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Abstract. In this paper, we have determined necessary and sufficient Tauberian conditions under which
statistically convergence follows from statistically (C, 1)-convergence of sequences of fuzzy numbers. Our
conditions are satisfied if a sequence of fuzzy numbers is statistically slowly oscillating. Also, under
additional conditions it is proved that a bounded sequence of fuzzy numbers which is (C, 1)-level-convergent
to its statistical limit superior is statistically convergent .

1. Introduction and Preliminaries

Let K be a subset of natural numbersN and Kn = {k ≤ n : k ∈ K}, The natural density of K is given by

δ(K) = lim
n→∞

1
n
|Kn|

if this limit exists, where |A| denotes the number of elements in A. The concept of statistical convergence was
introduced by Fast [9]. A sequence (xk)k∈N of (real or complex) numbers is said to be statistically convergent
to some number l if for every ε > 0 we have

lim
n→∞

1
n + 1

|{k ≤ n : |xk − l| ≥ ε}| = 0.

In this case, we write st− limk→∞ xk = l.
A sequence (xk) is (C, 1) convergent to ` if lim σn = `, where

σn =
1

n + 1

n∑
k=0

xk (n = 0, 1, 2...), (1)

is the first arithmetic mean, also called Cesàro mean (of first order). In this case we write (C, 1)− limk→∞ xk =
`.

The idea of statistical (C, 1)-convergence was introduced in [15] by Móricz. A sequence (xk) is statistically
(C, 1)-convergent to ` if st − lim σn = `. In addition to, necessary and sufficient conditions, under which
st− limk→∞ xk = ` follows from st − lim σn = ` are presented in [15] by Moricz.

2010 Mathematics Subject Classification. Primary 40C05 ; Secondary 03E72, 46A45, 40J05
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In this paper, our primary interest is to obtain the results in [15] for sequences of fuzzy numbers.
We recall the basic definitions dealing with fuzzy numbers.
A fuzzy number is a fuzzy set on the real axis, i.e. a mapping u : R→ [0, 1] which satisfies the following

four conditions:
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.
(ii) u is fuzzy convex, i.e. u[λx + (1 − λ)y] ≥ min{u(x),u(y)} for all x, y ∈ R and for all λ ∈ [0, 1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 := {x ∈ R : u(x) > 0} is compact,

where {x ∈ R : u(x) > 0} denotes the closure of the set {x ∈ R : u(x) > 0} in the usual topology of R.
We denote the set of all fuzzy numbers on R by E1 and called it as the space of fuzzy numbers. α-level set [u]α
of u ∈ E1 is defined by

[u]α :=
 {x ∈ R : u(x) ≥ α} , if 0 < α ≤ 1,

{x ∈ R : u(x) > α} , if α = 0.

The set [u]α is closed, bounded and non-empty interval for each α ∈ [0, 1] which is defined by [u]α :=
[u−(α),u+(α)]. R can be embedded in E1, since each r ∈ R can be regarded as a fuzzy number r defined by

r(x) :=
{

1 , if x = r,
0 , if x , r.

Let u, v,w ∈ E1 and k ∈ R. Then the operations addition and scalar multiplication are defined on E1 as

u + v = w ⇐⇒ [w]α = [u]α + [v]α for all α ∈ [0, 1]
⇐⇒ w−(α) = u−(α) + v−(α) and w+(α) = u+(α) + v+(α) for all α ∈ [0, 1],

[ku]α = k[u]α for all α ∈ [0, 1].

Lemma 1.1. [6]

(i) If 0 ∈ E1 is neutral element with respect to +,i.e., u + 0 = 0 + u = u, for all u ∈ E1.

(ii) With respect to 0, none of u , r, r ∈ R has opposite in E1.

(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0, and any u ∈ E1, we have (a + b)u = au + bu.

For general a, b ∈ R, the above property does not hold.

(iv) For any a ∈ R and any u, v ∈ E1, we have a(u + v) = au + av.

(v) For any a, b ∈ R and any u ∈ E1, we have a(bu) = (ab)u.

Let W be the set of all closed bounded intervals A of real numbers with endpoints A and A, i.e.,
A := [A,A]. Define the relation d on W by

d(A,B) := max{|A − B|, |A − B|}.

