Intuitionistic Fuzzy Stability of Jensen-Type Quadratic Functional Equations

Zhihua Wang ${ }^{\text {a }}$, Themistocles M. Rassias ${ }^{\text {b }}$, Reza Saadati ${ }^{\text {c }}$
${ }^{a}$ School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
${ }^{b}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780Athens, Greece
${ }^{c}$ Department of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract

In this paper, we prove some stability results for Jensen-type quadratic functional equations

$$
\begin{aligned}
& 2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y) \\
& f(a x+a y)+f(a x-a y)=2 a^{2} f(x)+2 a^{2} f(y)
\end{aligned}
$$

in intuitionistic fuzzy normed spaces for a nonzero real number a with $a \neq \pm \frac{1}{2}$.

1. Introduction

The study of stability problem for functional equations is related to a question of Ulam [37] concerning the stability of group homomorphism, which was affirmatively answered by Hyers [8] for Banach spaces. Subsequently, Hyers' result was generalized by Aoki [1] for additive mappings and Rassias [31] for linear mappings by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability or Hyers-UlamRassias stability of functional equations. Rassias [30] considered the Cauchy difference controlled by a product of different powers of norms. The above results have been generalized by Forti [4] and Găvruta [5] who permitted the Cauchy difference to become arbitrarily unbounded. For further new progress on such problems, the reader is referred to $[2,3,6,9,11,12,17,32,33]$. For a fuzzy version one is referred to [13-16, 28]. Quite recently, the stability problem for Jensen functional equations, Pexiderized quadratic functional equations, cubic functional equations, mixed type additive and cubic functional equations have been considered in $[18,20,21,26,38]$. The idea of intuitionistic fuzzy normed space was studied in [19, 22-25, 27, 34$]$ in order to deal with some summability problems.

Recently, interesting results concerning Jensen-type functional equations

$$
\begin{align*}
& 2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y) \tag{1}\\
& f(a x+a y)+f(a x-a y)=2 a^{2} f(x)+2 a^{2} f(y) \tag{2}
\end{align*}
$$

[^0]have been obtained in [10], where a is a nonzero real number and $a \neq \pm \frac{1}{2}$. The main purpose of this paper is to prove the stability of the Jensen-type functional equations (1) and (2) in the setting of intuitionistic fuzzy normed space. The results obtained in this paper extend a number of recent well-know results in the subject.

2. Preliminaries

In this section by using the idea of intuitionistic fuzzy metric spaces introduced by Park [29] and Saadati-Park [34], we define a new notion of intuitionistic fuzzy metric spaces with the help of the notion of continuous t-representable [7].

Lemma 2.1. (cf. [35]). Consider the set L^{*} and the order relation $\leq_{L^{*}}$ defined by

$$
\begin{aligned}
& L^{*}=\left\{\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in[0,1]^{2}, x_{1}+x_{2} \leq 1\right\} \\
& \left(x_{1}, x_{2}\right) \leq_{L^{*}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1}, x_{2} \geq y_{2}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in L^{*} .
\end{aligned}
$$

Then $\left(L^{*}, \leq_{L^{*}}\right)$ is a complete lattice.
Definition 2.2. (cf. [35]). An intuitionistic fuzzy set $\mathcal{A}_{\zeta, \eta}$ in a universal set U is an object $\mathcal{A}_{\zeta, \eta}=\{(\zeta(u), \eta(u)) \mid u \in$ $U\}$, where, for all $u \in U, \zeta_{\mathcal{A}}(u) \in[0,1]$ and $\eta_{\mathcal{A}}(u) \in[0,1]$ are called the membership degree and the nonmembership degree, respectively, of u in $\mathcal{A}_{\zeta, \eta}$ and, furthermore, they satisfy $\zeta_{\mathcal{A}}(u)+\eta_{\mathcal{A}}(u) \leq 1$.

We denote its units by $0_{L^{*}}=(0,1)$ and $1_{L^{*}}=(1,0)$. Classically, a triangular norm $T=*$ on $[0,1]$ is defined as an increasing, commutative, associative mapping $T:[0,1]^{2} \rightarrow[0,1]$ satisfying $T(1, x)=1 * x=x$ for all $x \in[0,1]$. A triangular conorm $S=\diamond$ is defined as an increasing, commutative, associative mapping $S:[0,1]^{2} \rightarrow[0,1]$ satisfying $S(0, x)=0 \diamond x=x$ for all $x \in[0,1]$.

Using the lattice ($L^{*}, \leq_{L^{*}}$), these definitions can be extended in a straightforward manner.
Definition 2.3. (cf. [35]). A triangular norm (t-norm) on L^{*} is a mapping $\mathcal{T}:\left(L^{*}\right)^{2} \rightarrow L^{*}$ satisfying the following conditions:
(a) $\left(\forall x \in L^{*}\right)\left(\mathcal{T}\left(x, 1_{L^{*}}\right)=x\right)$ (boundary condition);
(b) $\left(\forall(x, y) \in\left(L^{*}\right)^{2}\right)(\mathcal{T}(x, y)=\mathcal{T}(y, x))$ (commutativity);
(c) $\left(\forall(x, y, z) \in\left(L^{*}\right)^{3}\right)(\mathcal{T}(x, \mathcal{T}(y, z))=\mathcal{T}(\mathcal{T}(x, y), z))$ (associativity);
(d) $\left(\forall\left(x, x^{\prime}, y, y^{\prime}\right) \in\left(L^{*}\right)^{4}\right)\left(x \leq_{L^{*}} x^{\prime}\right.$ and $y \leq_{L^{*}} y^{\prime} \Longrightarrow \mathcal{T}(x, y) \leq_{L^{*}} \mathcal{T}\left(x^{\prime}, y^{\prime}\right)$ (monotonicity).

