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Abstract. In this paper we will define a notions of strictly convex and normal structure in Menger
PM-space. Also, existence of a common fixed point for two self-mappings defined on strictly convex
Menger PM-spaces will be proved. As a consequence of main result we will give probabilistic variant of
Browder’s result [3].

1. Introduction

The notion of statistical metric spaces, as a generalization of metric spaces, with non-deterministic
distance, was introduced by K. Menger [14] in 1942. Schweizer and Sklar in [16] and [17] studied the
properties of spaces introduced by K. Menger and gave some basic results on these spaces. They studied
topology, convergence of sequences, continuity of mappings, defined the completeness of these spaces, etc.

On the other hand, fixed point theory is one of the most famous mathematical theories with application
in several branches of science, especially in chaos theory, game theory, theory of differential equations etc.
The first theorem of fixed point theory for non-expansive mappings was proved independently by Browder
[3] and Göhde [6], and by Kirk [13] in a more general form, than form stated in [3] and [6].

The concept of normal structure was introduced in 1948 by Brodskii and Milman [2]. In 1970 Takahashi
[20] has defined convex and normal structures for sets in metric spaces. General set-theoretic convexity in
the study of the fixed point property of non-expansive mappings made its first explicit appearance in the
work of Penot [15]. In 1987 Hadžić [7] has defined convex structure for sets in probabilistic metric spaces.

The first result from the fixed point theory in probabilistic metric spaces was obtain by Sehgal and
Bharucha–Reid [18]. Hadžić [7] has proved fixed point theorem for mappings in probabilistic metric spaces
with a convex structure. For more details about convexity and fixed point results for mappings defined
on metric and probabilistic metric spaces see [1], [4], [5], [7], [8], [9], [10], [12], [13] and [16]. Recently,
Ješić [11] has observed a wide class of non-expansive mappings defined on intuitionistic fuzzy metric spaces
with convex, strictly convex and normal structure and proved existence of a fixed point for that class of
non-expansive mappings in strictly convex intuitionistic fuzzy metric spaces.
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The purpose of this paper is to define a notions of strictly convex and normal structure in Menger PM-
space. Also, a theorem that provides existence of a common fixed point for two self-mappings defined on
strictly convex Menger PM-spaces will be proved. In the proof of the main result topological methods for
characterization spaces with nondeterministic distances will be used. As a consequence of main result we
will give probabilistic variant of Browder’s result [3].

2. Preliminaries

In the standard notation, let D+ be the set of all distribution functions F : R → [0, 1], such that F is
a nondecreasing, left-continuous mapping, which satisfies F (0) = 0 and supx∈R F (x) = 1. The space D+ is
partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all
t ∈ R. The maximal element for D+ in this order is the distribution function given by

ε0(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 2.1 [17] A binary operation T : [0, 1] × [0, 1] → [0, 1] is continuous t-norm if T satisfies the
following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norm are T (a, b) = min{a, b} and T (a, b) = ab.

The t-norms are defined recursively by T 1 = T and

Tn(x1, . . . , xn+1) = T (Tn−1(x1, . . . , xn), xn+1)

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . , n+ 1}.

Definition 2.2 A Menger probabilistic metric space (briefly, Menger PM-space) is a triple (X,F , T ) where
X is a nonempty set, T is a continuous t-norm, and F is a mapping from X×X into D+ such that, if Fx,y
denotes the value of F at the pair (x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.3 [18] Every metric space is a PM-space. Let (X, d) be a metric space and T (a, b) = min{a, b}
is a continuous t-norm. Define Fx,y(t) = ε0(t − d(x, y)) for all x, y ∈ X and t > 0. The triple (X,F , T ) is
a PM-space induced by the metric d.

Definition 2.4 Let (X,F , T ) be a Menger PM-space.

(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0 and λ > 0 there exists
positive integer N such that Fxn,x(ε) > 1− λ whenever n ≥ N.

(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and λ > 0 there exists positive
integer N such that Fxn,xm(ε) > 1− λ whenever n,m ≥ N.