Then it can be easily observed that d is a metric on W and (W, d) is a complete metric space, (cf. Nanda [16]).
Now, we may define the metric D on E1 by means of the Hausdorff metric d as follows

D(u, v) := sup
α∈[0,1]

d([u]α, [v]α) := sup
α∈[0,1]

max{|u−(α) − v−(α)|, |u+(α) − v+(α)|}.

One can see that

D(u, 0) = sup
α∈[0,1]

max{|u−(α)|, |u+(α)|} = max{|u−(0)|, |u+(0)|}. (2)

Now, we may give:
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Proposition 1.2. [6] Let u, v,w, z ∈ E1 and k ∈ R. Then,

(i) (E1,D) is a complete metric space.

(ii) D(ku, kv) = |k|D(u, v).

(iii) D(u + v,w + v) = D(u,w).

(iv) D(u + v,w + z) ≤ D(u,w) + D(v, z).

(v) |D(u, 0) −D(v, 0)| ≤ D(u, v) ≤ D(u, 0) + D(v, 0).

One can extend the natural order relation on the real line to intervals as follows:

A � B if and only if A ≤ B and A ≤ B.

Also, the partial ordering relation on E1 is defined as follows:

u � v⇐⇒ [u]α � [v]α ⇐⇒ u−(α) ≤ v−(α) and u+(α) ≤ v+(α) for all α ∈ [0, 1].

We say that u ≺ v if u � v and there exists α0 ∈ [0, 1] such that u−(α0) < v−(α0) or u+(α0) < v+(α0). Two
fuzzy numbers u and v are said to be incomparable if neither u � v nor v � u holds. In this case we use the
notation u / v .

Following Matloka [14], we give some definitions concerning with the sequences of fuzzy numbers.
Nanda [16] introduced Cauchy sequences of fuzzy numbers and showed that every Cauchy sequence of
fuzzy numbers is convergent.

A sequence u = (uk) of fuzzy numbers is a function u from the set N, the set of natural numbers, into
the set E1. The fuzzy number uk denotes the value of the function at k ∈ N and is called as the kth term of
the sequence. By w(F), we denote the set of all sequences of fuzzy numbers.

A sequence (un) ∈ w(F) is said to be convergent to u ∈ E1, if for every ε > 0 there exists an n0 = n0(ε) ∈N
such that

D(un,u) < ε for all n ≥ n0.

By c(F), we denote the set of all convergent sequences of fuzzy numbers.
A sequence u = (uk) of fuzzy numbers is said to be Cauchy if for every ε > 0 there exists a positive

integer n0 such that

D(uk,um) < ε for all k,m ≥ n0.

By C(F), we denote the set of all Cauchy sequences of fuzzy numbers.
A sequence (un) ∈ ω(F) is said to be bounded if the set of its terms is a bounded set. That is to say that

a sequence (un) ∈ ω(F) is said to be bounded if there exists M > 0 such that D(un, 0) ≤ M for all n ∈ N. By
`∞(F), we denote the set of all bounded sequences of fuzzy numbers.

The level convergence of a sequence of fuzzy numbers given by Fang and Huang [8] , as follows: A
sequence (un) is level-converges to µ ∈ E1, written as (l) − limn→∞ un = µ if

lim
n→∞

u−n (α) = µ−(α) and lim
n→∞

u+
n (α) = µ+(α)

for all α ∈ [0, 1]. Obviously, un → µ implies that (l) − limn→∞ un = µ and the converse is not true in general.
Statistical convergence of sequences of fuzzy numbers was introduced by Nuray and Savaş [17]. A

sequence (uk : k = 0, 1, 2, . . .) of fuzzy numbers is said to be statistically convergent to some fuzzy number µ0
if for every ε > 0 we have

lim
n→∞

1
n + 1

∣∣∣{k ≤ n : D(uk, µ0) ≥ ε}
∣∣∣ = 0.
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In this case we write

st− lim
k→∞

uk = µ0. (3)

The statistical boundedness of a sequence of fuzzy numbers was introduced and studied by Aytar and
Pehlivan [4]. The sequence u = (uk) is said to be statistically bounded if there exists a real number M such
that the set

