Filomat 28 (2014), 849–858 DOI 10.2298/FIL1404849T

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Tauberian Theorems for Statistically (*C*, 1)-Convergent Sequences of Fuzzy Numbers

Özer Talo^a, Celal Çakan^b

^aDepartment of Mathematics, Faculty of Art and Sciences, Celal Bayar University, 45040 Manisa, Turkey ^bDepartment of Mathematics Education, Faculty of Education, İnönü University, 44280- Malatya,Turkey.

Abstract. In this paper, we have determined necessary and sufficient Tauberian conditions under which statistically convergence follows from statistically (C, 1)-convergence of sequences of fuzzy numbers. Our conditions are satisfied if a sequence of fuzzy numbers is statistically slowly oscillating. Also, under additional conditions it is proved that a bounded sequence of fuzzy numbers which is (C, 1)-level-convergent to its statistical limit superior is statistically convergent.

1. Introduction and Preliminaries

Let K be a subset of natural numbers \mathbb{N} and $K_n = \{k \le n : k \in K\}$, The natural density of K is given by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K_n|$$

if this limit exists, where |A| denotes the number of elements in A. The concept of statistical convergence was introduced by Fast [9]. A sequence $(x_k)_{k \in \mathbb{N}}$ of (real or complex) numbers is said to be *statistically convergent* to some number l if for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{1}{n+1}\left|\left\{k\leq n:|x_k-l|\geq\varepsilon\right\}\right|=0.$$

In this case, we write st– $\lim_{k\to\infty} x_k = l$.

A sequence (x_k) is (C, 1) convergent to ℓ if $\lim \sigma_n = \ell$, where

$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^n x_k \quad (n = 0, 1, 2...),$$
(1)

is the first arithmetic mean, also called Cesàro mean (of first order). In this case we write (C, 1)– $\lim_{k\to\infty} x_k = \ell$.

The idea of statistical (*C*, 1)-convergence was introduced in [15] by Móricz. A sequence (x_k) is statistically (*C*, 1)-convergent to ℓ if $st - \lim \sigma_n = \ell$. In addition to, necessary and sufficient conditions, under which st- $\lim_{k\to\infty} x_k = \ell$ follows from $st - \lim \sigma_n = \ell$ are presented in [15] by Moricz.

Received 05 June 2013; Revised 17 July 2013 Accepted: 17 July 2013

²⁰¹⁰ Mathematics Subject Classification. Primary 40C05 ; Secondary 03E72, 46A45, 40J05

Keywords. Sequences of fuzzy numbers, Cesáro convergence, Tauberian theorems, statistical convergence

Communicated by Eberhard Malkowsky

Email addresses: ozertalo@hotmail.com, ozer.talo@cbu.edu.tr (Özer Talo), ccakan@inonu.edu.tr (Celal Çakan)

In this paper, our primary interest is to obtain the results in [15] for sequences of fuzzy numbers. We recall the basic definitions dealing with fuzzy numbers.

A *fuzzy number* is a fuzzy set on the real axis, i.e. a mapping $u : \mathbb{R} \to [0, 1]$ which satisfies the following four conditions:

(i) *u* is normal, i.e., there exists an $x_0 \in \mathbb{R}$ such that $u(x_0) = 1$.

(ii) *u* is fuzzy convex, i.e. $u[\lambda x + (1 - \lambda)y] \ge \min\{u(x), u(y)\}$ for all $x, y \in \mathbb{R}$ and for all $\lambda \in [0, 1]$.

(iii) *u* is upper semi-continuous.

(iv) The set $[u]_0 := \overline{\{x \in \mathbb{R} : u(x) > 0\}}$ is compact,

where $\overline{\{x \in \mathbb{R} : u(x) > 0\}}$ denotes the closure of the set $\{x \in \mathbb{R} : u(x) > 0\}$ in the usual topology of \mathbb{R} . We denote the set of all fuzzy numbers on \mathbb{R} by E^1 and called it as *the space of fuzzy numbers*. α -*level set* $[u]_{\alpha}$ of $u \in E^1$ is defined by

$$[u]_{\alpha} := \begin{cases} \frac{\{x \in \mathbb{R} : u(x) \ge \alpha\}}{\{x \in \mathbb{R} : u(x) > \alpha\}}, & \text{if } 0 < \alpha \le 1, \\ \frac{1}{\{x \in \mathbb{R} : u(x) > \alpha\}}, & \text{if } \alpha = 0. \end{cases}$$