Definition 2.4. (cf. [35]). A continuous t-norm \mathcal{T} on L^{*} is said to be continuous t-representable if there exist a continuous t-norm $*$ and a continuous t-conorm \diamond on $[0,1]$ such that, for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in L^{*}$,

$$
\mathcal{T}(x, y)=\left(x_{1} * y_{1}, x_{2} \diamond y_{2}\right)
$$

Example 2.5. For all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$, consider

$$
\begin{aligned}
& \mathcal{T}(a, b)=\left(a_{1} b_{1}, \min \left\{a_{2}+b_{2}, 1\right\}\right) \\
& \mathcal{M}(a, b)=\left(\min \left\{a_{1}, b_{1}\right\}, \max \left\{a_{2}, b_{2}\right\}\right) .
\end{aligned}
$$

Then $\mathcal{T}(a, b)$ and $\mathcal{M}(a, b)$ are continuous t-representable.
Now, we define a sequence \mathcal{T}^{n} recursively by $\mathcal{T}^{1}=\mathcal{T}$ and

$$
\mathcal{T}^{n}\left(x^{(1)}, \ldots, x^{(n+1)}\right)=\mathcal{T}\left(\mathcal{T}^{n-1}\left(x^{(1)}, \ldots, x^{(n)}\right), x^{(n+1)}\right)
$$

for all $n \geq 2$ and $x^{(i)} \in L^{*}$.

Definition 2.6. A negator on L^{*} is any decreasing mapping $\mathcal{N}: L^{*} \rightarrow L^{*}$ satisfying $\mathcal{N}\left(0_{L^{*}}\right)=1_{L^{*}}$ and $\mathcal{N}\left(1_{L^{*}}\right)=0_{L^{*}}$. If $\mathcal{N}(\mathcal{N}(x))=x$ for all $x \in L^{*}$, then \mathcal{N} is called an involutive negator. A negator on $[0,1]$ is a decreasing mapping $N:[0,1] \rightarrow[0,1]$ satisfying $N(0)=1$ and $N(1)=0 . N_{s}$ denotes the standard negator on $([0,1], \leq)$ defined by $N_{s}=1-x$ for all $x \in[0,1]$.
Definition 2.7. (cf. [35]). The triple $(X, \mathcal{P}, \mathcal{T})$ is said to be an IFNS if X is a vector space, \mathcal{T} is a continuous t-representable, and \mathcal{P} is a mapping $X \times(0, \infty) \rightarrow L^{*}$, satisfying the following conditions for all $x, y \in X$ and $t, s>0$:
(i) $\mathcal{P}(x, t)>0_{L^{*}}$;
(ii) $\mathcal{P}(x, t)=1_{L^{*}}$ if and only if $x=0$;
(iii) $\mathcal{P}(\alpha x, t)=\mathcal{P}\left(x, \frac{t}{|\alpha|}\right)$ for all $\alpha \neq 0$;
(iv) $\mathcal{P}(x+y, t+s) \geq L^{*} \mathcal{T}(\mathcal{P}(x, t), \mathcal{P}(y, t))$;
(v) $\mathcal{P}(x, \cdot):(0, \infty) \rightarrow L^{*}$ is continuous;
(vi) $\lim _{t \rightarrow \infty} \mathcal{P}(x, t)=1_{L^{*}}$.

In this case, \mathcal{P} is called an intuitionistic fuzzy norm on X. Given μ and v, membership and nonmembership degrees of an intuitionistic fuzzy set from $X \times(0, \infty)$ to $[0,1]$, such that

$$
\mu(x, t)+v(x, t) \leq 1
$$

for all $x \in X$ and $t>0$, we write

$$
\mathcal{P}_{\mu, v}(x, t)=(\mu(x, t), v(x, t))
$$

Example 2.8. (cf. [36]). Let $(X,\|\cdot\|)$ be a normed space,

$$
\mathcal{T}(a, b)=\left(a_{1} b_{1}, \min \left\{a_{2}+b_{2}, 1\right\}\right)
$$

for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$, and μ, v be membership and nonmembership degree of an intuitionistic fuzzy set defined by

$$
\mathcal{P}_{\mu, v}(x, t)=(\mu(x, t), v(x, t))=\left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right) \forall t \in \mathbb{R}^{+} .
$$

Then $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ is an IFNS.
In Example 2.8, $\mu(x, t)+v(x, t)=1$ for all $x \in X$. We present an example in which $\mu(x, t)+v(x, t)<1$ for $x \neq 0$. This example is a modification of the example of Saadati and Park [34].

Example 2.9. (cf. [36]). Let $(X,\|\cdot\|)$ be a normed space,

$$
\mathcal{T}(a, b)=\left(a_{1} b_{1}, \min \left\{a_{2}+b_{2}, 1\right\}\right)
$$

for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$, and μ, v be membership and non-membership degree of an intuitionistic fuzzy set defined by

$$
\mathcal{P}_{\mu, v}(x, t)=(\mu(x, t), v(x, t))=\left(\frac{t}{t+m\|x\|^{\prime}}, \frac{\|x\|}{t+\|x\|}\right)
$$

for all $t \in \mathbb{R}^{+}$in which $m>1$. Then $\left(X, \mathcal{P}_{\mu, v} \mathcal{T}\right)$ is an IFNS. Here,

$$
\begin{aligned}
& \mu(x, t)+v(x, t)=1, \text { for } x=0 \\
& \mu(x, t)+v(x, t)<1, \text { for } x \neq 0
\end{aligned}
$$

Lemma 2.10. (cf. [35]). Let $\mathcal{P}_{\mu, v}$ be an intuitionistic fuzzy norm on X. Then $\mathcal{P}_{\mu, v}(x, t)$ is nondecreasing with respect to t for all $x \in X$.

