Stability of Solitary Waves for a Generalized Higher-Order Shallow Water Equation

Nurhan Dündar ${ }^{\text {a }}$, Necat Polat ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Dicle University, 21280, Diyarbakir, Turkey

Abstract

In this work, we consider solitary wave solutions of a generalized higher-order shallow water equation. We investigate the existence and stability of solitary waves of the equation.

1. Introduction

Nonlinear evolution equations arise not only from many fields of mathematics, but also from other branches of science. Therefore, nonlinear evolution equations have attracted a lot of interest of many mathematicians and scientists in nonlinear sciences. Navier-Stokes equations, Cahn-Hilliard equations, Boussinesq-type equations and nonlinear Schrödinger equations are examples of nonlinear evolution equations. These equations have been studied by many authors (see [6, 13-15, 17] and the references therein).

In this paper, we consider the following Cauchy problem for a nonlinear evolution equation

$$
\left\{\begin{array}{lr}
u_{t}-\alpha^{2} u_{x x t}+(g(u))_{x}+\gamma\left(u-\alpha^{2} u_{x x}\right)_{x x x}=\alpha^{2}\left(\frac{h^{\prime}(u)}{2} u_{x}^{2}+h(u) u_{x x}\right)_{x}, & t>0, x \in \mathbb{R}, \tag{1}\\
u(x, 0)=u_{0}(x), & x \in \mathbb{R},
\end{array}\right.
$$

where $g(u), h(u): \mathbb{R} \rightarrow \mathbb{R}$ are given function, α and γ are constants.
Eq. (1) describes the generalized integrable shallow water equation with strong dispersive term. The strong dispersive term $\gamma\left(u-\alpha^{2} u_{x x}\right)_{x x x}$ corresponds to the Lagrangian averaged Navier-Stokes alpha equations for turbulence and can provide analytical control over the solutions [18].

For $g(u)=2 \omega u+\frac{3}{2} u^{2}$ and $h(u)=u$, Eq. (1) becomes the the following equation

$$
\begin{equation*}
u_{t}-\alpha^{2} u_{x x t}+2 \omega u_{x}+3 u u_{x}+\gamma\left(u-\alpha^{2} u_{x x}\right)_{x x x}=\alpha^{2}\left(2 u_{x} u_{x x}+u u_{x x x}\right) \tag{2}
\end{equation*}
$$

In [18], Tian et al. studied the well-posedness of Eq. (2) by applying Kato's semigroup approach. Moreover, they got the precise blow-up scenario and gave an explosion criterion of strong solutions of Eq. (2) with rather general initial data.

[^0]If $\alpha=1, \gamma=1$ and $\omega=0$ Eq. (2) becomes the following fifth-order shallow water equation

$$
\begin{equation*}
u_{t}-u_{x x t}+u_{x x x}+3 u u_{x}-u_{x x x x x}=2 u_{x} u_{x x}+u u_{x x x} \tag{3}
\end{equation*}
$$

which is a higher-order modification of the following Camassa-Holm equation

$$
u_{t}-u_{x x t}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

The well-posedness of the Cauchy problem of Eq. (3) in Sobolev spaces has been studied by several authours (see $[7,8,19]$ and the references therein).

In Eq. (2) if the strong dispersive term $\gamma\left(u-\alpha^{2} u_{x x}\right)_{x x x}$ is rewritten as the weak dispersive term $\gamma u_{x x x}$, Eq. (2) becomes the following Dullin-Gottwald-Holm equation:

$$
\begin{equation*}
u_{t}-\alpha^{2} u_{x x t}+2 \omega u_{x}+3 u u_{x}+\gamma u_{x x x}=\alpha^{2}\left(2 u_{x} u_{x x}+u u_{x x x}\right), \quad t>0, x \in \mathbb{R} \tag{4}
\end{equation*}
$$

which was derived by Dullin, Gottwald and Holm using asymptotic expansions directly in the Hamiltonian for Euler's equations in the shallow water regime in [2].

Recently, the well-posedness problem for the following generalization of the DGH equation:

$$
\left\{\begin{array}{lr}
u_{t}-\alpha^{2} u_{x x t}+h(u)_{x}+\gamma u_{x x x}=\alpha^{2}\left(\frac{g^{\prime}(u)}{2} u_{x}^{2}+g(u) u_{x x}\right)_{x}, & t>0, \tag{5}\\
u(x, 0)=u_{0}(x), & x \in \mathbb{R},
\end{array}\right.
$$

has been studied in [12]. In [3], authors studied the blow-up of solutions for the (5). Also, they proved the stability of solitary wave solutions with the help of the orbital stability theory [5].

It seems that the (1) is a better generalization of shallow water equation. In [4], Dündar and Polat studied the well-posedness by applying Kato's semigroup approach.

The aim of this paper is to investigate the existence and stability of solitary wave solutions of (1) when $g(u)=2 \omega u+\frac{p+2}{2} u^{p+1}, h(u)=u^{p}$, where $p>0$ is an integer and $\omega>0$. Without loss of generality we assume that $\alpha=\gamma=1$. In this instance, (1) becomes the following problem:

$$
\begin{cases}u_{t}-u_{x x t}+2 \omega u_{x}+\left(\frac{p+2}{2} u^{p+1}\right)_{x}+u_{x x x}-u_{x x x x x}=\left(\frac{p}{2} u^{p-1} u_{x}^{2}+u^{p} u_{x x}\right)_{x}, & t>0, \tag{6}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{R},\end{cases}
$$

Our paper is organized as follows: In Section 2, we give two conservation laws for (1). They are important for to prove stability of solitary waves. In Section 3, we show the existence of solitary waves of (6). For this, we will use the method of concentrated compactness developed by Lions [11] to solve a constrained minimization problem. In Section 4, we prove the stability of solitary wave solutions of (6). We show that there is a function $d(c)$ of the wave speed such that the solitary waves are stable whenever $d(c)$ is convex. The proof uses a compactness argument similar to those in [1] and [16] (see also [9, 10]).