(3) A Menger PM-space is said to be complete if every Cauchy sequence in X is convergent to a point
in X.

The (ε, λ)-topology ([17]) in a Menger PM-space (X,F , T ) is introduced by the family of neighbourhoods
Nx of a point x ∈ X given by

Nx = {Nx(ε, λ) : ε > 0, λ ∈ (0, 1)}
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where

Nx(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

The (ε, λ)-topology is a Hausdorff topology. In this topology the function f is continuous in x0 ∈ X if
and only if for every sequence xn → x0 it holds that f(xn)→ f(x0).

The following Lemma is proved by B. Schweizer and A. Sklar.

Lemma 2.5 [17] Let (X,F , T ) be a Menger PM-space. Then the function F is lower semi-continuous for
every fixed t > 0, i.e. for every fixed t > 0 and every two convergent sequences {xn}, {yn} ⊆ X such that
xn → x, yn → y it follows that

lim inf
n→∞

Fxn,yn(t) = Fx,y(t).

Definition 2.6 Let (X,F , T ) be a Menger PM-space and A ⊆ X. The closure of the set A is the smallest
closed set containing A, denoted by A.

Definition 2.7 Let (X,F , T ) be a Menger PM-space, r ∈ (0, 1), t > 0 and x ∈ X. The set Nx[ε, λ] = {y ∈
X : Fx,y(ε) ≥ 1− λ} is called closed (ε, λ)-neighbourhood of a point x ∈ X.

Definition 2.8 A subset K of a Menger PM-space is called compact if following statement holds

K ⊆
⋃
α∈Λ

Uα =⇒ K ⊆
n⋃
i=1

Uαi
for some α1, . . . , αn ∈ Λ

for every collection {Uα : α ∈ Λ} of open sets Uα ⊂ X.

Lemma 2.9 Let (X,F , T ) be a Menger PM-space and let K ⊆ X. Then, K is compact if and only if for
every collection of closed sets {Fα}α∈Λ such that Fα ⊆ K it holds that

⋂
α∈Λ

Fα = ∅ =⇒
n⋂
i=1

Fαi
= ∅ for some α1, . . . , αn ∈ Λ.

Proof. The proof follows from Definition 2.8 and De-Morgan’s laws. �

Obviously, keeping in mind the Hausdorff topology, and the definition of converging sequences we note
that the next remark holds.

Remark 2.10 x ∈ A if and only if there exists a sequence {xn} in A such that xn → x.

The concept of probabilistic boundedness was introduced by H. Sherwood [19]. A version on this defini-
tion follows.

Definition 2.11 2 Let (X,F , T ) be a Menger PM-space and A ⊆ X. The probabilistic diameter of set A is
given by

δA(t) = inf
x,y∈A

sup
ε< t

Fx,y(ε).

The diameter of the set A is defined by

δA = sup
t>0

inf
x,y∈A

sup
ε< t

Fx,y(ε).
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If there exists λ ∈ (0, 1) such that δA = 1 − λ the set A will be called probabilistic semi-bounded. If δA = 1
the set A will be called probabilistic bounded.

Lemma 2.12 Let (X,F , T ) be a Menger PM-space. A set A ⊆ X is probabilistic bounded if and only if for
each λ ∈ (0, 1) there exists t > 0 such that Fx,y(t) > 1− λ for all x, y ∈ A.

Proof. The proof follows from the definitions of supA and infA of nonempty sets. �

It is not difficult to see that every metrically bounded set is also probabilistic bounded if it is considered
in the induced PM-space.

Theorem 2.13 Every compact subset A of a Menger PM-space (X,F , T ) is probabilistic semi-bounded.