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed space are studied in [34].

Let $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ be an IFNS. Then, a sequence $\left\{x_{n}\right\}$ is said to be intuitionistic fuzzy convergent to a point $x \in X$ (denoted by $x_{n} \xrightarrow{I F} x$) if $\mathcal{P}_{\mu, v}\left(x_{n}-x, t\right) \rightarrow 1_{L^{*}}$ as $n \rightarrow \infty$ for every $t>0$. The sequence $\left\{x_{n}\right\}$ is said to be intuitionistic fuzzy Cauchy sequence if for every $\varepsilon>0$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that $\mathcal{P}_{\mu, v}\left(x_{n}-x_{m}, t\right)>{ }_{L^{*}}\left(N_{s}(\varepsilon), \varepsilon\right)$ for all $n, m \geq n_{0}$, where N_{s} is the standard negator. $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ is said to be complete if every intuitionistic fuzzy Cauchy sequence in $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ is intuitionistic fuzzy convergent in $\left(X, \mathscr{P}_{\mu, v}, \mathcal{T}\right)$. A complete IFNS is called an intuitionistic fuzzy Banach space.

3. Intuitionistic fuzzy stability

Throughout this section, assume that $X,\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ and $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ are linear space, IFNS, intuitionistic fuzzy Banach space, respectively. We prove the intuitionistic fuzzy stability of Jesen-type quadratic functional equations (1) and (2) in the setting of intuitionistic fuzzy normed space,

Theorem 3.1. Let $f: X \rightarrow Y$ be an even mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y), t+s\right) \geq L_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(x), t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(y), s)\right\} \tag{3}
\end{equation*}
$$

for all $x, y \in X \backslash\{0\}$ and all positive real numbers t, s. If $\varphi(3 x)=\alpha \varphi(x)$ for some positive real number α with $\alpha<9$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathscr{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(9-\alpha) t}{18}\right) \tag{4}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}^{3}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{3}{2} t\right), \mathscr{P}_{\mu, v}^{\prime}\left(\varphi(2 x), \frac{3}{2} t\right), \boldsymbol{P}_{\mu, v}^{\prime}\left(\varphi(3 x), \frac{3}{2} t\right), \mathscr{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{3}{2} t\right)\right\}
$$

Proof. Setting $y=3 x$ and $s=t$ in (3), we obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(2 f(2 x)+2 f(-x)-f(x)-f(3 x), 2 t) \geq_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(x), t), \mathcal{P}_{\mu, \nu}^{\prime}(\varphi(3 x), t)\right\} \tag{5}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Replacing x by $2 x, y$ by 0 and s by t in (3), we get

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(4 f(x)-f(2 x), 2 t) \geq L_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(2 x), t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(0), t)\right\} \tag{6}
\end{equation*}
$$

Thus

$$
\begin{array}{r}
\mathcal{P}_{\mu, v}(9 f(x)-f(3 x), 6 t) \geq L^{*} \mathcal{M}^{3}\left\{\mathcal{P}_{\mu, \nu}^{\prime}(\varphi(x), t), \mathcal{P}_{\mu, \nu}^{\prime}(\varphi(2 x), t),\right. \\
\left.\mathcal{P}_{\mu, v}^{\prime}(\varphi(3 x), t) \mathcal{P}_{\mu, v}^{\prime}(\varphi(0), t)\right\}, \tag{7}
\end{array}
$$

and so

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-\frac{f(3 x)}{9}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) \tag{8}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}^{3}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{3}{2} t\right), \boldsymbol{P}_{\mu, v}^{\prime}\left(\varphi(2 x), \frac{3}{2} t\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(3 x), \frac{3}{2} t\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{3}{2} t\right)\right\} .
$$

Then by our assumption, we have

$$
\begin{equation*}
\mathcal{P}_{\mu, v}^{\prime \prime}(3 x, t)=\mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\alpha}\right) \tag{9}
\end{equation*}
$$

Replacing x by $3^{n} x$ in (8) and applying (9), we get

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{n+1} x\right)}{9^{n+1}}, \frac{\alpha^{n} t}{9^{n}}\right) & =\mathcal{P}_{\mu, v}\left(f\left(3^{n} x\right)-\frac{f\left(3^{n+1} x\right)}{9}, \alpha^{n} t\right) \\
& \geq{ }_{L^{*}} \mathcal{S}_{\mu, v}^{\prime \prime}\left(3^{n} x, \alpha^{n} t\right) \\
& ={ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{10}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{m} x\right)}{9^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{9^{k}}\right) & =\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[\frac{f\left(3^{k+1} x\right)}{9^{k+1}}-\frac{f\left(3^{k} x\right)}{9^{k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{9^{k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{m+1} x\right)}{9^{m+1}}-\frac{f\left(3^{m} x\right)}{9^{m}}, \frac{\alpha^{m} t}{9^{m}}\right), \ldots\right. \\
& \left.\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{n-1} x\right)}{9^{n-1}}, \frac{\alpha^{n-1} t}{9^{n-1}}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) \tag{11}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{m} x\right)}{9^{m}}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{9^{k}}}\right) \tag{12}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.
Since $0<\alpha<9$ and $\sum_{k=0}^{\infty} \frac{\alpha^{k}}{9^{k}}<\infty$, then $\left\{\frac{f\left(3^{n} x\right)}{9^{n}}\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{9^{n}} \tag{13}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and set $m=0$ in (12) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-f(x), t\right) \geq{ }_{L^{\prime}} \mathscr{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{\frac{\alpha}{}^{k}}{9^{k}}}\right) \tag{14}
\end{equation*}
$$

