Binding Numbers for all Fractional (a, b, k)-Critical Graphs

Sizhong Zhou ${ }^{\text {a }}$, Qiuxiang Bian ${ }^{\text {a }}$, Zhiren Sun ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
${ }^{b}$ School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P. R. China

Abstract

Let G be a graph of order n, and let a, b and k nonnegative integers with $2 \leq a \leq b$. A graph G is called all fractional (a, b, k)-critical if after deleting any k vertices of G the remaining graph of G has all fractional $[a, b]$-factors. In this paper, it is proved that G is all fractional (a, b, k)-critical if $n \geq \frac{(a+b-1)(a+b-3)+a}{a}+\frac{a k}{a-1}$ and $\operatorname{bind}(G)>\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}$. Furthermore, it is shown that this result is best possible in some sense.

1. Introduction

We consider finite undirected graphs without loops or multiple edges. Let G be a graph with a vertex set $V(G)$ and an edge set $E(G)$. For $x \in V(G)$, the set of vertices adjacent to x in G is said to be the neighborhood of x, denoted by $N_{G}(x)$. For any $X \subseteq V(G)$, we write $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. For two disjoint subsets S and T of $V(G)$, we denote by $e_{G}(S, T)$ the number of edges with one end in S and the other end in T. Thus $e_{G}(x, V(G) \backslash\{x\})=d_{G}(x)$ is the degree of x and $\delta(G)=\min \left\{d_{G}(x): x \in V(G)\right\}$ is the minimum degree of G. For $S \subseteq V(G)$, we use $G[S]$ to denote the subgraph of G induced by S, and $G-S$ to denote the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$ has no edges. The binding number of G is defined as

$$
\operatorname{bind}(G)=\min \left\{\frac{\left|N_{G}(X)\right|}{|X|}: \emptyset \neq X \subseteq V(G), N_{G}(X) \neq V(G)\right\}
$$

Let g and f be two integer-valued functions defined on $V(G)$ with $0 \leq g(x) \leq f(x)$ for each $x \in V(G)$. A (g, f)-factor of a graph G is defined as a spanning subgraph F of G such that $g(x) \leq d_{F}(x) \leq f(x)$ for each $x \in V(G)$. We say that G has all (g, f)-factors if G has an r-factor for every $r: V(G) \rightarrow Z^{+}$such that $g(x) \leq r(x) \leq f(x)$ for each $x \in V(G)$ and $r(V(G))$ is even.

A fractional (g, f)-indicator function is a function h that assigns to each edge of a graph G a real number in the interval $[0,1]$ so that for each vertex x we have $g(x) \leq h\left(E_{x}\right) \leq f(x)$, where $E_{x}=\{e: e=x y \in E(G)\}$ and $h\left(E_{x}\right)=\sum_{e \in E_{x}} h(e)$. Let h be a fractional (g, f)-indicator function of a graph G. Set $E_{h}=\{e: e \in E(G), h(e)>0\}$. If G_{h} is a spanning subgraph of G such that $E\left(G_{h}\right)=E_{h}$, then G_{h} is called a fractional (g, f)-factor of $G . h$

[^0]is also called the indicator function of G_{h}. If $h(e) \in\{0,1\}$ for every e, then G_{h} is just a (g, f)-factor of G. A fractional (g, f)-factor is a fractional f-factor if $g(x)=f(x)$ for each $x \in V(G)$. A fractional (g, f)-factor is a fractional $[a, b]$-factor if $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$. We say that G has all fractional (g, f)-factors if G has a fractional r-factor for every $r: V(G) \rightarrow Z^{+}$such that $g(x) \leq r(x) \leq f(x)$ for each $x \in V(G)$. All fractional (g, f)-factors are said to be all fractional $[a, b]$-factors if $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$. A graph G is all fractional (a, b, k)-critical if after deleting any k vertices of G the remaining graph of G has all fractional $[a, b]$-factors.

Many authors have investigated factors [1,2,8] and fractional factors [3,4,7,10] of graphs. The following results on all (g, f)-factors, all fractional $[a, b]$-factors and all fractional (a, b, k)-critical graphs are known.

Theorem 1.1. (Niessen [6]). G has all ($g, f)$-factors if and only if

$$
g(S)+\sum_{x \in T} d_{G-S}(x)-f(T)-h_{G}(S, T, g, f)= \begin{cases}-1, & \text { if } f \neq g \\ 0, & \text { if } f=g\end{cases}
$$

for all disjoint subsets $S, T \subseteq V(G)$, where $h_{G}(S, T, g, f)$ denotes the number of components C of $G-(S \cup T)$ such that there exists a vertex $v \in V(C)$ with $g(v)<f(v)$ or $e_{G}(V(C), T)+f(V(C)) \equiv 1(\bmod 2)$.

