4\left(a(T)-\frac{3 t}{2}\right)+2}{3}+2 t=\frac{4 a(T)+2}{3}
$$

Case $2.2 T_{v_{3}}$ is a healthy spider S_{t}, where t is odd.
First let $\operatorname{deg}\left(v_{4}\right)=2$. In this case, assume $T^{\prime}=T-T_{v_{4}}$. Then obviously $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t$. As above, we have $\sum\left(S^{\prime}, T\right) \leq \sum\left(S^{\prime}, T^{\prime}\right)+1$. Let S be the set obtained from S^{\prime} by adding all the leaves and $\frac{t+1}{2}$ of the
support vertices of $T_{v_{3}}$. Then $\sum(S, T) \leq m$ and hence $a(T) \geq|S|=\left|S^{\prime}\right|+\frac{3 t+1}{2}=a\left(T^{\prime}\right)+\frac{3 t+1}{2}$. It follows from inductive hypothesis that

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 t \leq \frac{4\left(a(T)-\frac{3 t+1}{2}\right)+2}{3}+2 t<\frac{4 a(T)+2}{3}
$$

Now let $\operatorname{deg}\left(v_{4}\right) \geq 3$. Assume $T^{\prime}=T-T_{v_{3}}$. Then $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t$. If $v_{4} \notin S^{\prime}$, then let S be the set obtained from S^{\prime} by adding all the leaves and $\frac{t+1}{2}$ of the support vertices of $T_{v_{3}}$. If $v_{4} \in S^{\prime}$, then let S be the set obtained from $S^{\prime}-\left\{v_{4}\right\}$ by adding all the leaves and $\frac{t+3}{2}$ of the support vertices of $T_{v_{3}}$. Then $\sum(S, T) \leq m$ and hence $a(T) \geq|S|=\left|S^{\prime}\right|+\frac{3 t+1}{2}=a\left(T^{\prime}\right)+\frac{3 t+1}{2}$. By inductive hypothesis, we obtain $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$.

Case 2.3 $T_{v_{3}}$ is a wounded spider obtained from $K_{1, t}$ by subdividing $1 \leq s \leq t-1$ edges.
As in Lemma 2.1, we can see that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 s$ and $a(T) \geq a\left(T^{\prime}\right)+t+\left\lfloor\frac{s}{2}\right\rfloor$. It follows from inductive hypothesis that

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 s \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 s \leq \frac{4\left(a(T)-t-\left\lfloor\frac{s}{2}\right\rfloor\right)+2}{3}+2 s<\frac{4 a(T)+2}{3}
$$

Claim 3. $\operatorname{deg}\left(v_{3}\right)=2$.
Assume that $\operatorname{deg}\left(v_{3}\right)=3$. First let v_{3} is adjacent to a support vertex $z_{2} \neq v_{2}$. Suppose z_{1} is the leaf adjacent to z_{2} and let $T^{\prime}=T-T_{v_{3}}$. Then every $\gamma_{p r}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding $v_{1}, v_{2}, z_{1}, z_{2}$, implying that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+4$. If $v_{4} \notin S^{\prime}$, then $\sum\left(S^{\prime}, T\right)=\sum\left(S^{\prime}, T^{\prime}\right)$ and if $v_{4} \in S^{\prime}$, then $\sum\left(S^{\prime}, T\right)=\sum\left(S^{\prime}, T^{\prime}\right)+1$. Thus, $\sum\left(S^{\prime}, T\right) \leq \sum\left(S^{\prime}, T^{\prime}\right)+1 \leq m^{\prime}+1=m-4$. Let $S=S^{\prime} \cup\left\{v_{1}, v_{2}, z_{1}\right\}$. Then $\sum(S, T)=\sum\left(S^{\prime}, T\right)+\operatorname{deg}_{T}\left(v_{1}\right)+\operatorname{deg}_{T}\left(v_{2}\right)+\operatorname{deg}_{T}\left(z_{1}\right) \leq m$. Therefore, $a(T) \geq|S|=\left|S^{\prime}\right|+3=a\left(T^{\prime}\right)+3$. It follows from inductive hypothesis that