The set $[u]_{\alpha}$ is closed, bounded and non-empty interval for each $\alpha \in [0,1]$ which is defined by $[u]_{\alpha} := [u^{-}(\alpha), u^{+}(\alpha)]$. \mathbb{R} can be embedded in E^{1} , since each $r \in \mathbb{R}$ can be regarded as a fuzzy number \overline{r} defined by

$$\overline{r}(x) := \begin{cases} 1 & , & \text{if } x = r, \\ 0 & , & \text{if } x \neq r. \end{cases}$$

Let $u, v, w \in E^1$ and $k \in \mathbb{R}$. Then the operations addition and scalar multiplication are defined on E^1 as

$$u + v = w \iff [w]_{\alpha} = [u]_{\alpha} + [v]_{\alpha} \text{ for all } \alpha \in [0, 1]$$
$$\iff w^{-}(\alpha) = u^{-}(\alpha) + v^{-}(\alpha) \text{ and } w^{+}(\alpha) = u^{+}(\alpha) + v^{+}(\alpha) \text{ for all } \alpha \in [0, 1],$$

 $[ku]_{\alpha} = k[u]_{\alpha}$ for all $\alpha \in [0, 1]$.

Lemma 1.1. [6]

- (*i*) If $\overline{0} \in E^1$ is neutral element with respect to +,*i.e.*, $u + \overline{0} = \overline{0} + u = u$, for all $u \in E^1$.
- (*ii*) With respect to $\overline{0}$, none of $u \neq \overline{r}$, $r \in \mathbb{R}$ has opposite in E^1 .
- (iii) For any $a, b \in \mathbb{R}$ with $a, b \ge 0$ or $a, b \le 0$, and any $u \in E^1$, we have (a + b)u = au + bu. For general $a, b \in \mathbb{R}$, the above property does not hold.
- (iv) For any $a \in \mathbb{R}$ and any $u, v \in E^1$, we have a(u + v) = au + av.
- (v) For any $a, b \in \mathbb{R}$ and any $u \in E^1$, we have a(bu) = (ab)u.

Let *W* be the set of all closed bounded intervals *A* of real numbers with endpoints <u>A</u> and \overline{A} , i.e., $A := [A, \overline{A}]$. Define the relation *d* on *W* by

 $d(A, B) := \max\{|\underline{A} - \underline{B}|, |\overline{A} - \overline{B}|\}.$

Then it can be easily observed that *d* is a metric on *W* and (*W*, *d*) is a complete metric space, (cf. Nanda [16]). Now, we may define the metric *D* on E^1 by means of the Hausdorff metric *d* as follows

$$D(u,v) := \sup_{\alpha \in [0,1]} d([u]_{\alpha}, [v]_{\alpha}) := \sup_{\alpha \in [0,1]} \max\{|u^{-}(\alpha) - v^{-}(\alpha)|, |u^{+}(\alpha) - v^{+}(\alpha)|\}.$$

One can see that

$$D(u, \overline{0}) = \sup_{\alpha \in [0,1]} \max\{|u^{-}(\alpha)|, |u^{+}(\alpha)|\} = \max\{|u^{-}(0)|, |u^{+}(0)|\}.$$
(2)

Now, we may give:

Proposition 1.2. [6] Let $u, v, w, z \in E^1$ and $k \in \mathbb{R}$. Then,

- (*i*) (E^1, D) is a complete metric space.
- (ii) D(ku, kv) = |k|D(u, v).
- $(iii) \ D(u+v,w+v) = D(u,w).$
- (*iv*) $D(u + v, w + z) \le D(u, w) + D(v, z)$.
- $(v) |D(u,\overline{0}) D(v,\overline{0})| \le D(u,v) \le D(u,\overline{0}) + D(v,\overline{0}).$

One can extend the natural order relation on the real line to intervals as follows:

 $A \leq B$ if and only if $A \leq B$ and $\overline{A} \leq \overline{B}$.

Also, the partial ordering relation on E^1 is defined as follows:

$$u \leq v \iff [u]_{\alpha} \leq [v]_{\alpha} \iff u^{-}(\alpha) \leq v^{-}(\alpha) \text{ and } u^{+}(\alpha) \leq v^{+}(\alpha) \text{ for all } \alpha \in [0, 1].$$

We say that u < v if $u \le v$ and there exists $\alpha_0 \in [0, 1]$ such that $u^-(\alpha_0) < v^-(\alpha_0)$ or $u^+(\alpha_0) < v^+(\alpha_0)$. Two fuzzy numbers u and v are said to be incomparable if neither $u \le v$ nor $v \le u$ holds. In this case we use the notation $u \neq v$.

Following Matloka [14], we give some definitions concerning with the sequences of fuzzy numbers. Nanda [16] introduced Cauchy sequences of fuzzy numbers and showed that every Cauchy sequence of fuzzy numbers is convergent.