Theorem 1.2. (Lu [5]). Let $a \leq b$ be two positive integers. Let G be a graph with order $n \geq \frac{2(a+b)(a+b-1)}{a}$ and minimum degree $\delta(G) \geq \frac{(a+b-1)^{2}+4 b}{4 a}$. If $\left|N_{G}(x)\right| \cup\left|N_{G}(y)\right| \geq \frac{b n}{a+b}$ for any two nonadjacent vertices x and y in G, then G has all fractional $[a, b]$-factors.

Theorem 1.3. (Zhou [9]). Let a, b and k be nonnegative integers with $1 \leq a \leq b$, and let G be a graph of order n with $n \geq a+k+1$. Then G is all fractional (a, b, k)-critical if and only if for any $S \subseteq V(G)$ with $|S| \geq k$

$$
a|S|+\sum_{x \in T} d_{G-S}(x)-b|T| \geq a k
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x)<b\right\}$.
Using Theorem 3, Zhou [9] obtained a neighborhood condition for graphs to be all fractional (a, b, k)critical graphs.

Theorem 1.4. (Zhou [9]). Let a, b, k, r be nonnegative integers with $1 \leq a \leq b$ and $r \geq 2$. Let G be a graph of order n with $n>\frac{(a+b)(r(a+b)-2)+a k}{a}$. If $\delta(G) \geq \frac{(r-1) b^{2}}{a}+k$, and $\left|N_{G}\left(x_{1}\right) \cup N_{G}\left(x_{2}\right) \cup \cdots \cup N_{G}\left(x_{r}\right)\right| \geq \frac{b n+a k}{a+b}$ for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$ in G, then G is all fractional (a, b, k)-critical.

2. Main Result and Its Proof

In this paper, we proceed to study the existence of all fractional (a, b, k)-critical graphs and obtain a binding number condition for graphs to be all fractional (a, b, k)-critical. Our main result is the following theorem.

Theorem 2.1. Let a, b and k be nonnegative integers with $2 \leq a \leq b$, and let G be a graph of order n with $n \geq \frac{(a+b-1)(a+b-3)+a}{a}+\frac{a k}{a-1}$. If bind $(G)>\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}$, then G is all fractional $(a, b, k)-$ critical.

Proof. Suppose that G satisfies the assumption of Theorem 2.1, but it is not all fractional (a, b, k)-critical. Then by Theorem 1.3, there exists some subset S of $V(G)$ with $|S| \geq k$ such that

$$
\begin{equation*}
a|S|+\sum_{x \in T} d_{G-S}(x)-b|T| \leq a k-1 \tag{1}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x)<b\right\}$. Clearly, $T \neq \emptyset$ by (1). Define

$$
h=\min \left\{d_{G-S}(x): x \in T\right\} .
$$

In terms of the definition of T, we obtain $0 \leq h \leq b-1$.
Now in order to prove the correctness of Theorem 2.1, we shall deduce some contradictions according to the following two cases.

Case 1. $h=0$.
Let $X=\left\{x: x \in T, d_{G-S}(x)=0\right\}$. Obviously, $X \neq \emptyset$ and $N_{G}(V(G) \backslash S) \cap X=\emptyset$, and so $\left|N_{G}(V(G) \backslash S)\right| \leq n-|X|$. According to the definition of $\operatorname{bind}(G)$ and the condition of Theorem 2.1, we have

$$
\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}<\operatorname{bind}(G) \leq \frac{\left|N_{G}(V(G) \backslash S)\right|}{|V(G) \backslash S|} \leq \frac{n-|X|}{n-|S|}
$$

which implies

$$
\begin{aligned}
(a+b-1)(n-1)|S| \quad & (a+b-1)(n-1) n-(a n-a k-(a+b)+2) n+(a n-a k-(a+b)+2)|X| \\
& =(b-1)(n-1) n+(b-2) n+a k n+(a n-a k-(a+b)+2)|X| \\
\geq & (b-1)(n-1) n+a k n+(a n-a k-(a+b)+2)|X| \\
& =(b-1)(n-1) n+a k n+[(n-1)+(a-1) n-a k-(a+b)+3]|X| \\
\geq & (b-1)(n-1) n+a k n+\left[(n-1)+(a-1) \cdot\left(\frac{(a+b-1)(a+b-3)+a}{a}+\frac{a k}{a-1}\right)\right. \\
& -a k-(a+b)+3]|X| \\
& >(b-1)(n-1) n+a k n+[(n-1)+(a-1)(a+b-3)-(a+b)+3]|X| \\
\geq & (b-1)(n-1) n+a k(n-1)+(n-1)|X| .
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
|S|>\frac{(b-1) n+a k+|X|}{a+b-1} \tag{2}
\end{equation*}
$$