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+4 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+4 \leq \frac{4(a(T)-3)+2}{3}+4=\frac{4 a(T)+2}{3}
$$

Now let v_{3} is adjacent to a leaf w. Suppose $T^{\prime}=T-T_{v_{3}}$. Then every $\gamma_{p r}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding v_{3} and v_{2}, implying that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2$. Now let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$. Then we have $\sum(S, T)=\sum\left(S^{\prime}, T\right)+\operatorname{deg}_{T}\left(v_{1}\right)+\operatorname{deg}_{T}\left(v_{2}\right) \leq m^{\prime}+4=m$, which implies that $a(T) \geq a\left(T^{\prime}\right)+2$. By inductive hypothesis,

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 \leq \frac{4(a(T)-2)+2}{3}+2<\frac{4 a(T)+2}{3}
$$

Claim 4. $\operatorname{deg}\left(v_{4}\right)=2$.
Assume that $\operatorname{deg}\left(v_{4}\right) \geq 3$. Let $T^{\prime}=T-T_{v_{3}}$. Then every $\gamma_{p r}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding v_{2} and v_{3}. Thus $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2$. Suppose that $v_{4} \notin S^{\prime}$. Then $\sum\left(S^{\prime}, T\right)=\sum\left(S^{\prime}, T^{\prime}\right)$. In this case, let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$. Then $\sum(S, T)=\sum\left(S^{\prime}, T\right)+\operatorname{deg}_{T}\left(v_{1}\right)+\operatorname{deg}_{T}\left(v_{2}\right) \leq m^{\prime}+3=m$, implying that $a(T) \geq|S|=\left|S^{\prime}\right|+2=a\left(T^{\prime}\right)+2$. Applying inductive hypothesis we obtain

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 \leq \frac{4(a(T)-2)+2}{3}+2<\frac{4 a(T)+2}{3}
$$

as desired. Now we may assume $v_{4} \in S^{\prime}$. In this case, let $S=\left(S^{\prime}-\left\{v_{4}\right\}\right) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$. Since $\operatorname{deg}_{T}\left(v_{3}\right)=$ $2 \leq \operatorname{deg}_{T^{\prime}}\left(v_{4}\right)$, we have $\sum(S, T)=\sum\left(S^{\prime}, T\right)-\operatorname{deg}_{T^{\prime}}\left(v_{4}\right)+\operatorname{deg}_{T}\left(v_{1}\right)+\operatorname{deg}_{T}\left(v_{2}\right)+\operatorname{deg}_{T}\left(v_{3}\right) \leq m$. Therefore, $a(T) \geq|S|=\left|S^{\prime}\right|+2=a\left(T^{\prime}\right)+2$. It follows from inductive hypothesis that

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 \leq \frac{4(a(T)-2)+2}{3}+2<\frac{4 a(T)+2}{3}
$$

as desired.
We now return to the proof of theorem. Let $T^{\prime}=T-T_{v_{4}}$, and hence $m^{\prime}=m-4$. Every $\gamma_{p r}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding v_{3}, v_{2}, which implies that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2$. Let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$.

Then $\sum(S, T)=\sum\left(S^{\prime}, T\right)+\operatorname{deg}_{T}\left(v_{1}\right)+\operatorname{deg}_{T}\left(v_{2}\right) \leq m^{\prime}+4=m$, implying that $a(T) \geq|S|=\left|S^{\prime}\right|+2=a\left(T^{\prime}\right)+2$. Applying inductive hypothesis,

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 \leq \frac{4(a(T)-2)+2}{3}+2<\frac{4 a(T)+2}{3},
$$

as desired. This completes the proof.
To characterize all trees achieving the bound in Theorem 2.2 we start with the following propositions.
Proposition 2.3. Let T be a tree of order $n \geq 2$ with $\operatorname{diam}(T) \leq 4$. Then $\gamma_{p r}(T)=\frac{4 a(T)+2}{3}$ if and only if $T=P_{2}$ or T is a healthy spider S_{t}, where t is odd.

Proof. If $T=P_{2}$, then obviously $\gamma_{p r}(T)=2$ and $a(T)=1$. Hence, $\gamma_{p r}(T)=\frac{4 a(T)+2}{3}$. If T is a healthy spider S_{t} where t is odd, then the result follows by Lemma 2.1.