A sequence $u = (u_k)$ of fuzzy numbers is a function u from the set \mathbb{N} , the set of natural numbers, into the set E^1 . The fuzzy number u_k denotes the value of the function at $k \in \mathbb{N}$ and is called as the k^{th} term of the sequence. By w(F), we denote the set of all sequences of fuzzy numbers.

A sequence $(u_n) \in w(F)$ is said to be convergent to $u \in E^1$, if for every $\varepsilon > 0$ there exists an $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that

 $D(u_n, u) < \varepsilon$ for all $n \ge n_0$.

By c(F), we denote the set of all convergent sequences of fuzzy numbers.

A sequence $u = (u_k)$ of fuzzy numbers is said to be Cauchy if for every $\varepsilon > 0$ there exists a positive integer n_0 such that

 $D(u_k, u_m) < \varepsilon$ for all $k, m \ge n_0$.

By C(F), we denote the set of all Cauchy sequences of fuzzy numbers.

A sequence $(u_n) \in \omega(F)$ is said to be bounded if the set of its terms is a bounded set. That is to say that a sequence $(u_n) \in \omega(F)$ is said to be bounded if there exists M > 0 such that $D(u_n, \overline{0}) \leq M$ for all $n \in \mathbb{N}$. By $\ell_{\infty}(F)$, we denote the set of all bounded sequences of fuzzy numbers.

The level convergence of a sequence of fuzzy numbers given by Fang and Huang [8], as follows: A sequence (u_n) is level-converges to $\mu \in E^1$, written as $(l) - \lim_{n \to \infty} u_n = \mu$ if

$$\lim_{n \to \infty} u_n^-(\alpha) = \mu^-(\alpha) \text{ and } \lim_{n \to \infty} u_n^+(\alpha) = \mu^+(\alpha)$$

for all $\alpha \in [0, 1]$. Obviously, $u_n \to \mu$ implies that $(l) - \lim_{n \to \infty} u_n = \mu$ and the converse is not true in general.

Statistical convergence of sequences of fuzzy numbers was introduced by Nuray and Savaş [17]. A sequence ($u_k : k = 0, 1, 2, ...$) of fuzzy numbers is said to be *statistically convergent* to some fuzzy number μ_0 if for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{1}{n+1}\big|\{k\leq n: D(u_k,\mu_0)\geq\varepsilon\}\big|=0.$$

In this case we write

$$\operatorname{st-}\lim_{k \to \infty} u_k = \mu_0. \tag{3}$$

The statistical boundedness of a sequence of fuzzy numbers was introduced and studied by Aytar and Pehlivan [4]. The sequence $u = (u_k)$ is said to be statistically bounded if there exists a real number M such that the set

$$\{k \in \mathbb{N} : D(u_k, 0) > M\}$$

has natural density zero.

Aytar et al.[2] defined the concept of statistical limit superior and limit inferior of statistically bounded sequences of fuzzy numbers. Given $u = (u_k) \in w(F)$, define the following sets:

$$\begin{split} A_u &= \left\{ \mu \in E^1 : \delta \left(\{k \in \mathbb{N} : u_k < \mu\} \right) \neq 0 \right\}, \\ \overline{A}_u &= \left\{ \mu \in E^1 : \delta \left(\{k \in \mathbb{N} : u_k > \mu\} \right) = 1 \right\}, \\ B_u &= \left\{ \mu \in E^1 : \delta (\{k \in \mathbb{N} : u_k > \mu\}) \neq 0 \right\}, \\ \overline{B}_u &= \left\{ \mu \in E^1 : \delta (\{k \in \mathbb{N} : u_k < \mu\}) \neq 1 \right\}. \end{split}$$

If $u = (u_k)$ is a statistically bounded sequence of fuzzy numbers, then, the notions $st - \lim one st - \dots one$

st-lim inf u_k = inf A_u = sup \overline{A}_u , st-lim sup u_k = sup B_u = inf \overline{B}_u .