for all $x \in X, t>0$. Thus, we obtain that

$$
\begin{align*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) & =\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(3^{n} x\right)}{9^{n}}+\frac{f\left(3^{n} x\right)}{9^{n}}-f(x), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(3^{n} x\right)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-f(x), \frac{t}{2}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(3^{n} x\right)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{2 \sum_{k=0}^{n-1} \frac{\alpha^{k}}{9^{k}}}\right)\right) . \tag{15}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (15) and using (13), we get

$$
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(9-\alpha) t}{18}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (4).
Now we show that Q is quadratic. Let $x, y \in Y$. Then we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(2 Q\left(\frac{x+y}{2}\right)+2 Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{4}\left\{\mathcal{P}_{\mu, v}\left(2 Q\left(\frac{x+y}{2}\right)-\frac{2 f\left(3^{n}(x+y) / 2\right)}{9^{n}}, \frac{t}{5}\right),\right. \\
& \mathcal{P}_{\mu, v}\left(2 Q\left(\frac{x-y}{2}\right)-\frac{2 f\left(3^{n}(x-y) / 2\right)}{9^{n}}, \frac{t}{5}\right), \\
& \boldsymbol{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-Q(x), \frac{t}{5}\right), \mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} y\right)}{9^{n}}-Q(y), \frac{t}{5}\right), \\
& \left.\boldsymbol{P}_{\mu, v}\left(\frac{2 f\left(3^{n}(x+y) / 2\right)}{9^{n}}+\frac{2 f\left(3^{n}(x-y) / 2\right)}{9^{n}}-\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{n} y\right)}{9^{n}}, \frac{t}{5}\right)\right\} . \tag{16}
\end{align*}
$$

The first four terms on the right hand side of the above inequality tend to $1_{L^{*}}$ as $n \rightarrow \infty$ by (13) and the fifth term, by (3), is greater than or equal to

$$
\begin{align*}
& L^{*} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(3^{n} x\right), \frac{9^{n} t}{10}\right), \mathscr{P}_{\mu, v}^{\prime}\left(\varphi\left(3^{n} y\right), \frac{9^{n} t}{10}\right)\right\} \\
& ={ }_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x),\left(\frac{9}{\alpha}\right)^{n} \frac{t}{10}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(y),\left(\frac{9}{\alpha}\right)^{n} \frac{t}{10}\right)\right\} \tag{17}
\end{align*}
$$

which tends to $1_{L^{*}}$ as $n \rightarrow \infty$. Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(2 Q\left(\frac{x+y}{2}\right)+2 Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y), t\right)=1_{L^{*}} \tag{18}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$. This means that Q satisfies the Jensen quadratic functional equation and so it is quadratic.

To prove the uniqueness of the mapping Q subject to (4), assume that there exists another quadratic mapping $Q^{\prime}: X \rightarrow Y$ which satisfies (4). Then for each $x \in X$, clearly $Q\left(3^{n} x\right)=9^{n} Q(x)$ and $Q^{\prime}\left(3^{n} x\right)=9^{n} Q^{\prime}(x)$ for all $n \in \mathbb{N}$. It follows from (4) that

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(Q(x)-Q^{\prime}(x), t\right)=\mathcal{P}_{\mu, v}\left(\frac{Q\left(3^{n} x\right)}{9^{n}}-\frac{Q^{\prime}\left(3^{n} x\right)}{9^{n}}, t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}\left(\frac{Q\left(3^{n} x\right)}{9^{n}}-\frac{f\left(3^{n} x\right)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(\frac{f\left(3^{n} x\right)}{9^{n}}-\frac{Q^{\prime}\left(3^{n} x\right)}{9^{n}}, \frac{t}{2}\right)\right\} \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{\left(\frac{9}{\alpha}\right)^{n}(9-\alpha) t}{36}\right) \tag{19}
\end{align*}
$$

for all $x \in X, t>0$ and all $n \in \mathbb{N}$. Since $0<\alpha<9$ and $\lim _{n \rightarrow \infty}\left(\frac{9}{\alpha}\right)^{n}=\infty$, the right hand side of the above inequality tends to $1_{L^{*}}$ as $n \rightarrow \infty$. Therefore, $\mathcal{P}_{\mu, v}\left(Q(x)-Q^{\prime}(x), t\right)=1_{L^{*}}$ for all $t>0$, whence $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This completes the proof of the theorem.
Theorem 3.2. Let $f: X \rightarrow Y$ be an even mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ satisfying (3). If $\varphi(3 x)=\alpha \varphi(x)$ for some real number α with $\alpha>9$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(\alpha-9) t}{2 \alpha}\right) \tag{20}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}^{3}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{x}{3}\right), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{2 x}{3}\right), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{t}{6}\right)\right\} .
$$