Notations: Throughout this paper, we use the following notations.
Let $L^{p}=L^{p}(\mathbb{R})$ be the Lebesgue measurable space with

$$
\|f\|_{L^{p}}=\left(\int_{\mathbb{R}}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

The space L^{∞} is defined as the space of all measurable functions f on \mathbb{R} such that

$$
\|f\|_{L^{\infty}}=\underset{x \in \mathbb{R}}{\operatorname{ess} \sup }|g(x)|
$$

Let $H^{s}=H^{s}(\mathbb{R})$ be Sobolev space with

$$
\|f\|_{H^{s}}=\left(\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
$$

where $\widehat{f}(\xi)=\int_{\mathbb{R}} e^{-i \xi x} f(x) d x$.

2. Conservation Laws

First, we give the following local well-posedness theorem:
Theorem 2.1. [4] Assume that $g, h \in C^{[s]+1}(\mathbb{R})$, and $h(0)=g(0)=0$. Given $u_{0} \in H^{s}, s>\frac{3}{2}$, there exists a maximal $T=T\left(u_{0}\right)>0$, and a unique strong solution u to (1) such that

$$
u=u\left(u_{0}, .\right) \in C\left([0, T) ; H^{s}\right) \cap C^{1}\left([0, T) ; H^{s-1}\right)
$$

Moreover, the solution depends continuously on the initial data, i.e., the mapping

$$
u_{0} \rightarrow u\left(u_{0}, .\right): H^{s} \rightarrow C\left([0, T) ; H^{s}\right) \cap C^{1}\left([0, T) ; H^{s-1}\right)
$$

is continuous.
For a solution, we want all derivatives involved in the equation to exist and satisfy the equation with initial/boundary conditions at each point of the domain. Such a solution is called a classical solution. Certain specific partial differential equations such as the wave equation can be solved in the classical sense; but if we wish to study conservation laws and recover the underlying physics, we must allow for solutions which are not continously differentiable or even not continous. As in the case of conservation laws, some equations can be described in weaker forms and may be satisfied by functions that are not sufficiently smooth. Moreover, a solution that starts smooth may eventually become singular as in the case of shock waves. To overcome this difficulty, we allow for generalized or weak solutions. In the classical (smooth) category, there is no ambiguity as to what it means for a function u to solve an equation; but once one is in a low regularity class, there are several competing notions of solution, in particular the notions of a strong solution and a weak solution. To oversimplify a bit, both strong and weak solutions solve (1) in a distributional sense, but strong solutions are also continuous in time.

Applying the operator $\left(I-\partial_{x}^{2}\right)^{-1}$ to both sides of (1) we obtain

$$
\left\{\begin{array}{l}
u_{t}+b h(u) u_{x}+a u_{x x x}=-\partial_{x}\left(I-\partial_{x}^{2}\right)^{-1}\left(g(u)+\frac{b}{2} h^{\prime}(u) u_{x}^{2}\right)+\left(I-\partial_{x}^{2}\right)^{-1}\left(b h(u) u_{x}\right) \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where $t>0, x \in \mathbb{R}$ and $a=\frac{\gamma}{\alpha^{3}}$ and $b=\frac{1}{\alpha}$. Hence u is a solution of (1) in the sense of distribution. In particular, if $s \geq 5, u$ is also a classical solution.

Now, we give two useful conservation laws. We note that Eq. (1) can be written as the following Hamiltonian form:

$$
u_{t}+J F^{\prime}(u)=0
$$

where $J=\left(I-\partial_{x}^{2}\right)^{-1} \partial_{x}$ is a skew-symmetric operator and

$$
F(u)=\frac{1}{2} \int_{\mathbb{R}}\left(2 G(u)+\alpha^{2} h(u) u_{x}^{2}-\gamma u_{x}^{2}-\gamma \alpha^{2} u_{x x}^{2}\right) d x
$$

is the Hamiltonian, where $G^{\prime}(s)=g(s)$. We note that the functional $F(u)$ is formally conserved. Moreover, the other conserved quantity is

$$
E(u)=\frac{1}{2} \int_{\mathbb{R}}\left(u^{2}+\alpha^{2} u_{x}^{2}\right) d x
$$

Both $E(u)$ and $F(u)$ are very important to the stability analysis.