Lemma 1.3. [2] Let $u = (u_k)$ be a statistically bounded sequence of fuzzy numbers, $v = st - \liminf u_k$ and $\mu = st - \limsup u_k$. Then, for every $\varepsilon > 0$

$$\delta\left(\{k \in \mathbb{N} : u_k < v - \overline{\varepsilon}\}\right) = 0 \quad and \quad \delta\left(\{k \in \mathbb{N} : u_k > \mu + \overline{\varepsilon}\}\right) = 0$$

Basic results on statistical convergence of sequences of fuzzy numbers may be found in [3–5, 13, 18]. The statistical Cesàro convergence of a sequence of fuzzy numbers has been defined in [1]. We say that (u_k) is statistically Cesàro convergent (written statistically (C,1)-convergent) to a fuzzy number μ_0 if

$$\operatorname{st-}\lim_{n\to\infty}\sigma_n=\mu_0.$$
(4)

Kwon [13] proved that if a sequence (u_k) is bounded, then

 $\operatorname{st-}\lim_{k\to\infty}u_k=\mu_0$ implies $\operatorname{st-}\lim_{n\to\infty}\sigma_n=\mu_0.$

Example 1.4. Let $(u_k) = (u_0, v_0, u_0, v_0, ...)$ where

$$u_0(t) = \begin{cases} \frac{2-t}{2} &, & if \ t \in [0,2] \\ 0 &, & otherwise \end{cases}$$

and

$$v_0(t) = \begin{cases} \frac{2+t}{2} &, & if \ t \in [-2,0] \\ 0 &, & otherwise \end{cases}$$

Then α *-level set of arithmetic means* σ_n *of* (u_k)

$$[\sigma_{2n}]_{\alpha} = \left[\frac{2n}{2n+1}(\alpha-1), \frac{2(n+1)}{2n+1}(1-\alpha)\right] and [\sigma_{2n-1}]_{\alpha} = [\alpha-1, 1-\alpha].$$

So, (σ_n) is convergent to $w_0 = (u_0 + v_0)/2$ and hence it is statistically (C, 1)-convergent to w_0 . But (u_n) is not statistically convergent.

Our goal is to find (so-called Tauberian) conditions under which the converse implication holds.

852

2. The Main Results

Firstly we need two lemmas.

Lemma 2.1. Let (u_k) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number μ_0 . Then for every $\lambda > 0$,

$$\operatorname{st-}\lim_{n}\sigma_{\lambda_{n}}=\mu_{0}\tag{5}$$

where by λ_n we denote the integral part of the product λn , in symbol $\lambda_n := [\lambda n]$.

Proof. Case $\lambda > 1$. For all $\varepsilon > 0$,

$$\{n \leq N : D(\sigma_{\lambda_n}, \mu_0) \geq \varepsilon\} \subseteq \{n \leq \lambda_N : D(\sigma_n, \mu_0) \geq \varepsilon\},\$$

whence we find

$$\frac{1}{N+1} \left| \{n \le N : D(\sigma_{\lambda_n}, \mu_0) \ge \varepsilon \} \right| \le \frac{\lambda}{\lambda_N + 1} \left| \{n \le \lambda_N : D(\sigma_n, \mu_0) \ge \varepsilon \} \right|.$$

Now, (5) follows from the statistical convergence of (σ_n) to μ_0 .

Case $0 < \lambda < 1$. We claim that the same term σ_m can not occur more than $1 + \lambda^{-1}$ times in the sequence $\{\sigma_{\lambda_n} : n = 0, 1, 2, ...\}$. In fact, if for some integers k and t, we have

$$m = \lambda_k = \lambda_{k+1} = \dots = \lambda_{k+t-1} < \lambda_{k+t}$$

or equivalently

$$m \le \lambda k < \lambda (k+1) < \ldots < \lambda (k+t-1) < m+1 \le \lambda (k+t)$$

then

$$m + \lambda(t-1) \le \lambda(k+t-1) < m+1$$

whence $\lambda(t-1) < 1$, that is $t < 1 + \lambda^{-1}$. Consequently,

$$\frac{1}{N+1} \left| \left\{ n \le N : D(\sigma_{\lambda_n}, \mu_0) \ge \varepsilon \right\} \right| \le \left(1 + \frac{1}{\lambda} \right) \frac{\lambda_N + 1}{N+1} \frac{1}{\lambda_N + 1} \left| \left\{ n \le \lambda_N : D(\sigma_n, \mu_0) \ge \varepsilon \right\} \right| \le \frac{2(\lambda+1)}{\lambda_N + 1} \left| \left\{ n \le \lambda_N : D(\sigma_n, \mu_0) \ge \varepsilon \right\} \right|$$

provided $(\lambda_N + 1)/(N + 1) \le 2\lambda$, which is the case if *N* is large enough. So, (5) follows from the statistical convergence of (σ_n) to μ_0 . \Box

Lemma 2.2. Let (u_k) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number μ_0 . Then, for every $\lambda > 1$,

$$\operatorname{st-\lim}_{n} \frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k = \mu_0 \tag{6}$$

and for every $0 < \lambda < 1$,

$$\operatorname{st-lim}_n \frac{1}{n-\lambda_n} \sum_{k=\lambda_n+1}^n u_k = \mu_0.$$