Proof. It follows from (8) that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-9 f\left(\frac{x}{3}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) \tag{21}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}^{3}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{x}{3}\right), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{2 x}{3}\right), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{t}{6}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{t}{6}\right)\right\}
$$

Then by our assumption, we have

$$
\begin{equation*}
\mathcal{P}_{\mu, v}^{\prime \prime}\left(\frac{x}{3}, t\right)=\mathcal{P}_{\mu, v}^{\prime \prime}(x, \alpha t) \tag{22}
\end{equation*}
$$

Replacing x by $\frac{x}{3^{n}}$ in (21) and applying (22), we obtain

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-9^{n+1} f\left(\frac{x}{3^{n+1}}\right), \frac{9^{n} t}{\alpha^{n}}\right) & =\mathcal{P}_{\mu, v}\left(f\left(\frac{x}{3^{n}}\right)-9 f\left(\frac{x}{3^{n+1}}\right), \frac{t}{\alpha^{n}}\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(\frac{x}{3^{n}}, \frac{t}{\alpha^{n}}\right) \\
& ={ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{23}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-9^{m} f\left(\frac{x}{3^{m}}\right), \sum_{k=m}^{n-1} \frac{9^{k} t}{\alpha^{k}}\right)=\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[9^{k+1} f\left(\frac{x}{3^{k+1}}\right)-9^{k} f\left(\frac{x}{3^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{9^{k} t}{\alpha^{k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left(9^{m+1} f\left(\frac{x}{3^{m+1}}\right)-9^{m} f\left(\frac{x}{3^{m}}\right), \frac{9^{m} t}{\alpha^{m}}\right), \ldots,\right. \\
& \left.\mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-9^{n-1} f\left(\frac{x}{3^{n-1}}\right), \frac{9^{n-1} t}{\alpha^{n-1}}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{24}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-9^{m} f\left(\frac{x}{3^{m}}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{9^{k}}{\alpha^{k}}}\right) \tag{25}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.
Since $\alpha>9$ and $\sum_{k=0}^{\infty} \frac{q^{k}}{\alpha^{k}}<\infty$, then $\left\{9^{n} f\left(\frac{x}{3^{n}}\right)\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} 9^{n} f\left(\frac{x}{3^{n}}\right) \tag{26}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and set $m=0$ in (25) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-f(x), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{9^{k}}{\alpha^{k}}}\right) \tag{27}
\end{equation*}
$$

for all $x \in X, t>0$ and so we have that

$$
\begin{align*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) & =\mathcal{P}_{\mu, v}\left(Q(x)-9^{n} f\left(\frac{x}{3^{n}}\right)+9^{n} f\left(\frac{x}{3^{n}}\right)-f(x), t\right) \\
& \geq_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-9^{n} f\left(\frac{x}{3^{n}}\right), \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(9^{n} f\left(\frac{x}{3^{n}}\right)-f(x), \frac{t}{2}\right)\right) \\
& \geq_{L^{*}} \mathcal{M}\left(\boldsymbol{\mathcal { P }}_{\mu, v}\left(Q(x)-9^{n} f\left(\frac{x}{3^{n}}\right), \frac{t}{2}\right), \boldsymbol{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{2 \sum_{k=0}^{n-1} \frac{9^{k}}{\alpha^{k}}}\right)\right) \tag{28}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (28) and using (26), we get

$$
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(\alpha-9) t}{2 \alpha}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (20). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.3. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ satisfying (3). If $\varphi(2 x)=\alpha \varphi(x)$ for some positive real number α with $\alpha<4$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(4-\alpha) t}{8}\right) \tag{29}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where $\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(2 x), 2 t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(0), 2 t)\right\}$.
Proof. Setting $y=0$ and replacing x by $2 x$ and s by t in (3), we get

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(4 f(x)-f(2 x), 2 t) \geq{ }_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(2 x), t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(0), t)\right\} \tag{30}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Thus

$$
\begin{equation*}
\boldsymbol{P}_{\mu, v}\left(f(x)-\frac{f(2 x)}{4}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) \tag{31}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(2 x), 2 t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(0), 2 t)\right\}
$$

Then by our assumption, we have

$$
\begin{equation*}
\mathcal{P}_{\mu, v}^{\prime \prime}(2 x, t)=\mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\alpha}\right) \tag{32}
\end{equation*}
$$

Replacing x by $2^{n} x$ in (31) and applying (32), we get

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n+1} x\right)}{4^{n+1}}, \frac{\alpha^{n} t}{4^{n}}\right) & =\mathcal{P}_{\mu, v}\left(f\left(2^{n} x\right)-\frac{f\left(2^{n+1} x\right)}{4}, \alpha^{n} t\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(2^{n} x, \alpha^{n} t\right) \\
& ={ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{33}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{m} x\right)}{4^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{4^{k}}\right) & =\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[\frac{f\left(2^{k+1} x\right)}{4^{k+1}}-\frac{f\left(2^{k} x\right)}{4^{k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{4^{k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{m+1} x\right)}{4^{m+1}}-\frac{f\left(2^{m} x\right)}{4^{m}}, \frac{\alpha^{m} t}{4^{m}}\right), \ldots,\right. \\
& \left.\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n-1} x\right)}{4^{n-1}}, \frac{\alpha^{n-1} t}{4^{n-1}}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{34}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{m} x\right)}{4^{m}}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{4^{k}}}\right) \tag{35}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.
Since $0<\alpha<4$ and $\sum_{k=0}^{\infty} \frac{\alpha^{k}}{4^{k}}<\infty$, then $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}} \tag{36}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and set $m=0$ in (35) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-f(x), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{4^{k}}}\right) \tag{37}
\end{equation*}
$$