Conversely, let $\gamma_{p r}(T)=\frac{4 a(T)+2}{3}$. If $\operatorname{diam}(T)=1$, then $T=P_{2}$ and we are done. If $\operatorname{diam}(T)=2$, then T is a star and it follows from Lemma 2.1 that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$, a contradiction. Suppose $\operatorname{diam}(T)=3$. Then T is a double star $S(r, s)$. In this case, $a(T)=r+s$ and $\gamma_{p r}(T)=2$. If $r+s=2$, then $T=P_{4}$, which leads to a contradiction by Corollary 1.1. If $r+s \geq 3$, then we have $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$, which is a contradiction again. Finally, let $\operatorname{diam}(T)=4$. By the proof of Claim 1 in Theorem 2.2, we may assume that the degree of each support vertex on a diametral path of T is two and hence T is a spider. Since $\gamma_{p r}(T)=\frac{4 a(T)+2}{3}$, it follows from Lemma 2.1 that T is a healthy spider S_{t}, where t is odd. This completes the proof.

Proposition 2.4. If T is a tree of order n with $\operatorname{diam}(T)=5$, then $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$
Proof. Let $v_{1} v_{2} \ldots v_{6}$ be a diametral path in T and root T at v_{6} (at v_{1}, respectively). By a closer look at the proof of Theorem 2.2 we may assume $T_{v_{3}}$ and $T_{v_{4}}$ are spiders S_{t} (if the root is v_{6}) and S_{r} (if the root is v_{1}) for some even integers t and r, respectively. It is easy to see that $\gamma_{p r}(T)=2 t+2 r$ and $a(T)=\frac{3 t}{2}+\frac{3 r}{2}$ and hence $\gamma_{p r}(T) \leq \frac{4 a(T)}{3}<\frac{4 a(T)+2}{3}$, as desired.

Proposition 2.5. If T is a tree of order n with $\operatorname{diam}(T)=6$, then $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$
Proof. Let $v_{1} v_{2} \ldots v_{7}$ be a diametral path in T and root T at v_{7} (at v_{1}, respectively). As in Proposition 2.4, we may assume $T_{v_{3}}$ and $T_{v_{5}}$ are healthy spider S_{t} (if the root is v_{7}) and S_{r} (if the root is v_{1}) for some even integers t and r, respectively. Let $u_{i}\left(w_{j}\right.$, respectively) be the leaves of $T_{v_{3}}$ ($T_{v_{5}}$, respectively) and $u_{i}^{\prime}\left(w_{j}^{\prime}\right.$, respectively) be the support vertices of $T_{v_{3}}\left(T_{v_{5}}\right.$, respectively). If $\operatorname{deg}\left(v_{4}\right)=2$, then obviously $\gamma_{p r}(T)=2 t+2 r$ and $a(T)=\frac{3 t}{2}+\frac{3 r}{2}+1$ and hence $\gamma_{p r}(T)<\frac{4 a(T)}{3}$. If $\operatorname{deg}\left(v_{4}\right) \geq 4$, then let $T^{\prime}=T-\left(T_{v_{3}} \cup T_{v_{5}}\right)$. Clearly $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t+2 r$. Let $S=S^{\prime} \cup\left(\left\{u_{i} \mid 1 \leq i \leq t\right\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+1\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq i \leq \frac{r}{2}\right.\right\}\right)$ if $v_{4} \notin S^{\prime}$ and $S=\left(S^{\prime}-\left\{v_{4}\right\}\right) \cup\left(\left\{u_{i} \mid 1 \leq i \leq t\right\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+1\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}+1\right.\right\}\right)$ when $v_{4} \in S^{\prime}$. It is easy to see that $\sum(S, T) \leq m$, implying that $a(T) \geq a\left(T^{\prime}\right)+\frac{3 t}{2}+\frac{3 s}{2}+1$. It follows from Theorem 2.2 that

$$
\begin{aligned}
& \gamma_{p r}(T) \leq \quad \gamma_{p r}\left(T^{\prime}\right)+2 r+2 s \\
& \leq \frac{4\left(a(T)-\frac{3 t}{2}-\frac{3 s}{2}-1\right)+2}{3}+2 r+2 s<\frac{4 a\left(T^{\prime}\right)+2}{3}+2 r+2 s \\
& 3
\end{aligned}
$$