Proof. Case $\lambda > 1$. If $\lambda > 1$ and *n* is large enough in the sense that $\lambda_n > n$, then

$$D\left(\frac{1}{\lambda_n - n}\sum_{k=n+1}^{\lambda_n} u_k, \mu_0\right) \le \frac{\lambda_n + 1}{\lambda_n - n} D\left(\sigma_{\lambda_n}, \sigma_n\right) + D(\sigma_n, \mu_0)$$
(7)

Now (6) follows from (7), Lemma 2.1, the statistical convergence of (σ_n) and the fact that for large enough n

$$\frac{\lambda}{\lambda-1} = \frac{\lambda n}{\lambda n-n} < \frac{\lambda_n+1}{\lambda_n-n} < \frac{\lambda n+1}{\lambda n-n-1} \le \frac{2\lambda}{\lambda-1}.$$
(8)

Case $0 < \lambda < 1$. This time, we use the following inequality:

$$D\left(\frac{1}{n-\lambda_n}\sum_{k=\lambda_n+1}^n u_k, \mu_0\right) \leq \frac{\lambda_n+1}{n-\lambda_n} D\left(\sigma_{\lambda_n}, \sigma_n\right) + D(\sigma_n, \mu_0)$$

provided *n* is large enough in the sense that $\lambda_n < n$; and the following inequality for large enough *n*,

$$\frac{\lambda_n + 1}{n - \lambda_n} \le \frac{2\lambda}{1 - \lambda}.\tag{9}$$

Now we are ready to give our main results.

Theorem 2.3. Let (u_k) be a sequence of fuzzy numbers which is statistically (C, 1)-convergent to a fuzzy number μ_0 . Then (u_k) is statistically convergent to μ_0 if and only if one of the following two conditions holds: For every $\varepsilon > 0$,

$$\inf_{\lambda>1} \limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, u_n \right) \ge \varepsilon \right\} \right| = 0$$
(10)

or

$$\inf_{0<\lambda<1}\limsup_{N\to\infty}\frac{1}{N+1}\left|\left\{n\leq N: D\left(\frac{1}{n-\lambda_n}\sum_{k=\lambda_n+1}^n u_k, u_n\right)\geq\varepsilon\right\}\right|=0.$$
(11)

Proof. The necessity follows from Lemma 2.2.

Sufficiency. Assume that conditions (4) and one of (10) and (11) are satisfied. In order to prove (3), it is enough to prove that

 $\operatorname{st-lim} D(u_n,\sigma_n)=0.$

First, we consider the case $\lambda > 1$. Since

$$D(\sigma_n, u_n) \le D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, u_n\right) + \frac{\lambda_n + 1}{\lambda_n - n} D\left(\sigma_{\lambda_n}, \sigma_n\right)$$

for any $\varepsilon > 0$ we have

$$\left\{n \le N : D(\sigma_n, u_n) \ge \varepsilon\right\} \subseteq \left\{n \le N : \frac{\lambda_n + 1}{\lambda_n - n} D(\sigma_{\lambda_n}, \sigma_n) \ge \frac{\varepsilon}{2}\right\} \qquad (12)$$

$$\cup \left\{n \le N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, u_n\right) \ge \frac{\varepsilon}{2}\right\}.$$

Given any $\delta > 0$, by (10) there exists some $\lambda > 1$ such that

$$\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, u_n \right) \ge \frac{\varepsilon}{2} \right\} \right| \le \delta.$$
(13)

On the other hand, by Lemma 2.1 and (8), we have

$$\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : \frac{\lambda_n + 1}{\lambda_n - n} D\left(\sigma_{\lambda_n}, \sigma_n\right) \ge \frac{\varepsilon}{2} \right\} \right| = 0.$$
(14)

Combining (12) with (14) we get that

$$\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : D(u_n, \sigma_n) \ge \varepsilon \right\} \right| \le \delta$$

Since $\delta > 0$ is arbitrary, we conclude that for every $\varepsilon > 0$,

$$\lim_{N\to\infty}\frac{1}{N+1}\left|\left\{n\leq N:D\left(u_n,\sigma_n\right)\geq\varepsilon\right\}\right|=0.$$

Secondly, we consider the case $0 < \lambda < 1$. Since

$$D(\sigma_n, u_n) \leq D\left(\frac{1}{n-\lambda_n}\sum_{k=\lambda_n+1}^n u_k, u_n\right) + \frac{\lambda_n+1}{n-\lambda_n}D(\sigma_{\lambda_n}, \sigma_n)$$

for any $\varepsilon > 0$, we have

$$\left\{ n \le N : D(\sigma_n, u_n) \ge \varepsilon \right\} \subseteq \left\{ n \le N : \frac{\lambda_n + 1}{n - \lambda_n} D(\sigma_{\lambda_n}, \sigma_n) \ge \frac{\varepsilon}{2} \right\} \\ \cup \left\{ n \le N : D\left(\frac{1}{n - \lambda_n} \sum_{k = \lambda_n + 1}^n u_k, u_n\right) \ge \frac{\varepsilon}{2} \right\}.$$