Proof. Let A be a compact subset of a Menger PM space X. Let fix ε > 0 and λ ∈ (0, 1). Now, we
will consider an (ε, λ)-cover {Nx(ε, λ) : x ∈ A}. Since, A is compact, there exist x1, x2, . . . xn ∈ A such
that A ⊆

⋃n
i=1Nxi

(ε, λ). Let x, y ∈ A. Then exists i ∈ {1, . . . , n} such that x ∈ Nxi
(ε, λ) and exists

j ∈ {1, . . . , n} such that y ∈ Nxj
(ε, λ). Thus we have Fx,xi

(ε) > 1 − λ and Fy,xj
(ε) > 1 − λ. Now, let

m = min{Fxi,xj (ε) : 1 ≤ i, j ≤ n}. It is obvious that m > 0 and we have

Fx,y(ε) ≥ T (Fx,xi(ε), Fxi,xj (ε), Fxj ,y(ε)) ≥ T (1− λ, 1− λ,m) > 1− δ,

for some 0 < δ < 1. If we take that ε1 = 3ε we have Fx,y(ε1) > 1− δ for all x, y ∈ A. Hence, we obtain that
A is probabilistic semi-bounded set. �

Remark 2.14 In a Menger PM-space every compact set is closed and bounded.

3. Convex structure, normal structure and strictly convex structure on Menger PM-spaces

Takahashi [20] introduced the notion of metric spaces with a convex structure. This class of metric spaces
includes normed linear spaces and metric spaces of the hyperbolic type.

Definition 3.1 Let (X, δ) be a metric space. We say that a metric space possesses a Takahashi’s convex
structure if there exists a function W : X ×X × [0, 1]→ X which satisfies

δ(z,W (x, y, θ)) ≤ θδ(z, x) + (1− θ)δ(z, y),

for all x, y, z ∈ X and arbitrary θ ∈ [0, 1]. A metric space (X, δ) with Takahashi’s convex structure is called
convex metric space.

Hadžić [7] introduced a generalization of the Takahashi’s definition to the case of a Menger PM-space.

Definition 3.2 Let (X,F , T ) be a Menger PM-space. A mapping S : X × X × [0, 1] → X, is said to
be a convex structure on X if for every (x, y) ∈ X × X holds S(x, y, 0) = y, S(x, y, 1) = x and for all
x, y, z ∈ X, θ ∈ (0, 1) and t > 0

FS(x,y,θ),z(2t) ≥ T
(
Fx,z

(
t

θ

)
, Fy,z

(
t

1− θ

))
. (1)

It is easy to see that every metric space (X, d) with a convex structure S can be consider as a Menger
PM-space (X,F , Tmin) (the associated Menger PM-space) with the same function S. For nontrivial example
of a Menger PM-space with a convex structure see [7]. A Menger PM-space (X,F , T ) with a convex structure
is called a convex Menger PM-space.
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Firstly, we will define the condition for a point to be diametral.

Definition 3.3 A point x ∈ A will be called diametral if

inf
y∈A

sup
ε< t

Fx,y(ε) = δA(t)

holds for all t > 0.

Definition 3.4 Let (X,F , T ) be a Menger PM-space with a convex structure S(x, y, θ). A subset A ⊆ X is
said to be a convex set if for every x, y ∈ A and θ ∈ [0, 1] it follows that S(x, y, θ) ∈ A.

Lemma 3.5 Let (X,F , T ) be a Menger PM-space and {Kα} for α ∈ ∆ be a family of convex subsets of X.
Then the intersection K = ∩α∈∆Kα is a convex set.

Proof. If x, y ∈ K, then x, y ∈ Kα for every α ∈ ∆. It follows that S(x, y, θ) ∈ Kα for every α ∈ ∆, i.e.
S(x, y, θ) ∈ K, which means that the set K is convex. �

Definition 3.6 A convex Menger PM-space (X,F , T ) with a convex structure S : X ×X × [0, 1]→ X will
be called strictly convex if, for arbitrary x, y ∈ X and θ ∈ (0, 1) the element z = S(x, y, θ) is the unique
element which satisfies

Fx,y

(
t

θ

)
= Fz,y(t), Fx,y

(
t

1− θ

)
= Fz,y(t), (2)

for all t > 0.