Now let $\operatorname{deg}\left(v_{4}\right)=3$. If v_{4} is adjacent to a leaf, a support vertex whose all neighbors are leaves except v_{4}, or there is a path $v_{4} z_{1} z_{2} z_{3}$ in T such that all neighbors of z_{1} except v_{4} and z_{2} are leaves, then obviously $\gamma_{p r}(T)=2 r+2 s+2$ and $a(T) \geq \frac{3 t}{2}+\frac{3 s}{2}+2$. Hence $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. Thus as above, we may assume $T_{z_{1}}$ is a healthy spider S_{k} for some even integer k. In this case, we can see that $\gamma_{p r}(T)=2 t+2 r+2 k$ and $a(T)=\frac{3(t+r+k)}{2}+1$ implying that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. This completes the proof.

Proposition 2.6. If T is a tree of order n with $\operatorname{diam}(T) \geq 7$, then $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$

Proof. Let $v_{1} v_{2} \ldots v_{D}$ be a diametral path in T and root T at v_{D} (at v_{1}, respectively). As in Proposition 2.4 we may assume $T_{v_{3}}$ and $T_{v_{D-2}}$ are spiders S_{t} (if the root is v_{D}) and S_{r} (if the root is v_{1}) for some even integers t and r, respectively. Suppose $u_{i}(1 \leq i \leq t)$ are the leaves of $T_{v_{3}}$ and u_{i}^{\prime} is the support vertex of u_{i} in $T_{v_{3}}$ for each i. Similarly, assume $w_{j}(1 \leq j \leq r)$ are the leaves of $T_{v_{D-2}}$ and w_{j}^{\prime} is the support vertex of w_{j} in $T_{v_{D-2}}$ for each j.

First let $\operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(v_{D-3}\right)=2$. If $\operatorname{diam}(T)=7$, then $v_{D-3}=v_{5}$ and it is easy to see that $\gamma_{p r}(T)=2 t+2 r$ and $a(T)=\frac{3(t+r)}{2}+1$. Hence, $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. If $\operatorname{diam}(T)=8$ and $\operatorname{deg}\left(v_{5}\right) \geq 3 \operatorname{or} \operatorname{diam}(T) \geq 9$, then let $T^{\prime}=T-\left(T_{v_{4}} \cup T_{v_{D-3}}\right)$. It is easy to check that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t+2 r$ and $a(T) \geq a\left(T^{\prime}\right)+\frac{3(t+r)}{2}+1$. It follows from Theorem 2.2 that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. Assume now that $\operatorname{diam}(T)=8$ and $\operatorname{deg}\left(v_{5}\right)=2$. Then one can see that $\gamma_{p r}(T)=2 t+2 r+2$ and $a(T)=\frac{3(t+r)}{2}+2$ and so $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$.

Now let $\operatorname{deg}\left(v_{4}\right) \geq 3$ and $\operatorname{deg}\left(v_{D-3}\right)=2$ (the case $\operatorname{deg}\left(v_{4}\right)=2$ and $\operatorname{deg}\left(v_{D-3}\right) \geq 3$ is similar). Let $T^{\prime}=T-\left(T_{v_{3}} \cup T_{v_{D-3}}\right)$. It is easy to see that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t+2 r$. If $v_{4} \notin S^{\prime}$, then let $S=S^{\prime} \cup\left(\left\{u_{i} \mid 1 \leq i \leq\right.\right.$ $\left.t\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+1\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}\right.\right\}\right)$. If $v_{4} \in S^{\prime}$, then let $S=\left(S^{\prime}-\left\{v_{4}\right\}\right) \cup\left(\left\{u_{i} \mid 1 \leq i \leq\right.\right.$ $t\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+1\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}+1\right.\right\}$). In each case, we have $\sum(S, T) \leq m$, implying that $a(T) \geq a\left(T^{\prime}\right)+\frac{3(t+r)}{2}+1$, hence by Theorem 2.2, $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$.