Using (1), (2) and $|S|+|T| \leq n$, we have

$$
\begin{aligned}
a k-1 & \geq a|S|+\sum_{x \in T} d_{G-S}(x)-b|T| \\
& \geq a|S|+|T|-|X|-b|T| \\
& =a|S|-(b-1)|T|-|X| \\
& \geq a|S|-(b-1)(n-|S|)-|X| \\
& =(a+b-1)|S|-(b-1) n-|X| \\
& >(a+b-1) \cdot \frac{(b-1) n+a k+|X|}{a+b-1}-(b-1) n-|X| \\
& =a k,
\end{aligned}
$$

which is a contradiction.
Case 2. $1 \leq h \leq b-1$.
Claim 1. $\delta(G)>\frac{(b-1) n+a k+a+b-2}{a+b-1}$.
Let v be a vertex of G with degree $\delta(G)$. Set $Y=V(G) \backslash N_{G}(v)$. Obviously, $Y \neq \emptyset$ and $v \notin N_{G}(Y)$. In terms of the definition of $\operatorname{bind}(G)$, we have

$$
\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}<\operatorname{bind}(G) \leq \frac{\left|N_{G}(Y)\right|}{|Y|} \leq \frac{n-1}{n-\delta(G)}
$$

which implies

$$
\delta(G)>\frac{(b-1) n+a k+a+b-2}{a+b-1}
$$

This completes the proof of Claim 1.
Note that $\delta(G) \leq|S|+h$. Then using Claim 1, we have

$$
\begin{equation*}
|S| \geq \delta(G)-h>\frac{(b-1) n+a k+a+b-2}{a+b-1}-h \tag{3}
\end{equation*}
$$

Claim 2. $|T| \leq \frac{a n-a k-(a+b)+1}{a+b-1}+h$.
Assume that $|T| \geq \frac{a n-a k-(a+b)+2}{a+b-1}+h$. We choose $u \in T$ such that $d_{G-S}(u)=h$ and let $Y=T \backslash N_{G-S}(u)$. Note that $\left|N_{G-S}(u)\right|=d_{G-S}(u)=h$. Thus, we obtain

$$
\begin{aligned}
|Y| & \geq|T|-d_{G-S}(u) \\
& =|T|-h \geq \frac{a n-a k-(a+b)+2}{a+b-1}>0
\end{aligned}
$$

and

$$
N_{G}(Y) \neq V(G)
$$

Combining these with the definition of $\operatorname{bind}(G)$, we have

$$
\operatorname{bind}(G) \leq \frac{\left|N_{G}(Y)\right|}{|Y|} \leq \frac{n-1}{|T|-h} \leq \frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}
$$

which contradicts that the condition of Theorem 2.1. The proof of Claim 2 is completed.
According to (1), (3) and Claim 2, we obtain

$$
\begin{aligned}
a k-1 & \geq a|S|+\sum_{x \in T} d_{\mathrm{G}-S}(x)-b|T| \geq a|S|-(b-h)|T| \\
& >a \cdot\left(\frac{(b-1) n+a k+a+b-2}{a+b-1}-h\right)-(b-h) \cdot\left(\frac{a n-a k-(a+b)+1}{a+b-1}+h\right) \\
& =\frac{(h-1) a n+(a+b-h) a k-a}{a+b-1}-(h-1)(a+b-h),
\end{aligned}
$$

that is,

$$
\begin{equation*}
a k-1>\frac{(h-1) a n+(a+b-h) a k-a}{a+b-1}-(h-1)(a+b-h) . \tag{4}
\end{equation*}
$$

Let $f(h)=\frac{(h-1) a n+(a+b-h) a k-a}{a+b-1}-(h-1)(a+b-h)$. If $h=1$, then by (4) we have $a k-1>f(h)=$ $f(1)=a k-\frac{a}{a+b-1}>a k-1$, which is a contradiction. In the following, we assume that $2 \leq h \leq b-1$.