Given any $\delta > 0$, by (11) there exist some $0 < \lambda < 1$ such that

$$\limsup_{N\to\infty}\frac{1}{N+1}\left|\left\{n\leq N: D\left(\frac{1}{n-\lambda_n}\sum_{k=\lambda_n+1}^n u_k, u_n\right)\geq \frac{\varepsilon}{2}\right\}\right|\leq \delta.$$

Using a similar argument as in the case $\lambda > 1$, by Lemma 2.1 and condition (9), we conclude that

$$\lim_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : D\left(u_n, \sigma_n\right) \ge \varepsilon \right\} \right| = 0.$$

A sequence (u_k) of fuzzy numbers is said to be *statistically slowly oscillating* if for every $\varepsilon > 0$

$$\inf_{\lambda>1} \limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \le N : \max_{n < k \le \lambda_n} D(u_k, u_n) \ge \varepsilon \right\} \right| = 0$$
(15)

or equivalently,

$$\inf_{0<\lambda<1}\limsup_{N\to\infty}\frac{1}{N+1}\left|\left\{n\leq N:\max_{\lambda_n
(16)$$

Example 2.4. *The sequence* (u_k) *where*

$$u_k(t) = \begin{cases} 1 - \frac{t}{1 + \log(k+1)} &, & if \ 0 \le t \le 1 + \log(k+1), \\ \overline{0} &, & otherwise, \end{cases}$$

is statistically slowly oscillating. Because for every $\varepsilon > 0$ there exist $n_0 = n_0(\varepsilon)$ and $\lambda = 10^{\varepsilon}$ such that for all $n_0 < n < k \le \lambda_n$

$$D(u_k, u_n) = \left| \log(k+1) - \log(n+1) \right| = \log \frac{k+1}{n+1} < \log \lambda = \varepsilon.$$

855

Therefore, for $n_0 < N$ *the set*

$$\left\{n_0 < n \le N : \max_{n < k \le \lambda_n} D(u_k, u_n) \ge \varepsilon\right\}$$

is empty. Consequently, condition (15) is satisfied.

The conditions (15) and (16) are clearly imply the conditions (10) and (11), respectively. This gives rise to the following corollary of Theorem 2.3.

Corollary 2.5. Let (u_k) be a statistically slowly oscillating sequence of fuzzy numbers. Then

$$st-\lim \sigma_n = \mu_0 \quad implies \ st-\lim u_n = \mu_0. \tag{17}$$

Condition (15) is satisfied if there exists a constant H such that

$$kD(u_k, u_{k-1}) \le H \tag{18}$$

for all large enough k, say $k > N_1$. In fact, given $\varepsilon > 0$, chose $1 < \lambda < 1 + \varepsilon/H$. Since $N_1 < n < k \le \lambda_n$, by (18) we have

$$D(u_k, u_n) \le \sum_{j=n+1}^{k} D(u_j, u_{j-1}) \le \sum_{j=n+1}^{k} \frac{H}{j} \le H\left(\frac{k-n}{n}\right) = H\left(\frac{k}{n}-1\right) < H(\lambda-1) < \varepsilon.$$

But, for $N_1 < N$, the set

$$\left\{N_1 < n \le N : \max_{n < k \le \lambda_n} D(u_k, u_n) \ge \varepsilon\right\}$$

is empty. Consequently, condition (15) is satisfied.

Remark 2.6. Kwon [13] proved that if condition (18) is satisfied, then implication (17) holds as well as

st- $\lim_n u_n = \mu_0$ implies $\lim_n u_n = \mu_0$.

Definition 2.7. (u_k) is Cesàro level-convergent (written (C, 1)-level-convergent) to a fuzzy number μ_0 , if $(l) - \lim_{n\to\infty} \sigma_n = \mu_0$ i.e.,

$$\lim_{n \to \infty} \sigma_n^-(\alpha) = \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^n u_k^-(\alpha) = \mu_0^-(\alpha), \quad \lim_{n \to \infty} \sigma_n^+(\alpha) = \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^n u_k^+(\alpha) = \mu_0^+(\alpha)$$

for all $\alpha \in [0, 1]$.

Note that level-convergence implies (C,1)-level-convergence. But the converse is not true in general.