Theorem 2.2. Let u be a solution of (1). Then the functionals

$$
E(u)=\frac{1}{2} \int_{\mathbb{R}}\left(u^{2}+\alpha^{2} u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{\mathbb{R}}\left(2 G(u)+\alpha^{2} h(u) u_{x}^{2}-\gamma u_{x}^{2}-\gamma \alpha^{2} u_{x x}^{2}\right) d x
$$

are constant with respect to t, where $G^{\prime}(s)=g(s)$.
Proof. Multiplying both sides of Eq. (1) by u and integrating by parts with respect to x, we obtain

$$
\frac{d E(u)}{d t}=\int_{\mathbb{R}} u\left(u_{t}-\alpha^{2} u_{x x t}\right) d x=0
$$

Set $v(x, t)=\int_{-\infty}^{x} u_{t}(y, t) d y$. Consider the equalities

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}} G(u) d x=\int_{\mathbb{R}} g(u) u_{t} d x=\int_{\mathbb{R}} g(u) v_{x} d x=-\int_{\mathbb{R}}(g(u))_{x} v d x \\
& \begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}} \alpha^{2} \frac{1}{2} h(u) u_{x}^{2} d x & =\alpha^{2} \int_{\mathbb{R}} \frac{1}{2} h^{\prime}(u) u_{t} u_{x}^{2} d x+\alpha^{2} \int_{\mathbb{R}} h(u) u_{x} u_{x t} d x \\
& =\alpha^{2} \int_{\mathbb{R}} \frac{1}{2} h^{\prime}(u) u_{x}^{2} v_{x} d x+\alpha^{2} \int_{\mathbb{R}} h(u) u_{x} v_{x x} d x \\
& =-\alpha^{2} \int_{\mathbb{R}} \frac{1}{2} h^{\prime}(u) u_{x}^{2} v_{x} d x-\alpha^{2} \int_{\mathbb{R}} h(u) u_{x x} v_{x} d x \\
& =\alpha^{2} \int_{\mathbb{R}}\left(\frac{1}{2} h^{\prime}(u) u_{x}^{2}+h(u) u_{x x}\right)_{x} v d x
\end{aligned} \\
& \begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}} \frac{1}{2} \gamma u_{x}^{2} d x=\int_{\mathbb{R}} \gamma u_{x} u_{x t} d x=\int_{\mathbb{R}} \gamma u_{x} v_{x x} d x=\int_{\mathbb{R}} \gamma u_{x x x} v d x
\end{aligned}
\end{aligned}
$$

and

$$
\frac{d}{d t} \int_{\mathbb{R}} \frac{1}{2} \gamma \alpha^{2} u_{x x}^{2} d x=\int_{\mathbb{R}} \gamma \alpha^{2} u_{x x} u_{x x t} d x=\int_{\mathbb{R}} \gamma \alpha^{2} u_{x x} v_{x x x} d x=-\int_{\mathbb{R}} \gamma \alpha^{2} u_{x x x x x} v d x
$$

Combining the above equalities, we have

$$
\begin{aligned}
\frac{d F(u)}{d t} & =\frac{d}{d t} \int_{\mathbb{R}} \frac{1}{2}\left(2 G(u)+\alpha^{2} h(u) u_{x}^{2}-\gamma u_{x}^{2}-\gamma \alpha^{2} u_{x x}^{2}\right) d x \\
& =-\int_{\mathbb{R}}\left((g(u))_{x}-\alpha^{2}\left(\frac{1}{2} h^{\prime}(u) u_{x}^{2}+h(u) u_{x x}\right)_{x}+\gamma u_{x x x}-\gamma \alpha^{2} u_{x x x x x}\right) v d x
\end{aligned}
$$

Multiplying both sides Eq. (1) by v and integrating we get

$$
\begin{aligned}
& \int_{\mathbb{R}} v\left(u_{t}-\alpha^{2} u_{x x t}\right) d x=-\int_{\mathbb{R}}\left((g(u))_{x}-\alpha^{2}\left(\frac{1}{2} h^{\prime}(u) u_{x}^{2}+h(u) u_{x x}\right)_{x}+\gamma u_{x x x}-\gamma \alpha^{2} u_{x x x x x}\right) v d x . \\
& \int_{\mathbb{R}}\left(v v_{x}-\alpha^{2} v v_{x x x}\right) d x=\frac{d F(u)}{d t}=0 .
\end{aligned}
$$

3. Existence of Solitary Waves

In this section, we investigate the existence of solitary waves of the Eq. (6).
By a solitary wave we mean a solution of (6) of the form $u(x, t)=\varphi(x-c t)$, where $c>2 \omega$ represents the speed of the wave. Inserting this into (6) and integrating once, taking integral constant zero, we see that φ must satisfiy

$$
\begin{equation*}
c \varphi-c \varphi^{\prime \prime}-2 \omega \varphi-\frac{p+2}{2} \varphi^{p+1}-\varphi^{\prime \prime}+\varphi^{\prime \prime \prime \prime}+\left(\frac{p}{2} \varphi^{p-1} \varphi^{\prime 2}+\varphi^{p} \varphi^{\prime \prime}\right)=0 \tag{7}
\end{equation*}
$$

We obtain solutions to the solitary wave equation (7) by solving a constrained minimization problem. Define the functionals

$$
I(u)=I(u ; \omega, c)=\int_{\mathbb{R}}\left((c-2 \omega) u^{2}+(c+1) u_{x}^{2}+u_{x x}^{2}\right) d x
$$

and

$$
K(u)=\int_{\mathbb{R}}\left(u^{p+2}+u^{p} u_{x}^{2}\right) d x
$$

For $\lambda>0$, we consider the following constrained minimization problem on H^{2},

$$
\begin{equation*}
M_{\lambda}=\inf \left\{I(u): u \in H^{2}, K(u)=\lambda\right\} . \tag{8}
\end{equation*}
$$