In view of $2 \leq h \leq b-1$ and $n \geq \frac{(a+b-1)(a+b-3)+a}{a}+\frac{a k}{a-1}$, we have

$$
\begin{aligned}
f^{\prime}(h) & =\frac{a n-a k}{a+b-1}-(a+b-h)+(h-1) \\
& =2 h+\frac{a n-a k}{a+b-1}-(a+b+1) \\
& \geq 4+\frac{(a+b-1)(a+b-3)+a}{a+b-1}-(a+b+1) \\
& =\frac{a}{a+b-1}>0
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
f(h) \geq f(2) \tag{5}
\end{equation*}
$$

From (4), (5) and $n \geq \frac{(a+b-1)(a+b-3)+a}{a}+\frac{a k}{a-1}$, we obtain

$$
\begin{aligned}
a k-1 & >f(h) \geq f(2)=\frac{a n+(a+b-2) a k-a}{a+b-1}-(a+b-2) \\
& \geq \frac{(a+b-1)(a+b-3)+a+a k+(a+b-2) a k-a}{a+b-1}-(a+b-2) \\
& =a k-1,
\end{aligned}
$$

which is a contradiction. This completes the proof of Theorem 2.1.
Remark. In Theorem 2.1, the lower bound on the condition $\operatorname{bind}(G)$ is best possible in the sense since we cannot replace $\operatorname{bind}(G)>\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}$ with $\operatorname{bind}(G) \geq \frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2}$, which is shown in the following example.

Let $b \geq a \geq 2, k \geq 0$ be three integers such that $a+b+k-1$ is even and $\frac{a(b-1)+b(b-2)+(a+b-1) k}{a}$ is a positive integer. Set $l=\frac{a+b+k-1}{2}$ and $m=\frac{a(b-1)+b(b-2)+(a+b-1) k}{a}$. We construct a graph $G=K_{m} \vee K_{2 l}$. Then $n=m+2 l=\frac{a(b-1)+b(b-2)+(a+b-1) k}{a}+a+b+k-1$. Let $X=V\left(l K_{2}\right)$, for any $x \in X$, then $\left|N_{G}(X \backslash x)\right|=n-1$. According to the definition of $\operatorname{bind}(G)$, we obtain

$$
\operatorname{bind}(G)=\frac{\left|N_{G}(X \backslash x)\right|}{|X \backslash x|}=\frac{n-1}{2 l-1}=\frac{n-1}{a+b+k-2}=\frac{(a+b-1)(n-1)}{a n-a k-(a+b)+2} .
$$

Let $S=V\left(K_{m}\right), T=V\left(l K_{2}\right)$. Then $|S|=m \geq k,|T|=2 l$ and $\sum_{x \in T} d_{G-S}(x)=2 l$. Thus, we have

$$
\begin{aligned}
& a|S|+\sum_{x \in T} d_{G-S}(x)-b|T|=a m-2 l(b-1) \\
= & a(b-1)+b(b-2)+(a+b-1) k-(b-1)(a+b+k-1) \\
= & a k-1<a k .
\end{aligned}
$$

In terms of Theorem 1.3, G is not all fractional (a, b, k)-critical.
Acknowledgments. The authors are grateful to the anonymous referee for his valuable suggestions for improvements of the presentation.

References

[1] C. Chen, Binding number and minimum degree for [a, b]-factor, Journal of Systems Science and Mathematical Sciences (China) 6(1) (1993) 179-185.
[2] J. R. Correa, M. Matamala, Some remarks about factors of graphs, Journal of Graph Theory 57 (2008) 265-274.
[3] G. Liu, Q. Yu, L. Zhang, Maximum fractional factors in graphs, Applied Mathematics Letters 20(12) (2007) 1237-1243.
[4] G. Liu, L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Mathematics 308 (2008) 1741-1748.
[5] H. Lu, Simplified existence theorems on all fractional [a, b]-factors, Discrete Applied Mathematics 161(13-14) (2013) $2075-2078$.
[6] T. Niessen, A characterization of graphs having all (g, f)-factors, Journal of Combinatorial Theory Series B 72 (1998) 152-156.
[7] S. Zhou, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Applied Mathematics Letters 24(9) (2011) 1533-1538.
[8] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Mathematics 309(12) (2009) 4144-4148.
[9] S. Zhou, Z. Sun, On all fractional (a, b, k)-critical graphs, Acta Mathematica Sinica, English Series 30(4) (2014) 696-702.
[10] S. Zhou, L. Xu, Z. Sun, Independence number and minimum degree for fractional ID-k-factor-critical graphs, Aequationes Mathematicae 84(1-2) (2012) 71-76.

[^0]: 2010 Mathematics Subject Classification. Primary 05C70; Secondary 05C72, 05C35
 Keywords. graph, binding number, fractional [$a, b]$-factor, all fractional $[a, b]$-factors, all fractional (a, b, k)-critical.
 Received: 25 June 2013; Accepted: 08 September 2013
 Communicated by Francesco Belardo
 Research supported by the National Natural Science Foundation of China (Grant No. 11371009)
 Email addresses: zsz_cumt@163.com (Sizhong Zhou), bianqx_1@163.com (Qiuxiang Bian), 05119@njnu. edu.cn (Zhiren Sun)