for all $x \in X, t>0$. Thus, we have that

$$
\begin{align*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) & =\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(2^{n} x\right)}{4^{n}}+\frac{f\left(2^{n} x\right)}{4^{n}}-f(x), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(2^{n} x\right)}{4^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(\frac{f\left(2^{n} x\right)}{4^{n}}-f(x), \frac{t}{2}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left(2^{n} x\right)}{4^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{2 \sum_{k=0}^{n-1} \frac{\alpha^{k}}{4^{k}}}\right)\right) . \tag{38}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (38) and using (36), we get

$$
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(4-\alpha) t}{8}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (30). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.4. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ satisfying (3). If $\varphi(2 x)=\alpha \varphi(x)$ for some real number α with $\alpha>4$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, \nu}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(\alpha-4) t}{2 \alpha}\right) \tag{39}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where $\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{t}{2}\right)\right\}$.
Proof. It follows from (31) that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-4 f\left(\frac{x}{2}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) \tag{40}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where

$$
\mathcal{P}_{\mu, v}^{\prime \prime}(x, t):=\mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(0), \frac{t}{2}\right)\right\}
$$

Then by our assumption, we have

$$
\begin{equation*}
\mathcal{P}_{\mu, v}^{\prime \prime}\left(\frac{x}{2}, t\right)=\mathcal{P}_{\mu, v}^{\prime \prime}(x, \alpha t) \tag{41}
\end{equation*}
$$

Replacing x by $\frac{x}{2^{n}}$ in (40) and applying (41), we obtain

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-4^{n+1} f\left(\frac{x}{2^{n+1}}\right), \frac{4^{n} t}{\alpha^{n}}\right) & =\mathcal{P}_{\mu, v}\left(f\left(\frac{x}{2^{n}}\right)-4 f\left(\frac{x}{2^{n+1}}\right), \frac{t}{\alpha^{n}}\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(\frac{x}{2^{n}}, \frac{t}{\alpha^{n}}\right) \\
& ={ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{42}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), \sum_{k=m}^{n-1} \frac{4^{k} t}{\alpha^{k}}\right)=\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[4^{k+1} f\left(\frac{x}{2^{k+1}}\right)-4^{k} f\left(\frac{x}{2^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{4^{k} t}{\alpha^{k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left(4^{m+1} f\left(\frac{x}{2^{m+1}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), \frac{4^{m} t}{\alpha^{m}}\right), \ldots,\right. \\
& \left.\mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-4^{n-1} f\left(\frac{x}{2^{n-1}}\right), \frac{4^{n-1} t}{\alpha^{n-1}}\right)\right) \\
& \geq_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}(x, t) . \tag{43}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{4^{k}}{\alpha^{k}}}\right) \tag{44}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.
Since $\alpha>4$ and $\sum_{k=0}^{\infty} \frac{4^{k}}{\alpha^{k}}<\infty$, then $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. Therefore we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) \tag{45}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and set $m=0$ in (44) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-f(x), t\right) \geq{ }_{L^{*}} \boldsymbol{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{4^{k}}{\alpha^{k}}}\right) \tag{46}
\end{equation*}
$$

for all $x \in X, t>0$. Thus, we obtain that

$$
\begin{align*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) & =\mathcal{P}_{\mu, v}\left(Q(x)-4^{n} f\left(\frac{x}{2^{n}}\right)+4^{n} f\left(\frac{x}{2^{n}}\right)-f(x), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, \nu}\left(Q(x)-4^{n} f\left(\frac{x}{2^{n}}\right), \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(4^{n} f\left(\frac{x}{2^{n}}\right)-f(x), \frac{t}{2}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-4^{n} f\left(\frac{x}{2^{n}}\right), \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{t}{2 \sum_{k=0}^{n-1} \frac{4^{k}}{\alpha^{k}}}\right)\right) \tag{47}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (47) and using (45), we get

$$
\mathcal{P}_{\mu, \nu}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime \prime}\left(x, \frac{(\alpha-4) t}{2 \alpha}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (39). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.
Theorem 3.5. Let $|2 a|>1$ and $f: X \rightarrow Y$ be a mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ such that

$$
\begin{array}{r}
\mathcal{P}_{\mu, v}\left(f(a x+a y)+f(a x-a y)-2 a^{2} f(x)-2 a^{2} f(y), t+s\right) \\
\geq{ }_{L^{*}} \mathcal{M}\left\{\mathcal{P}_{\mu, v}^{\prime}(\varphi(x), t), \mathcal{P}_{\mu, v}^{\prime}(\varphi(y), s)\right\} \tag{48}
\end{array}
$$

for all $x, y \in X \backslash\{0\}$ and all positive real numbers t, s. If $\varphi(2 a x)=\alpha \varphi(x)$ for some positive real number α with $0<\alpha<4 a^{2}$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(x, \frac{\left(4 a^{2}-\alpha\right) t}{4}\right) \tag{49}
\end{equation*}
$$

for all $x \in X$ and $t>0$.