If $\psi \in H^{2}$ achieves the minimum of problem (8), for some $\lambda>0$, then by the Lagrange multiplier principle there exists $\vartheta \in \mathbb{R}$ such that ψ is a weak solution of the Euler-Lagrange equation $\delta I(\psi)=\vartheta \delta K(\psi)$, where $\delta I(\psi)$ and $\delta K(\psi)$ are the Fréchet derivatives of I and K at ψ. Namely, the function ψ is a weak solution of the Euler-Lagrange equation

$$
(2 c-4 \omega) \psi-(2 c+2) \psi^{\prime \prime}+2 \psi^{\prime \prime \prime \prime}=\vartheta\left[(p+2) \psi^{p+1}-\left(p \psi^{p-1}\left(\psi^{\prime}\right)^{2}+2 \psi^{p} \psi^{\prime \prime}\right)\right]
$$

with a Lagrange multiplier ϑ. Hence $\varphi=\vartheta^{\frac{1}{p}} \psi$ is a solution of the solitary wave equation (7). Such solutions are called as ground states, and we denote the set of all ground states by N_{c}. By homogeneity of I and K, ground states also achieve minimum

$$
m=m(\omega, c)=\inf \left\{\frac{I(u)}{K(u)^{\frac{2}{p+2}}}: u \in H^{2}, u \neq 0\right\}
$$

and it follows that

$$
\begin{equation*}
M_{\lambda}=\lambda^{\frac{2}{p+2}} m \tag{9}
\end{equation*}
$$

Multiplying the solitary wave equation (7) by φ and integrating the resulting equation gives $I(\varphi)=$ $\frac{p+2}{2} K(\varphi)$. Thus the set of ground states may be characterized by

$$
\begin{equation*}
N_{c}=\left\{\varphi \in H^{2}: \frac{2}{p+2} I(\varphi)=K(\varphi)=\left(\frac{2}{p+2} m\right)^{\frac{p+2}{p}}\right\} \tag{10}
\end{equation*}
$$

We are now going to prove that N_{c} is nonempty.
We say that ψ_{k} is a minimizing sequence if for some $\lambda>0, \lim _{k \rightarrow \infty} I\left(\psi_{k}\right)=M_{\lambda}$ and $\lim _{k \rightarrow \infty} K\left(\psi_{k}\right)=\lambda$.

Theorem 3.1. Let $\left\{\psi_{k}\right\}$ be a minimizing sequence for some $\lambda>0$. If $c>2 \omega$, then there exist a subsequence (renamed $\left.\psi_{k}\right)$ and scalars $y_{k} \in \mathbb{R}$ and $\psi \in H^{2}$ such that $\psi_{k}\left(.-y_{k}\right) \rightarrow \psi$ in H^{2}. The function ψ achieves the minimum $I(\psi)=M_{\lambda}$ subject to the constraint $K(\psi)=\lambda$.

Proof. We prove the above theorem by applying the concentration compactness lemma of Lions [11]. From (9) we see that the subadditivity condition holds

$$
M_{\lambda}<M_{\lambda_{1}}+M_{\lambda-\lambda_{1}}, \quad \text { for } \lambda_{1} \in(0, \lambda)
$$

Since $c>2 \omega$, the functional I satisfies the coercivity condition

$$
I(u) \geq(c-2 \omega)\|u\|_{H^{2}}^{2} .
$$

It is also clear that $(c+1)\|u\|_{H^{2}}^{2} \geq I(u)$. That is to say, for $c>2 \omega$ the functional $I(u)$ is equivalent to $\|u\|_{H^{2}}^{2}$:

$$
(c-2 \omega)\|u\|_{H^{2}}^{2} \leq I(u) \leq(c+1)\|u\|_{H^{2}}^{2} .
$$

Let $\left\{\psi_{k}\right\}$ be a minimizing sequence. Then by coercivity of I, the squence $\left\{\psi_{k}\right\}$ is bounded in H^{2}, so we define

$$
\rho_{k}=\left|\partial_{x}^{2} \psi_{k}\right|^{2}+\left|\partial_{x} \psi_{k}\right|^{2}+\left|\psi_{k}\right|^{2}
$$

then after extracting a subsequence, we may assume $\lim _{k \rightarrow \infty} \int_{\mathbb{R}} \rho_{k} d x=L>0$. By normalizing we may assume further that $\left\|\rho_{k}\right\|_{L^{1}}=L$ for all k. By the concentration compactness lemma, a further subsequence ρ_{k} satisfies one of the following three conditions.
(i) Compactness: There exists $y_{k} \in \mathbb{R}$ such that for any $\varepsilon>0$ there exists $R(\varepsilon)$ such that for all k

$$
\begin{equation*}
\int_{\left|x-y_{k}\right| \leq R} \rho_{k} d x \geq \int_{\mathbb{R}} \rho_{k} d x-\varepsilon \tag{11}
\end{equation*}
$$

(ii) Vanishing: For every $R>0$,

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{y \in \mathbb{R}} \rho_{|x-y| \leq R} \rho_{k} d x=0 \tag{12}
\end{equation*}
$$

(iii) Dichotomy: There exists some $l \in(0, L)$ such that for any $\varepsilon>0$ there exist $R>0$ and $R_{k} \rightarrow \infty, y_{k} \in \mathbb{R}$ and k_{0} such that

$$
\begin{equation*}
\left|\int_{\left|x-y_{k}\right| \leq R} \rho_{k} d x-l\right|<\varepsilon \quad \text { and } \quad\left|\int_{R<\left|x-y_{k}\right|<R_{k}} \rho_{k} d x\right|<\varepsilon \tag{13}
\end{equation*}
$$

for $k \geq k_{0}$.
Our purpose is to show that both vanishing and dichotomy ruled out, and therefore ρ_{k} is compact. First suppose that (ii) holds. By the Sobolev inequality we have