Example 2.8. [21] Let

$$v_n^+(\alpha) = 1, \quad v_n^-(\alpha) = \begin{cases} (\alpha - \frac{1}{2})^{1/(n+1)}, & \text{if } \frac{1}{2} < \alpha \le 1, \\ 0, & \text{if } 0 \le \alpha \le \frac{1}{2}, \end{cases}$$
$$\mu_0^-(\alpha) = \begin{cases} \frac{1}{2}, & \text{if } \frac{1}{2} < \alpha \le 1, \\ 0, & \text{if } 0 \le \alpha \le \frac{1}{2}. \end{cases}$$

There exists a unique fuzzy number $v_n \in E^1$ and a unique fuzzy number $u_0 \in E^1$ such that $[v_n]_{\alpha} = [v_n^-(\alpha), v_n^+(\alpha)]$ and $[\mu_0]_{\alpha} = [\mu_0^-(\alpha), \mu_0^+(\alpha)]$ for all $\alpha \in [0, 1]$. Let $u = (u_n) = (v_0, \overline{0}, v_1, \overline{0}, v_2, ...)$. Since

 $\lim_{n \to \infty} \sigma_n^+(\alpha) = \mu_0^+(\alpha), \ \lim_{n \to \infty} \sigma_n^-(\alpha) = \mu_0^-(\alpha)$

 (u_n) is (C,1)-level-convergent to μ_0 but (u_n) is not level-convergent to μ_0 . Furthermore, since $D(\sigma_n, \mu_0) = \frac{1}{2}$, (u_n) is not (C,1) convergent to μ_0 .

In [11, Theorem 5] Fridy and Orhan proved that a sequence of real numbers which is (*C*, 1)-convergent to its statistical limit superior is statistically convergent. The next theorem is an analogue of that result for sequences of fuzzy numbers.

Theorem 2.9. Let (u_k) be a bounded sequence of fuzzy numbers. Assume that (u_k) is (C, 1)-level-convergent to $\mu = st - \limsup u_k$ and there is a number $\varepsilon_0 > 0$ such that for each $\varepsilon \in (0, \varepsilon_0)$,

$$\delta(\{k \in \mathbb{N} : u_k \not\sim \mu - \overline{\varepsilon}\}) = 0, \ \delta(\{k \in \mathbb{N} : u_k \not\sim \mu + \overline{\varepsilon}\}) = 0.$$

Then (u_k) *is statistically convergent to* μ *.*

Proof. Since $\mu = st - \limsup u_k$, then

 $\delta(\{k \in \mathbb{N} : u_k > \mu + \overline{\varepsilon}\}) = 0$

for each $\varepsilon > 0$. Suppose that (u_n) is not statistically convergent to μ . Then, there is a $\varepsilon_1 \in (0, \varepsilon_0)$ such that

$$\delta(\{k \in \mathbb{N} : u_k \prec \mu - \overline{\varepsilon}_1\}) \neq 0.$$

Define $m = \mu - \overline{\varepsilon}_1$, $B = \sup_n u_n$ and

$$K' = \{k \in \mathbb{N} : u_k \prec m\}$$

$$K'' = \{k \in \mathbb{N} : m \le u_k \le \mu + \overline{\varepsilon}\}$$

 $K^{'''} = \{k \in \mathbb{N} : u_k > \mu + \overline{\varepsilon}\} \cup \{k \in \mathbb{N} : u_k \not\sim m\} \cup \{k \in \mathbb{N} : u_k \not\sim \mu + \overline{\varepsilon}\}.$

Since $\delta(K'') = 0$, $\delta(K') \neq 0$ and $\delta(K'') = 1 - \delta(K')$ there are infinitely many *n* such that

$$\frac{1}{n+1}|K_{n}^{'}| \ge d > 0$$

and for each such *n* we have

$$\sigma_n = \frac{1}{n+1} \sum_{k \in K'_n} u_k + \frac{1}{n+1} \sum_{k \in K''_n} u_k + \frac{1}{n+1} \sum_{k \in K''_n} u_k$$

$$< \frac{m}{n+1} |K'_n| + \frac{\mu + \overline{\varepsilon}}{n+1} |K''_n| + \frac{B}{n+1} |K'''_n|.$$

So there is an $\alpha_0 \in [0, 1]$ such that

$$\begin{aligned} \sigma_n^-(\alpha_0) &< \frac{m^-(\alpha_0)}{n+1} |K'_n| + \frac{\mu^-(\alpha_0) + \varepsilon}{n+1} |K''_n| + \frac{B^-(\alpha_0)}{n+1} |K'''_n| \\ &= m^-(\alpha_0) \frac{|K'_n|}{n+1} + (\mu^-(\alpha_0) + \varepsilon) \left(1 - \frac{|K'_n|}{n+1}\right) + o(1) \\ &\leq \mu^-(\alpha_0) - d \left(\mu^-(\alpha_0) - m^-(\alpha_0)\right) + \varepsilon(1 - d) + o(1). \end{aligned}$$