Proof. Setting $y=x$ and $s=t$ in (48), we get

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(2 a x)-4 a^{2} f(x), 2 t\right) \geq{ }_{L^{*}} \mathscr{P}_{\mu, v}^{\prime}(\varphi(x), t) \tag{50}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Thus

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-\frac{f(2 a x)}{4 a^{2}}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), 2 a^{2} t\right) \tag{51}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Replacing x by $(2 a)^{n} x$ in (51), we have

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-\frac{f\left((2 a)^{n+1} x\right)}{(2 a)^{2 n+2}}, \frac{\alpha^{n} t}{(2 a)^{2 n}}\right) & =\mathcal{P}_{\mu, v}\left(f\left((2 a)^{n} x\right)-\frac{f\left((2 a)^{n+1} x\right)}{4 a^{2}}, \alpha^{n} t\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), 2 a^{2} t\right) . \tag{52}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-\frac{f\left((2 a)^{m} x\right)}{(2 a)^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{(2 a)^{2 k}}\right) \\
& =\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[\frac{f\left((2 a)^{k+1} x\right)}{(2 a)^{2 k+2}}-\frac{f\left((2 a)^{k} x\right)}{(2 a)^{2 k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k} t}{(2 a)^{2 k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{m+1} x\right)}{(2 a)^{2 m+2}}-\frac{f\left((2 a)^{m} x\right)}{(2 a)^{2 m}}, \frac{\alpha^{m} t}{(2 a)^{2 m}}\right), \ldots,\right. \\
& \left.\mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-\frac{f\left((2 a)^{n-1} x\right)}{(2 a)^{2 n-2}}, \frac{\alpha^{n-1} t}{(2 a)^{2 n-2}}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), 2 a^{2} t\right) . \tag{53}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-\frac{f\left((2 a)^{m} x\right)}{(2 a)^{m}}, t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{2 a^{2} t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{(2 a)^{2 k}}}\right) \tag{54}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.
Since $0<\alpha<4 a^{2}$ and $\sum_{k=0}^{\infty} \frac{\alpha^{k}}{(2 a)^{2 k}}<\infty$, then $\left\{\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}} \tag{55}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and put $m=0$ in (54) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-f(x), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{2 a^{2} t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{(2 a)^{2 k}}}\right) \tag{56}
\end{equation*}
$$

for all $x \in X, t>0$. Thus

$$
\begin{align*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) & =\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}+\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-f(x), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left(\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}-f(x), \frac{t}{2}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-\frac{f\left((2 a)^{n} x\right)}{(2 a)^{2 n}}, \frac{t}{2}\right), \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{a^{2} t}{\sum_{k=0}^{n-1} \frac{a^{k}}{(2 a)^{2 k}}}\right)\right) . \tag{57}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (57) and using (55), we get

$$
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(x, \frac{\left(4 a^{2}-\alpha\right) t}{4}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (49). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.6. Let $|2 a|<1$ and $f: X \rightarrow Y$ be a mapping with $f(0)=0$. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $\left(Z, \mathcal{P}_{\mu, v}^{\prime}, \mathcal{M}\right)$ satisfying (48). If $\varphi(2 a x)=\alpha \varphi(x)$ for some real number α with $\alpha>4 a^{2}$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(x, \frac{\left(\alpha-4 a^{2}\right) t}{4}\right) \tag{58}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. It follows from (50) that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-(2 a)^{2} f\left(\frac{x}{2 a}\right), 2 t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{x}{2 a}\right), t\right) \tag{59}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Thus

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f(x)-(2 a)^{2} f\left(\frac{x}{2 a}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi\left(\frac{x}{2 a}\right), \frac{t}{2}\right)==_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha}{2} t\right) \tag{60}
\end{equation*}
$$

Replacing x by $\frac{x}{(2 a)^{n}}$ in (60), we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-(2 a)^{2 n+2} f\left(\frac{x}{(2 a)^{n+1}}\right), \frac{(2 a)^{2 n} t}{\alpha^{n}}\right) \\
& =\mathcal{P}_{\mu, v}\left(f\left(\frac{x}{(2 a)^{n}}\right)-4 a^{2} f\left(\frac{x}{(2 a)^{n+1}}\right), \frac{t}{\alpha^{n}}\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha}{2} t\right) . \tag{61}
\end{align*}
$$

For all $x \in X, t>0$ and all non-negative integers n and m with $n>m$, we have

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-(2 a)^{2 m} f\left(\frac{x}{(2 a)^{m}}\right), \sum_{k=m}^{n-1} \frac{(2 a)^{2 k} t}{\alpha^{k}}\right) \\
& =\mathcal{P}_{\mu, v}\left(\sum_{k=m}^{n-1}\left[(2 a)^{2 k+2} f\left(\frac{x}{(2 a)^{k+1}}\right)-(2 a)^{2 k} f\left(\frac{x}{(2 a)^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{(2 a)^{2 k} t}{\alpha^{k}}\right) \\
& \geq{ }_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu, v}\left((2 a)^{2 m+2} f\left(\frac{x}{(2 a)^{m+1}}\right)-(2 a)^{2 m} f\left(\frac{x}{(2 a)^{m}}\right), \frac{(2 a)^{2 m} t}{\alpha^{m}}\right), \ldots,\right. \\
& \left.\mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-(2 a)^{2 n-2} f\left(\frac{x}{(2 a)^{n-1}}\right), \frac{(2 a)^{2 n-2} t}{\alpha^{n-1}}\right)\right) \\
& \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha}{2} t\right) . \tag{62}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-(2 a)^{2 m} f\left(\frac{x}{(2 a)^{m}}\right), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha t}{2 \sum_{k=m}^{n-1} \frac{(2 a)^{2 k t}}{\alpha^{k}}}\right) \tag{63}
\end{equation*}
$$

for all $x \in X, t>0$ and $m, n \in \mathbb{N}$ with $n>m$.