Lemma 3.7 Let (X,F , T ) be a Menger PM-space with a convex structure S(x, y, θ). Suppose that for every
θ ∈ (0, 1), t > 0 and x, y, z ∈ X hold

FS(x,y,θ),z(t) > min{Fz,x(t), Fz,y(t)}. (3)

If there exists z ∈ X such that

FS(x,y,θ),z(t) = min{Fz,x(t), Fz,y(t)} (4)

is satisfied, for all t > 0, then S(x, y, θ) ∈ {x, y}.

Proof. Let us assume that (4) holds for some z ∈ X and for all t > 0. Since (3) holds, it follows that θ = 0
or θ = 1 and, consequently we have that S(x, y, 0) = y or S(x, y, 1) = x, which proves the statement of the
lemma. �

Lemma 3.8 Let (X,F , T ) be a strictly convex Menger PM-space with a convex structure S(x, y, θ). Then
for arbitrary x, y ∈ X,x 6= y there exists θ ∈ (0, 1) such that S(x, y, θ) 6∈ {x, y}.

Proof. Suppose that for every θ ∈ [0, 1] it holds that S(x, y, θ) ∈ {x, y}. From (2) it follows that Fx,y(t) = 1
for all t > 0 which means that x = y. This completes the proof. �

Definition 3.9 A Menger PM-space (X,F , T ) possesses a normal structure if, for every closed, probabilistic
semi-bounded and convex set Y ⊂ X, which consists of at least two different points, there exists a point x ∈ Y
which is non-diametral, i.e. there exists t0 > 0 such that

inf
y∈Y

sup
ε< t0

Fx,y(ε) > δY (t0)
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holds.

It is obvious that compact and convex sets in convex metric space possess a normal structure (see [20]).

Definition 3.10 Let (X,F , T ) be a convex Menger PM-space and Y ⊆ X. The closed convex shell of set Y,
denoted by conv(Y ), is the intersection of all closed, convex sets that contain Y.

It is easy to see that the set conv(Y ) exists, since the collection of closed, convex sets that contain Y is
nonempty, because of the fact that X belongs to this collection. From the Lemma 3.5 it follows that this
intersection is convex set. Also, this intersection is closed as an intersection of closed sets.

Definition 3.11 Let (X,F , T ) be a Menger PM-space and let f be a self-mapping on X. We say that f is
a non-expansive mapping if

Ffx,fy(t) ≥ Fx,y(t) (5)

holds for all x, y ∈ X and t > 0.

4. Main results

Lemma 4.1 Let (X,F , T ) be a strictly convex Menger PM-space with a convex structure S(x, y, θ) satisfying
(3) and let K ⊆ X be nonempty, convex and compact subset of X. Then K possesses a normal structure.

Proof. Suppose that K does not possess a normal structure. Then there exists a closed, probabilistic
semi-bounded and convex subset Y ⊂ K, which contains at least two different points such that Y does not
contain a non-diametral point i.e.

inf
y∈Y

sup
ε< t

Fx,y(ε) = δY (t)

for every x ∈ Y. Since X is strictly convex and condition (3) is satisfied, then the statements of Lemma
3.7 and Lemma 3.8 hold. Let x1 and x2 be arbitrary points in Y . From the statement of Lemma 3.8 there
exists θ0 ∈ (0, 1) such that S(x1, x2, θ0) 6∈ {x1, x2}. Since Y is a convex set, it follows that S(x1, x2, θ0) ∈ Y.
Y is a closed subset of the compact set K, so Y is compact, too. Since δY (t) = infy∈Y supε<t Fy,S(x1,x2,θ)(t)
is left continuous function on the compact set Y for arbitrary t > 0 there exist x3, x4 ∈ Y such that
supε<t Fx3,S(x1,x2,θ0)(ε) = δY (t) holds. From Lemma 3.7 and the fact that Fx,y(·) is non-decreasing left
continuous function it follows that

δY (t) = supε<t Fx3,S(x1,x2,θ0)(ε) = Fx3,S(x1,x2,θ0)(t)

> min {Fx3,x1
(t), Fx3,x2

(t)}

= min {supε<t Fx3,x1
(ε), supε<t Fx3,x2

(ε)} ≥ δY (t)

(6)

From the last it follows that δY (t) > δY (t) which is a contradiction. This proves the statement of the
lemma. �

Lemma 4.2 Let (X,F , T ) be a convex Menger PM-space with a convex structure S(x, y, θ) satisfying (3).
Then closed (ε, λ)-neighbourhoods Nx[ε, λ] are convex sets.