{k ∈N : D(uk, 0) > M}

has natural density zero.
Aytar et al.[2] defined the concept of statistical limit superior and limit inferior of statistically bounded

sequences of fuzzy numbers. Given u = (uk) ∈ w(F), define the following sets:

Au =
{
µ ∈ E1 : δ

(
{k ∈N : uk ≺ µ}

)
, 0

}
,

Au =
{
µ ∈ E1 : δ

(
{k ∈N : uk � µ}

)
= 1

}
,

Bu =
{
µ ∈ E1 : δ({k ∈N : uk � µ}) , 0

}
,

Bu =
{
µ ∈ E1 : δ({k ∈N : uk ≺ µ}) = 1

}
.

If u = (uk) is a statistically bounded sequence of fuzzy numbers, then, the notions st− lim inf and st− lim sup
is defined as follows:

st− lim inf uk = inf Au = sup Au,

st− lim sup uk = sup Bu = inf Bu.

Lemma 1.3. [2] Let u = (uk) be a statistically bounded sequence of fuzzy numbers, ν = st − lim inf uk and
µ = st − lim sup uk. Then, for every ε > 0

δ ({k ∈N : uk ≺ ν − ε}) = 0 and δ
(
{k ∈N : uk � µ + ε}

)
= 0.

Basic results on statistical convergence of sequences of fuzzy numbers may be found in [3–5, 13, 18].
The statistical Cesàro convergence of a sequence of fuzzy numbers has been defined in [1]. We say that

(uk) is statistically Cesàro convergent (written statistically (C,1)-convergent) to a fuzzy number µ0 if

st− lim
n→∞

σn = µ0. (4)

Kwon [13] proved that if a sequence (uk) is bounded, then

st− lim
k→∞

uk = µ0 implies st− lim
n→∞

σn = µ0.

Example 1.4. Let (uk) = (u0, v0,u0, v0, ...) where

u0(t) =

{
2−t

2 , if t ∈ [0, 2]
0 , otherwise

and

v0(t) =

{
2+t

2 , if t ∈ [−2, 0]
0 , otherwise

Then α−level set of arithmetic means σn of (uk)

[σ2n]α =

[
2n

2n + 1
(α − 1),

2(n + 1)
2n + 1

(1 − α)
]

and [σ2n−1]α = [α − 1, 1 − α] .

So, (σn) is convergent to w0 = (u0 + v0)/2 and hence it is statistically (C, 1)-convergent to w0. But (un) is not
statistically convergent.

Our goal is to find (so-called Tauberian) conditions under which the converse implication holds.
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2. The Main Results

Firstly we need two lemmas.

Lemma 2.1. Let (uk) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number µ0.
Then for every λ > 0,

st− lim
n
σλn = µ0 (5)

where by λn we denote the integral part of the product λn, in symbol λn := [λn].

Proof. Case λ > 1. For all ε > 0,{
n ≤ N : D(σλn , µ0) ≥ ε

}
⊆

{
n ≤ λN : D(σn, µ0) ≥ ε

}
,

whence we find

1
N + 1

∣∣∣{n ≤ N : D(σλn , µ0) ≥ ε
}∣∣∣ ≤ λ

λN + 1

∣∣∣{n ≤ λN : D(σn, µ0) ≥ ε
}∣∣∣ .

Now, (5) follows from the statistical convergence of (σn) to µ0.
Case 0 < λ < 1. We claim that the same term σm can not occur more than 1 + λ−1 times in the sequence

{σλn : n = 0, 1, 2, ...}. In fact, if for some integers k and t, we have

m = λk = λk+1 = ... = λk+t−1 < λk+t

or equivalently

m ≤ λk < λ(k + 1) < ... < λ(k + t − 1) < m + 1 ≤ λ(k + t)

then

m + λ(t − 1) ≤ λ(k + t − 1) < m + 1

whence λ(t − 1) < 1, that is t < 1 + λ−1. Consequently,

1
N + 1

∣∣∣∣{n ≤ N : D(σλn , µ0) ≥ ε
}∣∣∣∣ ≤ (

1 +
1
λ

)
λN + 1
N + 1

1
λN + 1

∣∣∣∣{n ≤ λN : D(σn, µ0) ≥ ε
}∣∣∣∣

≤
2(λ + 1)
λN + 1

∣∣∣∣{n ≤ λN : D(σn, µ0) ≥ ε
}∣∣∣∣

provided (λN + 1)/(N + 1) ≤ 2λ, which is the case if N is large enough. So, (5) follows from the statistical
convergence of (σn) to µ0.