$$
\begin{aligned}
& \int_{|x-y| \leq 1}\left|\psi_{k}\right|^{p+2} d x \leq C\left(\int_{|x-y| \leq 1} \rho_{k} d x\right)^{\frac{p+2}{2}}, \\
& \int_{|x-y| \leq 1}\left|\psi_{k}^{p}\left(\partial_{x} \psi_{k}\right)^{2}\right| d x \leq C\left(\int_{|x-y| \leq 1}\left|\psi_{k}\right|^{p+2} d x\right)^{\frac{p}{p+2}} \cdot\left(\int_{|x-y| \leq 1}\left|\partial_{x} \psi_{k}\right|^{p+2} d x\right)^{\frac{2}{p+2}}
\end{aligned}
$$

for all $y \in \mathbb{R}$ and $\left\{\psi_{k}\right\}$ is bounded in H^{2}. We obtain that for any $\psi_{k} \in H^{2}$

$$
\int_{|x-y| \leq 1}\left|\psi_{k}\right|^{p+2} d x \leq C\left(\sup _{y \in \mathbb{R}} \int_{|x-y| \leq 1} \rho_{k} d x\right)^{\frac{p}{2}} \cdot\left\|\psi_{k}\right\|_{H^{2}}^{2}
$$

$$
\int_{|x-y| \leq 1}\left|\psi_{k}^{p}\left(\partial_{x} \psi_{k}\right)^{2}\right| d x \leq C\left\|\psi_{k}\right\|_{H^{2}}^{2}\left[C\left(\sup _{y \in \mathbb{R}} \int_{|x-y| \leq 1} \rho_{k} d x\right)^{\frac{p}{2}} \cdot\left\|\psi_{k}\right\|_{H^{2}}^{2}\right]^{\frac{p}{p^{2}}} .
$$

Hence from (12) (with $R=1$), we arrive at the contradiction that $\lim _{k \rightarrow \infty} K\left(\psi_{k}\right)=0$. Hence vanishing cannot occur.
Next suppose (iii) holds. Then we may define cutoff functions δ_{1} and δ_{2} with support on $|x| \leq 2$ and $|x| \geq \frac{1}{2}$, respectively and with $\delta_{1}(x)=1$ for $|x| \leq 1$ and $\delta_{2}(x)=1$ for $|x| \geq 1$, in such a way that the functions

$$
\psi_{k, 1}(x)=\delta_{1}\left(\frac{\left|x-y_{k}\right|}{R}\right) \psi_{k}(x)
$$

and

$$
\psi_{k, 2}(x)=\delta_{2}\left(\frac{\left|x-y_{k}\right|}{R_{k}}\right) \psi_{k}(x)
$$

satisfy

$$
\begin{align*}
I\left(\psi_{k}\right) & =I\left(\psi_{k, 1}\right)+I\left(\psi_{k, 2}\right)+O(\varepsilon), \tag{14}\\
K\left(\psi_{k}\right) & =K\left(\psi_{k, 1}\right)+K\left(\psi_{k, 2}\right)+O(\varepsilon)
\end{align*}
$$

for $k \geq k_{0}$. Since $\left\{\psi_{k}\right\}$ is bounded in H^{2} it follows that $\psi_{k, 1}$ and $\psi_{k, 2}$ are also bounded in H^{2} independently of ε. Consequently $K\left(\psi_{k, 1}\right)$ and $K\left(\psi_{k, 2}\right)$ are bounded and we can pass to subsequences to define

$$
\lambda_{1}(\varepsilon)=\lim _{k \rightarrow \infty} K\left(\psi_{k, 1}\right) \text { and } \lambda_{2}(\varepsilon)=\lim _{k \rightarrow \infty} K\left(\psi_{k, 2}\right)
$$

As $\lambda_{1}(\varepsilon)$ and $\lambda_{2}(\varepsilon)$ are bounded independently of ε, we can choose a sequence $\varepsilon_{j} \rightarrow 0$ such that both limits

$$
\lambda_{1}=\lim _{j \rightarrow \infty} \lambda_{1}\left(\varepsilon_{j}\right) \text { and } \lambda_{2}=\lim _{j \rightarrow \infty} \lambda_{2}\left(\varepsilon_{j}\right)
$$

exist. Certainly, $\lambda_{1}+\lambda_{2}=\lambda$, and there are three cases to consider now.
If $\lambda_{1} \in(0, \lambda)$ then by (14) and $M_{\lambda}=\lambda^{\frac{2}{p+2}} m$

$$
\begin{aligned}
I\left(\psi_{k}\right) & =I\left(\psi_{k, 1}\right)+I\left(\psi_{k, 2}\right)+O(\varepsilon) \geq M_{K\left(\psi_{k, 1}\right)}+M_{K\left(\psi_{k, 2}\right)}+O\left(\varepsilon_{j}\right) \\
& =\left(K\left(\psi_{k, 1}\right)^{2 /(p+2)}+K\left(\psi_{k, 2}\right)^{2 /(p+2}\right) m+O\left(\varepsilon_{j}\right) .
\end{aligned}
$$

We first let $k \rightarrow \infty$ to obtain

$$
M_{\lambda} \geq\left[\lambda_{1}^{2 /(p+2)}\left(\varepsilon_{j}\right)+\lambda_{2}^{2 /(p+2)}\left(\varepsilon_{j}\right)\right] m+O\left(\varepsilon_{j}\right)
$$