Finally, let $\min \left\{\operatorname{deg}\left(v_{4}\right), \operatorname{deg}\left(v_{D-3}\right)\right\} \geq 3$. Consider two cases.
Case 1. Assume that $t \geq 4$ (the case $r \geq 4$ is similar).
Let $T^{\prime}=T-\left(T_{v_{3}} \cup T_{v_{D-2}}\right)$. Then every $\gamma_{p r}\left(T^{\prime}\right)$-set can be extended to a PDS of T by adding all leaves and their support vertices of $T_{v_{3}} \cup T_{v_{D-2}}$, hence $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t+2 r$. If $v_{4}, v_{D-3} \notin S^{\prime}$, then let $S=$ $S^{\prime} \cup\left(\left\{u_{i} \mid 1 \leq i \leq t\right\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+1\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}\right.\right\}\right)$. If $v_{4}, v_{D-3} \in S^{\prime}$, then let $S=\left(S^{\prime}-\left\{v_{4}, v_{D-3}\right\}\right) \cup\left(\left\{u_{i} \mid 1 \leq i \leq t\right\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+2\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}+1\right.\right\}\right)$. Finally, if $v_{4} \in S^{\prime}$ and $v_{D-3} \notin S^{\prime}$ (the case $v_{4} \notin S^{\prime}$ and $v_{D-3} \in S^{\prime}$ is similar), then let $S=\left(S^{\prime}-\left\{v_{4}\right\}\right) \cup\left(\left\{u_{i} \mid 1 \leq i \leq\right.\right.$ $\left.t\} \cup\left\{u_{i}^{\prime} \left\lvert\, 1 \leq i \leq \frac{t}{2}+2\right.\right\} \cup\left\{w_{j} \mid 1 \leq j \leq r\right\} \cup\left\{w_{j}^{\prime} \left\lvert\, 1 \leq j \leq \frac{r}{2}\right.\right\}\right)$. In all cases, we have $\sum(S, T) \leq m$, implying that $a(T) \geq a\left(T^{\prime}\right)+\frac{3(t+r)}{2}+1$. By Theorem 2.2 , we have

$$
\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+2 t+2 r \leq \frac{4 a\left(T^{\prime}\right)+2}{3}+2 t+2 r \leq \frac{4\left(a(T)-\frac{3(t+r)}{2}-1\right)+2}{3}+2 t+2 r<\frac{4 a(T)+2}{3} .
$$

Case 2. Assume that $t=r=2$.
Consider two subcases.
Subcase 2.1 $\max \left\{\operatorname{deg}\left(v_{4}\right), \operatorname{deg}\left(v_{D-3}\right)\right\} \geq 4$.
Let $T^{\prime}=T-\left(T_{v_{3}} \cup T_{v_{D-2}}\right)$. Then clearly $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+8$. If $v_{4}, v_{D-3} \notin S^{\prime}$, then let $S=S^{\prime} \cup\left\{u_{1}, u_{2}, w_{1}, w_{2}, u_{1}^{\prime}, u_{2}^{\prime}\right.$, $\left.w_{1}^{\prime}\right\}$. If $v_{4}, v_{D-3} \in S^{\prime}$, then let $S=\left(S^{\prime}-\left\{v_{4}, v_{D-3}\right\}\right) \cup\left(\left\{v_{3}\right\} \cup\left\{u_{1}, u_{2}, w_{1}, w_{2}, u_{1}^{\prime}, u_{2}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}\right\}\right)$. Finally, if $v_{4} \in S^{\prime}$ and $v_{D-3} \notin S^{\prime}$ (the case $v_{4} \notin S^{\prime}$ and $v_{D-3} \in S^{\prime}$ is similar), then let $S=\left(S^{\prime}-\left\{v_{4}\right\}\right) \cup\left\{u_{i}, w_{i}, u_{i}^{\prime}, w_{i}^{\prime} \mid i=1,2\right\}$. In all cases, we have $\sum(S, T) \leq m$, implying that $a(T) \geq a\left(T^{\prime}\right)+\frac{3(t+r)}{2}+7$. It follows from Theorem 2.2 that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$.