Lemma 2.2. Let (uk) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number µ0.
Then, for every λ > 1,

st− lim
n

1
λn − n

λn∑
k=n+1

uk = µ0 (6)

and for every 0 < λ < 1,

st− lim
n

1
n − λn

n∑
k=λn+1

uk = µ0.
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Proof. Case λ > 1. If λ > 1 and n is large enough in the sense that λn > n, then

D

 1
λn − n

λn∑
k=n+1

uk, µ0

 ≤ λn + 1
λn − n

D
(
σλn , σn

)
+ D(σn, µ0) (7)

Now (6) follows from (7), Lemma 2.1, the statistical convergence of (σn) and the fact that for large enough n

λ
λ − 1

=
λn

λn − n
<
λn + 1
λn − n

<
λn + 1

λn − n − 1
≤

2λ
λ − 1

. (8)

Case 0 < λ < 1. This time, we use the following inequality:

D

 1
n − λn

n∑
k=λn+1

uk, µ0

 ≤ λn + 1
n − λn

D
(
σλn , σn

)
+ D(σn, µ0)

provided n is large enough in the sense that λn < n; and the following inequality for large enough n,

λn + 1
n − λn

≤
2λ

1 − λ
. (9)

Now we are ready to give our main results.

Theorem 2.3. Let (uk) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number µ0.
Then (uk) is statistically convergent to µ0 if and only if one of the following two conditions holds: For every ε > 0,

inf
λ>1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
λn − n

λn∑
k=n+1

uk,un

 ≥ ε

∣∣∣∣∣∣∣ = 0 (10)

or

inf
0<λ<1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
n − λn

n∑
k=λn+1

uk,un

 ≥ ε

∣∣∣∣∣∣∣ = 0. (11)

Proof. The necessity follows from Lemma 2.2.
Sufficiency. Assume that conditions (4) and one of (10) and (11) are satisfied. In order to prove (3), it is

enough to prove that

st− lim
n

D(un, σn) = 0.

First, we consider the case λ > 1. Since

D(σn,un) ≤ D

 1
λn − n

λn∑
k=n+1

uk,un

 +
λn + 1
λn − n

D
(
σλn , σn

)
for any ε > 0 we have{

n ≤ N : D(σn,un) ≥ ε
}
⊆

{
n ≤ N :

λn + 1
λn − n

D
(
σλn , σn

)
≥
ε
2

}
(12)

∪

n ≤ N : D

 1
λn − n

λn∑
k=n+1

uk,un

 ≥ ε2
 .

Given any δ > 0 , by (10) there exists some λ > 1 such that

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
λn − n

λn∑
k=n+1

uk,un

 ≥ ε2

∣∣∣∣∣∣∣ ≤ δ. (13)
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On the other hand, by Lemma 2.1 and (8), we have

lim sup
N→∞

1
N + 1

∣∣∣∣∣{n ≤ N :
λn + 1
λn − n

D
(
σλn , σn

)
≥
ε
2

}∣∣∣∣∣ = 0. (14)

Combining (12) with (14) we get that

lim sup
N→∞

1
N + 1

∣∣∣∣{n ≤ N : D (un, σn) ≥ ε
}∣∣∣∣ ≤ δ

Since δ > 0 is arbitrary, we conclude that for every ε > 0,

lim
N→∞

1
N + 1

∣∣∣∣{n ≤ N : D (un, σn) ≥ ε
}∣∣∣∣ = 0.

Secondly, we consider the case 0 < λ < 1. Since

D(σn,un) ≤ D

 1
n − λn

n∑
k=λn+1

uk,un

 +
λn + 1
n − λn

D
(
σλn , σn

)
for any ε > 0, we have{

n ≤ N : D(σn,un) ≥ ε
}
⊆

{
n ≤ N :

λn + 1
n − λn

D
(
σλn , σn

)
≥
ε
2

}
∪

n ≤ N : D

 1
n − λn

n∑
k=λn+1

uk,un

 ≥ ε2
 .