Then letting $j \rightarrow \infty$, we arrive at

$$
M_{\lambda} \geq M_{\lambda_{1}}+M_{\lambda-\lambda_{1}}
$$

a contradiction.
If $\lambda_{1}=0$ (or equivalently, when $\lambda_{1}=\lambda$), we have

$$
\begin{aligned}
I\left(\psi_{k, 1}\right) & \geq(c-2 \omega) \int_{\mathbb{R}}\left(\left|\psi_{k, 1}\right|^{2}+\left|\partial_{x} \psi_{k, 1}\right|^{2}+\left|\partial_{x}^{2} \psi_{k, 1}\right|^{2}\right) d x \\
& =(c-2 \omega)\left(\int_{\left|x-y_{k}\right| \leq 2 R}\left(\left|\psi_{k}\right|^{2}+\left|\partial_{x} \psi_{k}\right|^{2}+\left|\partial_{x}^{2} \psi_{k}\right|^{2}\right) d x+O\left(\varepsilon_{j}\right)\right) \\
& =(c-2 \omega)\left(l+O\left(\varepsilon_{j}\right)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
I\left(\psi_{k}\right) & =I\left(\psi_{k, 1}\right)+I\left(\psi_{k, 2}\right)+O\left(\varepsilon_{j}\right) \\
& \geq(c-2 \omega)\left(l+O\left(\varepsilon_{j}\right)\right)+K\left(\psi_{k, 2}\right)^{2 /(p+2} m+O\left(\varepsilon_{j}\right)
\end{aligned}
$$

Letting k and $j \rightarrow \infty$ respectively, we obtain

$$
M_{\lambda} \geq(c-2 \omega) l+K\left(\psi_{k, 2}\right)^{2 /(p+2)} m=(c-2 \omega) l+M_{\lambda}>M_{\lambda}
$$

which is a contradiction.
Finally, $\lambda_{1}>\lambda$ (or equivalently, when $\lambda_{1}<0$), we use the positivity of I to estimate

$$
I\left(\psi_{k}\right) \geq I\left(\psi_{k, 1}\right)+O\left(\varepsilon_{j}\right) \geq K\left(\psi_{k, 1}\right)^{2 /(p+2} m+O\left(\varepsilon_{j}\right)
$$

Letting k and $j \rightarrow \infty$ respectively, we obtain

$$
M_{\lambda} \geq M_{\lambda_{1}}>M_{\lambda}
$$

which is a contradiction.
So there exist $y_{k} \in \mathbb{R}$ such that $\rho_{k}\left(.-y_{k}\right)$ is compact. Now set $\varphi_{k}=\psi_{k}\left(.-y_{k}\right)$. Since φ_{k} is bounded in H^{2}, a subsequence φ_{k} converges to some $\psi \in H^{2}$, and by the weak lower semicontinuity of I over H^{2}, we have

$$
I(\psi) \leq \lim _{k \rightarrow \infty} I\left(\varphi_{k}\right)=M_{\lambda}
$$

Also, weak convergence in H^{2}, compactness of ρ_{k}, and Sobolev inequality imply strong convergence of φ_{k} to ψ in L^{p+2}. Therefore

$$
K(\psi)=\lim _{k \rightarrow \infty} K\left(\varphi_{k}\right)=\lambda
$$

so $I(\psi) \geq M_{\lambda}$. Together with the inequality above, this implies $I(\psi)=M_{\lambda}$, so ψ is minimizer of I subject to the constraint $K(\varphi)=\lambda$. Finally, since I is equivalent to the norm on $H^{2}, \varphi_{k} \rightarrow \psi$, and $I\left(\varphi_{k}\right) \rightarrow I(\psi)$, it follows that φ_{k} converges to ψ in H^{2}.

We now show that this weak solution is in fact a classical solution of (7).
Lemma 3.2. Suppose $\varphi \in H^{2}$ is a weak solution of (7). Then φ is a classical solution and $\varphi \in C^{5}$.
Proof. Eq. (7) can be written as

$$
c \varphi-c \varphi^{\prime \prime}-2 \omega \varphi-\varphi^{\prime \prime}+\varphi^{\prime \prime \prime \prime}=f\left(\varphi, \varphi^{\prime}, \varphi^{\prime \prime}\right)
$$

where $f\left(\varphi, \varphi^{\prime}, \varphi^{\prime \prime}\right)=\frac{p+2}{2} \varphi^{p+1}-\left(\frac{p}{2} \varphi^{p-1} \varphi^{\prime 2}+\varphi^{p} \varphi^{\prime \prime}\right)$. Since $\varphi \in H^{2}$, both φ and φ^{\prime} are in $L^{\infty} \cap L^{2}$ and thus $f\left(\varphi, \varphi^{\prime}, \varphi^{\prime \prime}\right) \in L^{2}$. Since φ is a weak solution of (7) this implies $\varphi \in H^{4}$ and therefore $f\left(\varphi, \varphi^{\prime}, \varphi^{\prime \prime}\right) \in C^{1}$ by Sobolev's lemma. Thus $\varphi \in C^{5}$.

4. Stability

We define the function d of wavespeed $c>2 \omega$ as

$$
d(c)=c E(\varphi)-F(\varphi)
$$

where φ is any ground state solution of (7), i.e $\varphi \in N_{c}$. Then φ satisfies

$$
c E^{\prime}(\varphi)-F^{\prime}(\varphi)=0
$$

where E^{\prime} and F^{\prime} are the Fréchet derivatives of E and F, respectively. The functionals E and F are related to the functionals I and K used to obtain the solitary waves by the simple formula

$$
\begin{equation*}
c E(u)-F(u)=\frac{1}{2}(I(u)-K(u)) . \tag{15}
\end{equation*}
$$

By using $I(\varphi)=\frac{p+2}{2} K(\varphi)$ and (10), we obtain

$$
\begin{equation*}
d(c)=\frac{p}{2(p+2)} I(\varphi)=\frac{p}{4} K(\varphi)=\frac{p}{4}\left(\frac{2}{p+2} m\right)^{\frac{p+2}{p}} \tag{16}
\end{equation*}
$$

In this section we show that stability of the set of ground states is determined by the convexity of the function $d(c)$. We will use the following definition of stability throughout.