Subcase $2.2 \operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(v_{D-3}\right)=3$.
If v_{4} is adjacent to a support vertex or there is a path $v_{4} z_{1} z_{2} z_{3}$ in T such that all neighbors of z_{1} except z_{2} and v_{4} are leaves and $\operatorname{deg}\left(z_{3}\right)=1$, then let $T^{\prime}=T-T_{v_{4}}$. It is easy to see that $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+6$ and $a(T) \geq a\left(T^{\prime}\right)+5$. It follows from Theorem 2.2 that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. Let $z \in N\left(v_{4}\right)-\left\{v_{5}, v_{3}\right\}$. If T_{z} is a spider, then we may assume $T_{z}=P_{5}$, for otherwise the result follows as above. Let $T^{\prime}=T-T_{v_{4}}$. Then clearly $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+8$ and $a(T) \geq a\left(T^{\prime}\right)+7$, and by Theorem 2.2 we have $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. Now let z be a leaf. Assume $T^{\prime}=T-\left(T_{v_{4}} \cup T_{v_{D-2}}\right)$. Then $\gamma_{p r}(T) \leq \gamma_{p r}\left(T^{\prime}\right)+10$. If $v_{D-3} \notin S^{\prime}$, then let $S=S^{\prime} \cup\left\{z, u_{1}, u_{2}, w_{1}, w_{2}, u_{1}^{\prime}, u_{2}^{\prime}, w_{1}^{\prime}\right\}$. If $v_{D-3} \in S^{\prime}$, then let $S=\left(S^{\prime}-\left\{v_{D-3}\right\}\right) \cup\left\{z, u_{1}, u_{2}, w_{1}, w_{2}, u_{1}^{\prime}, u_{2}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}\right\}$. In each case, we have $\sum(S, T) \leq m$, implying that $a(T) \geq a\left(T^{\prime}\right)+8$ and it follows from Theorem 2.2 that $\gamma_{p r}(T)<\frac{4 a(T)+2}{3}$. This completes the proof.

Next result is an immediate consequence of Lemma 2.1 and Propositions 2.3, 2.4, 2.5 and 2.6.

Theorem 2.7. Let T be a tree of order $n \geq 2$. Then $\gamma_{p r}(T)=\frac{4 a(T)+2}{3}$ if and only if T is P_{2} or T is a healthy spider S_{t}, where t is odd.

References

[1] N. Dehgardi, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a tree in terms of its annihilation number, Trans. Comb. 2 (2013) 9-16.
[2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12.
[3] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs, Graphs Combin. 20 (2004) 447-456.
[4] O. Favaron, H. Karami and S. M. Sheikholeslami, Paired-domination number of a graph and its complement, Discrete Math. 308 (2008) 6601-6605.
[5] S. Fitzatrick and B. Hartnell, Paired-domination, Discuss. Math. Graph Theory 18 (1998) 63-72.
[6] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349-354.
[7] T. W. Haynes and M. A. Henning, Trees with large paired-domination number, Util. Math. 71 (2006) 3-12.
[8] T. W. Haynes and P. J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206.
[9] T. W. Haynes and P. J. Slater, Paired domination and paired-domatic number, Congr. Numer. 109 (1995) 65-72.
[10] M. A. Henning, Graphs with large paired-domination number, J. Combin. Optim. 13 (2007) 61-78.
[11] M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Combin. Optim. 10 (2005) 283-294.
[12] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, Electron. J. Combin. 18 (2011) \#P180.
[13] R. Pepper, On the annihilation number of a graph, Recent Advances In Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics (2009) 217-220.

[^0]: 2010 Mathematics Subject Classification. 05C69
 Keywords. annihilation number, paired-dominating set, paired-domination number
 Received: 23 August 2012; Accepted: 13 September 2013
 Communicated by Dragan Stevanović
 Research supported by Azarbaijan Shahid Madani University
 Email addresses: ndehgardi@gmail.com (Nasrin Dehgardi), s.m.sheikholeslami@azaruniv.edu (Seyed Mahmoud Sheikholeslami), akhodkar@westga.edu (Abdollah Khodkar)