Given any δ > 0 , by (11) there exist some 0 < λ < 1 such that

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
n − λn

n∑
k=λn+1

uk,un

 ≥ ε2

∣∣∣∣∣∣∣ ≤ δ.

Using a similar argument as in the case λ > 1, by Lemma 2.1 and condition (9), we conclude that

lim
N→∞

1
N + 1

∣∣∣∣{n ≤ N : D (un, σn) ≥ ε
}∣∣∣∣ = 0.

A sequence (uk) of fuzzy numbers is said to be statistically slowly oscillating if for every ε > 0

inf
λ>1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣
{

n ≤ N : max
n<k≤λn

D(uk,un) ≥ ε
}∣∣∣∣∣∣ = 0 (15)

or equivalently,

inf
0<λ<1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣
{

n ≤ N : max
λn<k≤n

D(uk,un) ≥ ε
}∣∣∣∣∣∣ = 0. (16)

Example 2.4. The sequence (uk) where

uk(t) =

{
1 − t

1+log(k+1) , if 0 ≤ t ≤ 1 + log(k + 1),
0 , otherwise,

is statistically slowly oscillating. Because for every ε > 0 there exist n0 = n0(ε) and λ = 10ε such that for all
n0 < n < k ≤ λn

D(uk,un) =
∣∣∣log(k + 1) − lo1(n + 1)

∣∣∣ = log
k + 1
n + 1

< logλ = ε.
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Therefore, for n0 < N the set{
n0 < n ≤ N : max

n<k≤λn

D(uk,un) ≥ ε
}

is empty. Consequently, condition (15) is satisfied.

The conditions (15) and (16) are clearly imply the conditions (10) and (11), respectively. This gives rise
to the following corollary of Theorem 2.3.

Corollary 2.5. Let (uk) be a statistically slowly oscillating sequence of fuzzy numbers. Then

st− lim
n
σn = µ0 implies st− lim

n
un = µ0. (17)

Condition (15) is satisfied if there exists a constant H such that

kD(uk,uk−1) ≤ H (18)

for all large enough k, say k > N1. In fact, given ε > 0, chose 1 < λ < 1 + ε/H. Since N1 < n < k ≤ λn, by (18)
we have

D(uk,un) ≤
k∑

j=n+1

D(u j,u j−1) ≤
k∑

j=n+1

H
j
≤ H

(
k − n

n

)
= H

(
k
n
− 1

)
< H(λ − 1) < ε.

But, for N1 < N, the set{
N1 < n ≤ N : max

n<k≤λn

D(uk,un) ≥ ε
}

is empty. Consequently, condition (15) is satisfied.

Remark 2.6. Kwon [13] proved that if condition (18) is satisfied, then implication (17) holds as well as

st− lim
n

un = µ0 implies lim
n

un = µ0.

Definition 2.7. (uk) is Cesàro level-convergent (written (C, 1)-level-convergent) to a fuzzy number µ0, if (l) −
limn→∞ σn = µ0 i.e.,

lim
n→∞

σ−n (α) = lim
n→∞

1
n + 1

n∑
k=0

u−k (α) = µ−0 (α), lim
n→∞

σ+
n (α) = lim

n→∞

1
n + 1

n∑
k=0

u+
k (α) = µ+

0 (α)

for all α ∈ [0, 1].

Note that level-convergence implies (C,1)-level-convergence. But the converse is not true in general.

Example 2.8. [21] Let

v+
n (α) = 1, v−n (α) =

{
(α − 1

2 )1/(n+1), if 1
2 < α ≤ 1,

0, if 0 ≤ α ≤ 1
2 ,

µ+
0 (α) =

1
2
, µ−0 (α) =

{ 1
2 , if 1

2 < α ≤ 1,
0, if 0 ≤ α ≤ 1

2 .