Definition 4.1. A set $S \subset H^{2}$ is stable with respect to (6) if given $\varepsilon>0$ there exists some $\delta>0$ such that if u_{0} satisfies

$$
\inf _{\varphi \in S}\left\|u_{0}(.)-\varphi(.)\right\|_{H^{2}}<\delta
$$

then the solution $u(., t)$ of (6) with initial data $u(., 0)=u_{0}($.$) exists for all t>0$ and satisfies

$$
\sup _{0 \leq t<\infty} \inf _{\varphi \in S}\|u(., t)-\varphi(.-y)\|_{H^{2}}<\varepsilon .
$$

Otherwise, we say that S is unstable with respect to (6).
We state the basic properties of the function d.
Therefore, d is well defined, and we may deduce its properties by examining the function m.
Lemma 4.2. Let $c>2 \omega$, then $m=m(\omega, c)$ is monotonically increasing in c.
Proof. We assume that $\varphi_{c_{1}}, \varphi_{c_{2}}$ are solutions of equation (7) corresponding to $c=c_{1}, c=c_{2}$, respectively. Without loss of generality, let $c_{1}<c_{2}$, then we have

$$
\begin{aligned}
m\left(\omega, c_{1}\right) & \leq \frac{I\left(\varphi_{c_{2}} ; \omega, c_{1}\right)}{K\left(\varphi_{c_{2}}\right)^{\frac{2}{p+2}}}=\frac{\int_{\mathbb{R}}\left[\left(c_{1}-2 \omega\right) \varphi_{c_{2}}^{2}+\left(c_{1}+1\right)\left(\varphi_{c_{2}}^{\prime}\right)^{2}+\left(\varphi_{c_{2}}^{\prime \prime}\right)^{2}\right] d x}{K\left(\varphi_{c_{2}}\right)^{\frac{2}{p+2}}} \\
& =\frac{\int_{\mathbb{R}}\left[\left(c_{2}-2 \omega\right) \varphi_{c_{2}}^{2}+\left(c_{2}+1\right)\left(\varphi_{c_{2}}^{\prime}\right)^{2}+\left(\varphi_{c_{2}}^{\prime \prime}\right)^{2}\right] d x}{K\left(\varphi_{c_{2}}\right)^{\frac{2}{p+2}}} \\
& +\frac{-c_{2} \int_{\mathbb{R}}\left[\varphi_{c_{2}}^{2}+\left(\varphi_{c_{2}}^{\prime}\right)^{2}\right] d x+c_{1} \int_{\mathbb{R}}\left[\varphi_{c_{2}}^{2}+\left(\varphi_{c_{2}}^{\prime}\right)^{2}\right] d x}{K\left(\varphi_{c_{2}}\right)^{\frac{2}{p+2}}} \\
& =m\left(\omega, c_{2}\right)+\left(c_{1}-c_{2}\right) \frac{\int_{\mathbb{R}}\left[\left(\varphi_{c_{2}}^{\prime}\right)^{2}+\varphi_{c_{2}}^{2}\right] d x}{K\left(\varphi_{c_{2}}\right)^{\frac{2}{p+2}}} \\
& \leq m\left(\omega, c_{2}\right) .
\end{aligned}
$$

This shows that m is monotonically increasing in c, so that by (16) d must be monotonically increasing as well.

Let

$$
U_{\varepsilon}=\left\{u \in H^{2}: \inf _{\varphi \in N_{c}}\|u-\varphi\|_{H^{2}}<\varepsilon\right\}
$$

denote the ε-neighborhood of the set of ground states N_{c}. It follows from (16) and $d(c)$ is monotonically increasing in c that

$$
\begin{equation*}
c(u)=d^{-1}\left(\frac{p}{4} K(u)\right) \tag{17}
\end{equation*}
$$

The following lemma is helpful in order to prove the stability of solitary waves.
Lemma 4.3. If $d^{\prime \prime}(c)>0$, then there exists $\varepsilon>0$ such that for any $u \in U_{\varepsilon}$ and $\varphi \in N_{c}$ we have

$$
c(u)[E(u)-E(\varphi)]-[F(u)-F(\varphi)] \geq \frac{1}{4} d^{\prime \prime}(c)|c(u)-c|^{2} .
$$

Proof. By using $d^{\prime}(c)=E(\varphi)$ and Taylor's formula, we have the expansion

$$
\left.d(\widetilde{c})=d(c)+E(\varphi)(\widetilde{c}-c)+\frac{1}{2} d^{\prime \prime}(c) \widetilde{c}-c\right)^{2}+o\left(|\widetilde{c}-c|^{2}\right)
$$

for \widetilde{c} near c. By choosing ε sufficiently small the continuity of $c(u)$ implies that

$$
\begin{aligned}
d(c(u)) & \geq d(c)+E(\varphi)(c(u)-c)+\frac{1}{4} d^{\prime \prime}(c)(c(u)-c)^{2} \\
& =c(u) E(\varphi)-F(\varphi)+\frac{1}{4} d^{\prime \prime}(c)(c(u)-c)^{2}
\end{aligned}
$$