Since $\alpha>4 a^{2}$ and $\sum_{k=0}^{\infty} \frac{(2 a)^{2 k}}{\alpha^{k}}<\infty$, then $\left\{(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)\right\}$ is a Cauchy sequence in $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ for each $x \in X$. Since $\left(Y, \mathcal{P}_{\mu, v}, \mathcal{M}\right)$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty}(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right) \tag{64}
\end{equation*}
$$

for all $x \in X$. Fix $x \in X$ and set $m=0$ in (63) to obtain

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-f(x), t\right) \geq{ }_{L^{*}} \mathcal{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha t}{2 \sum_{k=0}^{n-1} \frac{(2 a)^{2 k t}}{\alpha^{k}}}\right) \tag{65}
\end{equation*}
$$

for all $x \in X, t>0$ and so we have that

$$
\begin{align*}
& \mathcal{P}_{\mu, \nu}(Q(x)-f(x), t)=\mathcal{P}_{\mu, v}\left(Q(x)-(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)+(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-f(x), t\right) \\
& \geq{ }_{L^{*}} \mathcal{M}\left(\mathcal{P}_{\mu, v}\left(Q(x)-(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right), \frac{t}{2}\right), \mathcal{P}_{\mu, v}\left((2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right)-f(x), \frac{t}{2}\right)\right) \\
& \geq_{L^{*}} \mathcal{M}\left(\boldsymbol{P}_{\mu, v}\left(Q(x)-(2 a)^{2 n} f\left(\frac{x}{(2 a)^{n}}\right), \frac{t}{2}\right), \boldsymbol{P}_{\mu, v}^{\prime}\left(\varphi(x), \frac{\alpha t}{4 \sum_{k=0}^{n-1} \frac{(2 a)^{2 k_{t}}}{\alpha^{k}}}\right)\right) . \tag{66}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (66) and using (64), we get

$$
\mathcal{P}_{\mu, v}(Q(x)-f(x), t) \geq{ }_{L^{*}} \mathscr{P}_{\mu, v}^{\prime}\left(x, \frac{\left(4 a^{2}-\alpha\right) t}{4}\right)
$$

for all $x \in X$ and $t>0$, which shows that Q satisfies (58). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950) 64-66.
[2] Y. J. Cho, C. Park and R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett. 10(2010) $1238-1242$.
[3] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992) 59-64.
[4] G. L. Forti, The stability of homomorphisms ans amembility, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg 57(1987) 215-226.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994) 431-436.
[6] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, Lap Lambert Academic Publishing, 2010.
[7] S. B. Hosseini, D. O'Regan and R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Systems, 4(2007) 53-64.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941) 222-224.
[9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several variables, Birkhäuser, Basel, 1998.
[10] S. Y. Jang, J. R. Lee and C. Park, Fuzzy stability of Jensen-type quadratic functional equations, Abstract Appl. Anal. Volume 2009, Article ID 535678, 17 pages
[11] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.
[12] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.
[13] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159(2008) 730-738.
[14] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(2008) 720-729.
[15] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy Almost Quadratic Functions, Result. Math. 52(2008) 161-177.
[16] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sciences 178(2008) 3791-3798.
[17] A. K. Mirmostafaee, Stability of quadratic mappings in non-Archimedean normed spaces, Kyungpook Math. J. 49(2009) $289-297$.
[18] S. A. Mohiuddine, M. Cancan and H. Şevli, Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique, Math. Comput. Model. 54 (2011) 2403-2409.
[19] S. A. Mohiuddine and Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals 42(2009) 1731-1737.
[20] S. A. Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 42(2009) 2989-2996.
[21] S. A. Mohiuddine and H. Şevli, Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space, J. Comput. Appl. Math. 235(2011) 2137-2146.
[22] M. Mursaleen, V. Karakaya and S.A. Mohiuddine, Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space, Abstract Appl. Anal. Volume 2010, Article ID 131868, 14 pages.
[23] M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 41(2009) 2414-2421.
[24] M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative, Chaos, Solitons and Fractals 42(2009) 1010-1015.
[25] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233(2009) 142-149.
[26] M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 42(2009) 2997-3005.
[27] M. Mursaleen, S.A. Mohiuddine and Osama H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59(2010) 603-611.
[28] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems 160(2009) $1632-1642$.
[29] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 22(2004) 1039-1046.
[30] J. M. Rassias, On approximation of approximately linear mappings, J. Funct. Anal. 46(1982), 126-130.
[31] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978) 297-300.
[32] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62(2000) 23-130.
[33] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003.
[34] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27(2006) 331-344.
[35] R. Saadati, A note on Some results on the IF-normed spaces, Chaos, Solitons and Fractals 41(2009) 206-213.
[36] S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. 2(2009) 105-112.
[37] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[38] T. Xu, J. M. Rassias and W. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys. 51 063519(2010).

[^0]: 2010 Mathematics Subject Classification. Primary 39B82; Secondary 39B72, 03F55
 Keywords. Stability; Jensen-type quadratic functional equations; Intuitionistic fuzzy normed spaces.
 Received: 05 June 2013; Accepted: 22 June 2013
 Communicated by Dragan S. Djordjević
 Research supported by BSQD12077, NSFC 11401190 and NSFC 11201132
 Corresponding author: Zhihua Wang
 Email addresses: matwzh2000@126.com (Zhihua Wang), trassias@math.ntua.gr (Themistocles M. Rassias), rsaadati@eml.cc, rezas720@yahoo.com (Reza Saadati)