There exists a unique fuzzy number vn ∈ E1 and a unique fuzzy number u0 ∈ E1 such that [vn]α = [v−n (α), v+
n (α)]

and [µ0]α = [µ−0 (α), µ+
0 (α)] for all α ∈ [0, 1]. Let u = (un) = (v0, 0, v1, 0, v2, ...). Since

lim
n→∞

σ+
n (α) = µ+

0 (α), lim
n→∞

σ−n (α) = µ−0 (α)

(un) is (C,1)-level-convergent to µ0 but (un) is not level-convergent to µ0. Furthermore, since D(σn, µ0) = 1
2 , (un) is

not (C,1) convergent to µ0.
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In [11, Theorem 5] Fridy and Orhan proved that a sequence of real numbers which is (C, 1)-convergent to
its statistical limit superior is statistically convergent. The next theorem is an analogue of that result for
sequences of fuzzy numbers.

Theorem 2.9. Let (uk) be a bounded sequence of fuzzy numbers. Assume that (uk) is (C, 1)-level-convergent to
µ = st − lim sup uk and there is a number ε0 > 0 such that for each ε ∈ (0, ε0),

δ({k ∈N : uk / µ − ε}) = 0, δ({k ∈N : uk / µ + ε}) = 0.

Then (uk) is statistically convergent to µ.

Proof. Since µ = st − lim sup uk, then

δ({k ∈N : uk � µ + ε}) = 0

for each ε > 0. Suppose that (un) is not statistically convergent to µ. Then, there is a ε1 ∈ (0, ε0) such that

δ({k ∈N : uk ≺ µ − ε1}) , 0.

Define m = µ − ε1, B = supn un and

K
′

= {k ∈N : uk ≺ m}
K
′′

= {k ∈N : m � uk � µ + ε}

K
′′′

= {k ∈N : uk � µ + ε} ∪ {k ∈N : uk / m} ∪ {k ∈N : uk / µ + ε}.

Since δ(K′′′ ) = 0, δ(K′ ) , 0 and δ(K′′ ) = 1 − δ(K′ ) there are infinitely many n such that

1
n + 1

|K
′

n| ≥ d > 0

and for each such n we have

σn =
1

n + 1

∑
k∈K′n

uk +
1

n + 1

∑
k∈K′′n

uk +
1

n + 1

∑
k∈K′′′n

uk

≺
m

n + 1
|K
′

n| +
µ + ε

n + 1
|K
′′

n | +
B

n + 1
|K
′′′

n |.

So there is an α0 ∈ [0, 1] such that

σ−n (α0) <
m−(α0)
n + 1

|K
′

n| +
µ−(α0) + ε

n + 1
|K
′′

n | +
B−(α0)
n + 1

|K
′′′

n |

= m−(α0)
|K′n|

n + 1
+

(
µ−(α0) + ε

) (
1 −

|K′n|
n + 1

)
+ o(1)

≤ µ−(α0) − d
(
µ−(α0) −m−(α0)

)
+ ε(1 − d) + o(1).

Since ε ∈ (0, ε0) is arbitrary it follows that

lim inf σ−n (α0) ≤ µ−(α0) − d
(
µ−(α0) −m−(α0)

)
< µ−(α0).

Hence, (un) is not (C, 1)-level-convergent to µ and this completes the proof. Note that the result can be
found also by using the following inequality

σ+
n (α0) <

m+(α0)
n + 1

|K
′

n| +
µ+(α0) + ε

n + 1
|K
′′

n | +
B+(α0)
n + 1

|K
′′′

n |.

The following is a dual result for st − lim inf.



Ö. Talo, C. Çakan / Filomat 28 (2014), 849–858 858

Theorem 2.10. Let (uk) be a bounded sequence of fuzzy numbers. Assume that (uk) is (C, 1)-level-convergent to
ν = st − lim inf uk and there is a number ε0 > 0 such that for each ε ∈ (0, ε0),

δ({k ∈N : uk / ν − ε}) = 0, δ({k ∈N : uk / ν + ε}) = 0.

Then, (uk) is statistically convergent to ν.
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[20] Ö. Talo, C. Çakan, On the Cesàro convergence of sequences of fuzzy numbers, Applied Mathematics Letters 25(4) (2012) 676–681.
[21] C. -X. Wu, G. -X. Wang, Convergence of fuzzy numbers and fixed point theorems for incresaing fuzzy mappings and application,

Fuzzy Sets and Systems 130 (2002), 283–290.