Since $\varepsilon \in (0, \varepsilon_0)$ is arbitrary it follows that

$$\liminf \sigma_{n}^{-}(\alpha_{0}) \leq \mu^{-}(\alpha_{0}) - d(\mu^{-}(\alpha_{0}) - m^{-}(\alpha_{0})) < \mu^{-}(\alpha_{0}).$$

Hence, (u_n) is not (C, 1)-level-convergent to μ and this completes the proof. Note that the result can be found also by using the following inequality

$$\sigma_n^+(\alpha_0) < \frac{m^+(\alpha_0)}{n+1} |K_n'| + \frac{\mu^+(\alpha_0) + \varepsilon}{n+1} |K_n''| + \frac{B^+(\alpha_0)}{n+1} |K_n'''|.$$

The following is a dual result for $st - \liminf$.

Theorem 2.10. Let (u_k) be a bounded sequence of fuzzy numbers. Assume that (u_k) is (C, 1)-level-convergent to $v = st - \liminf u_k$ and there is a number $\varepsilon_0 > 0$ such that for each $\varepsilon \in (0, \varepsilon_0)$,

 $\delta(\{k \in \mathbb{N} : u_k \not\sim \nu - \overline{\varepsilon}\}) = 0, \ \delta(\{k \in \mathbb{N} : u_k \not\sim \nu + \overline{\varepsilon}\}) = 0.$

Then, (u_k) *is statistically convergent to v.*

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

References

- Y. Altin , M. Mursaleen, H. Altinok, Statistical summability (C,1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent & Fuzzy Systems 21 (2010) 379–384.
- S. Aytar, M. Mammadov, S. Pehlivan, Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Sets and Systems 157(7) (2006) 976–985.
- [3] S. Aytar, S. Pehlivan, Statistical cluster and extreme limit points of sequences of fuzzy numbers, Information Sciences 177(16) (2007) 3290–3296.
- [4] S. Aytar, S. Pehlivan, Statistically monotonic and statistically bounded sequences of fuzzy numbers, Information Sciences 176 (2006) 734–744.
- [5] S. Aytar, Statistical limit points of sequences of fuzzy numbers, Information Sciences 165 (2004) 129–138.
- [6] B. Bede, S.G. Gal, Almost periodic fuzzy number valued functions, Fuzzy Sets and Systems 147 (2004) 385-403.
- [7] J. Boos, Classical and Modern Methods in Summability, Oxford University Press Inc. New York, 2000.
- [8] J.-X. Fang, H. Huang, On the level convergence of a sequence of fuzzy numbers, Fuzzy Sets and Systems 147 (2004) 417–415.
- [9] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951) 241–244.
- [10] J. A. Fridy, On statistical convergence, Analysis 5 (1985) 301–313.
- [11] J. A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proceedings of the American Mathematical Society 125(12) (1997) 3625–3631.
- [12] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986) 31-43.
- [13] J. S. Kwon, On statistical and p-Cesàro convergence of fuzzy numbers, The Korean Journal of Computational & Applied Mathematics 7 (2000) 195–203.
- [14] M. Matloka, Sequence of fuzzy numbers, BUSEFAL 28 (1986) 28-37.
- [15] F. Móricz, Tauberian conditions, under which statistical convergence follows from statistical summability (C, 1), Journal of Mathematical Analysis and Applications 275 (2002) 277–287.
- [16] S. Nanda, On sequence of fuzzy numbers, Fuzzy Sets and Systems 33 (1989) 123-126.
- [17] F. Nuray, E.Savaş, Statistical convergence of fuzzy numbers, Mathematica Slovaca 45(3) (1995) 269-273.
- [18] E. Savaş, On statistical convergent sequences of fuzzy numbers, Information Sciences 137 (2001) 277-282.
- [19] P. V. Subrahmanyam, Cesàro summability of fuzzy real numbers, Journal of Analysis 7 (1999) 159-168.
- [20] Ö. Talo, C. Çakan, On the Cesàro convergence of sequences of fuzzy numbers, Applied Mathematics Letters 25(4) (2012) 676–681.
- [21] C. -X. Wu, G. -X. Wang, Convergence of fuzzy numbers and fixed point theorems for incressing fuzzy mappings and application, Fuzzy Sets and Systems 130 (2002), 283–290.