Proof. Let a, b ∈ Nx[ε, λ] be arbitrary points. This implies that Fa,x(ε) ≥ 1− λ and Fb,x(ε) ≥ 1− λ for all
ε > 0. We shall prove that FS(a,b,θ),x(ε) ≥ 1− λ for all ε > 0, i.e. S(a, b, θ) ∈ Nx[ε, λ]. Indeed, for θ ∈ (0, 1),
from (3) we have that

FS(a,b,θ),x(ε) > min {Fa,x(ε), Fb,x(ε)} ≥ min{1− λ, 1− λ} = 1− λ.
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For θ = 0 or θ = 1 it follows that S(a, b, 0) = b and S(a, b, 1) = a belong to Nx[ε, λ]. �

Lemma 4.3 [Zorn’s lemma] Let X be a nonempty partially ordered set in which every chain has a lower
(upper) bound. Then X has a minimal (maximal) element.

Next we shall give the main result of this paper.

Theorem 4.4 Let (X,F , T ) be a strictly convex Menger PM-space with a convex structure S(x, y, θ)
satisfying (3) and let K ⊆ X be a nonempty, convex and compact subset of X. Let f and g be a self
mappings on K, g(K) ∩K ⊆ f(K), satisfying the conditions

Ff(x),g(y)(t) ≥ Fx,y(t) (7)

for all x, y ∈ K, x 6= y and for every t > 0. Then f and g have at least one common fixed point on K.

Proof. Now, let us notice a collection Υ of all nonempty, closed, convex sets Kα ⊆ K such that g(Kα) ∩
f(Kα) ⊆ Kα. This collection is nonempty, because K ⊆ Υ. Indeed, set K is closed set because of the fact
that it is compact set in Hausdorff’s space and it is satisfied that g(K)∩f(K) ⊆ K. If we order this collection
with inclusion, then (Υ,⊆) is a partially ordered set. Let {Kα : α ∈ Λ} be an arbitrary chain of this family.
Then the set ∩α∈ΛKα is nonempty, closed, convex subset of K, which is a lower bound of this chain. Indeed,
let us assume that ∩α∈ΛKα = ∅. Then, from Lemma 2.9 it follows that there exists a finite sub-collection
Kα1

⊇ . . . ⊇ Kαn
of the chain {Kα : α ∈ Λ} which has an empty intersection, which is impossible, since

this intersection is Kαn
6= ∅. From Zorn’s Lemma it follows that there exists a minimal element K0 of the

collection Υ such that g(K0) ∩ f(K0) ⊆ K0. We will prove that K0 consists of only one point and since
g ∩ f : K0 → K0 this will mean that mappings g and f have a common fixed point.

Let us assume that K0 contains at least two different points. From Lemma 4.1 it follows that K possesses
a normal structure. From Theorem 2.13 it follows that K0 is probabilistic semi-bounded set. Since K0 is
closed and convex set it follows that there exists some non-diametral point x0 ∈ K0, i.e. there exists t0 > 0
such that the following inequality holds:

inf
y∈K0

sup
ε< t0

Fx0,y(ε) > δK0
(t0) (8)

Denote 1− ξ := inf
y∈K0

sup
ε< t0

Fx0,y(ε).

Let us denote with K1 the closed convex shell of the set g(K0) ∩ f(K0). Since g(K0) ∩ f(K0) ⊆ K0 it
holds that K1 = conv(g(K0)∩f(K0)) = conv(g(K0) ∩ f(K0)) ⊆ conv(K0) = K0 = K0. Therefore, K1 ⊆ K0

and it follows that g(K1)∩f(K1) ⊆ g(K0)∩f(K0) ⊆ (conv(g(K0) ∩ f(K0)) = K1, i.e. g(K1)∩f(K1) ⊆ K1.
This means that K1 ∈ Υ, and since K0 is the minimal element we have that K1 = K0.

If inequality (8) holds, i.e. if 1− ξ > δK0
(t0), let us define sets

C :=
( ⋂
y∈K0

Ny[ξ, t0]
)⋂

K0 and C1 :=
( ⋂
y∈g(K0)∩f(K0)

Ny[ξ, t0]
)⋂

K0.

The set C is nonempty since x0 ∈ C. Indeed, from inequality stated in (8) it follows that Fx0,y(t0) ≥ 1−ξ.
From the previous we conclude that x0 belongs to Ny[ξ, t0] for all y ∈ K0. Consequently, x0 belongs to C.
We will show that C = C1. Since g(K0) ∩ f(K0) ⊆ K0 then C1 ⊇ C.

Now, let z ∈ C1. We will prove that z ∈ C. Since z ∈ C1, for arbitrary y ∈ g(K0) ∩ f(K0) it holds
that Fy,z(t0) ≥ 1 − ξ i.e. y ∈ Nz[ξ, t0]. Since y is arbitrary point from g(K0) ∩ f(K0) it follows that
g(K0) ∩ f(K0) ⊆ Nz[ξ, t0]. Because of the fact that Nz[ξ, t0] is a closed and convex set which contains
g(K0) ∩ f(K0), we conclude that

K1 = conv(g(K0) ∩ f(K0)) ⊆ Nz[ξ, t0]

holds. Since K0 = K1 it follows that K0 ⊆ Nz[ξ, t0]. ¿From last we have that for every y ∈ K0 it holds that
z ∈ Ny[ξ, t0], which means that C1 ⊆ C, i.e. C = C1.
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We will show that C ∈ Υ. Set C is closed as an intersection of closed sets. From Lemma 3.5 and Lemma
4.2 it follows that C is a convex set. Let us prove that g(C)∩ f(C) ⊆ C. Let z ∈ C and y ∈ g(K0)∩ f(K0).
Then there exists x ∈ K0 such that y = f(x) and y = g(x). Applying inequality (7) for t = t0, we have

Ff(z),y(t0) = Ff(z),g(x)(t0) ≥ Fz,x(t0) ≥ 1− ξ.

This means that f(z) ∈ C1. Since z is arbitrary point from z ∈ C we obtain f(C) ⊆ C1 and because C1 = C,
we have that f(C) ⊆ C.

On the other hand, we have

Fg(z),y(t0) = Fg(z),f(x)(t0) ≥ Fz,x(t0) ≥ 1− ξ.

This means that g(z) ∈ C1. Since z is arbitrary point from z ∈ C we obtain g(C) ⊆ C1 and because C1 = C,
we have that g(C) ⊆ C.

Finally, we obtain g(C) ∩ f(C) ⊆ C.
Since C ⊆ K0 and K0 is the minimal element of collection Υ it follows that C = K0. Now we have that

δC(t0) ≥ 1− ξ > δK0
(t0). This is a contradiction with C = K0, i.e. the assumption that K0 contains at least

two different points is wrong, which means that K0 contains only one point which is a common fixed point
of the mapping g and f. This completes the proof. �

Now we shall give the probabilistic version of the main result in [11].

Theorem 4.5 Let (X,F , T ) be a strictly convex Menger PM-space with a convex structure S(x, y, θ)
satisfying (3) and let K ⊆ X be a nonempty, convex and compact subset of X. Let f be a non-expansive
self-mapping on K. Then f has at least one fixed point on K.

Putting in the Theorem 4.4 that g = f we have that mapping f is a self-mapping on K and in this case,
from conditions (7) and (8) we obtain that mapping f is non-expansive on K, and it is clear that Theorem
4.4 reduces to Theorem 4.5.
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