It follows from (16) and (17) that $K\left(\varphi_{c(u)}\right)=\frac{4}{p} d(c(u))=K(u)$ and $\varphi_{c(u)}$ minimizes $I(. ; \omega, c(u))$ subject to this constraint, we then have

$$
\begin{aligned}
c(u) E(u)-F(u) & =\frac{1}{2}(I(u ; \omega, c(u))-K(u)) \\
& \geq \frac{1}{2}\left(I\left(\varphi_{c(u)} ; \omega, c(u)\right)-K\left(\varphi_{c(u)}\right)\right)=d(c(u))
\end{aligned}
$$

and

$$
c(u) E(u)-F(u) \geq c(u) E(\varphi)-F(\varphi)+\frac{1}{4} d^{\prime \prime}(c)(c(u)-c)^{2} .
$$

Theorem 4.4. Let $c>2 \omega$. If $d^{\prime \prime}(c)>0$ then the set of ground states N_{c} is stable.
Proof. Suppose N_{c} is unstable and choose initial data v_{k} such that

$$
\inf _{\varphi \in N_{c}}\left\|v_{k}-\varphi\right\|_{H^{2}}<\frac{1}{k}
$$

and let $u_{k}(., t)$ be the solution of (6) with $u_{k}(., 0)=v_{k}$. Then, by Theorem $2.1 u_{k}$ is continuous in t, and there exist some $\delta>0$ and times t_{k} such that

$$
\begin{equation*}
\inf _{\varphi \in N_{c}}\left\|u_{k}\left(., t_{k}\right)-\varphi\right\|_{H^{2}}=\delta \tag{18}
\end{equation*}
$$

Since E and F are invariants of (6) and since N_{c} is bounded, we can find $\varphi_{k} \in N_{c}$ such that

$$
\begin{align*}
& \left|E\left(u_{k}\left(., t_{k}\right)\right)-E\left(\varphi_{k}\right)\right|=\left|E\left(u_{k}(., 0)\right)-E\left(\varphi_{k}\right)\right| \rightarrow 0, \tag{19}\\
& \left|F\left(u_{k}\left(., t_{k}\right)\right)-F\left(\varphi_{k}\right)\right|=\left|F\left(u_{k}(., 0)\right)-F\left(\varphi_{k}\right)\right| \rightarrow 0 \tag{20}
\end{align*}
$$

as $k \rightarrow \infty$. By Lemma 4.3, if δ is sufficiently small, we have

$$
\begin{aligned}
& c\left(u_{k}\left(., t_{k}\right)\right)\left[E\left(u_{k}\left(., t_{k}\right)\right)-E\left(\varphi_{k}\right)\right]-\left[F\left(u_{k}\left(., t_{k}\right)\right)-F\left(\varphi_{k}\right)\right] \\
& \geq \frac{1}{4} d^{\prime \prime}(c)\left|c\left(u_{k}\left(., t_{k}\right)\right)-c\right|^{2}
\end{aligned}
$$

and therefore, by (19) and (20), $c\left(u_{k}\left(., t_{k}\right)\right) \rightarrow c$ as $k \rightarrow \infty$.
The continuity of d implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} K\left(u_{k}\left(., t_{k}\right)\right)=\lim _{k \rightarrow \infty} \frac{4}{p} d\left(c\left(u_{k}\left(., t_{k}\right)\right)\right)=\frac{4}{p} d(c) \tag{21}
\end{equation*}
$$

Using (15), (19), (20) and the fact that $d(c)=c E\left(\varphi_{k}\right)-F\left(\varphi_{k}\right)$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} I\left(u_{k}\left(., t_{k}\right)\right)=\frac{2(p+2)}{p} d(c) \tag{22}
\end{equation*}
$$

Hence $u_{k}\left(., t_{k}\right)$ is a minimizing sequence and therefore has a subsequence which converges in H^{2} to some $\varphi \in N_{c}$. This contradicts with (18). The proof is completed.

References

[1] T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982) 549-561.
[2] H.R. Dullin, G.A. Gottwald, D.D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Physical Review Letters, 87 (2001) 1945-1948.
[3] N. Dündar, N. Polat, Blow-up phenomena and stability of solitary waves for a generalized Dullin-Gottwald-Holm equation, Boundary Value Problems, (2013) doi:10.1186/1687-2770-2013-226.
[4] N. Dündar, N. Polat, Local Well-posedness for a Generalized Integrable Shallow Water Equation with Strong Dispersive Term, submitted.
[5] M.Grillakis, J.Shatah, W.Strauss, Stability theory of solitary waves in the presence of symmetry I, Journal of Functional Analysis, 74 (1987) 160-197.
[6] N. Hayashi, On the derivative nonlinear Schrödinger equation, Physica D: Nonlinear Phenomena, 55 (1992) 14-36.
[7] A.A. Himonas, G. Misiolek, Well-posedness of the Cauchy problem for a shallow water equation on the circle, Journal of Differential Equations 161 (2) (2000) 479-495.
[8] A.A. Himonas, G. Misiolek, The initial value problem for a fifth order shallow water, in: Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis, in: Contemp. Math., 251, Amer. Math. Soc, Providence, RI,(2000) 309-320.
[9] S. Levandosky, A stability analysis of fifth-order water wave models, Physica D, 125 (1999) 222-240.
[10] S. Levandosky, Y. Liu, Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal., 38 (2006) $985-1011$.
[11] P. L. Lions, The concentration compactness principle in the calculus of variations, The locally compact case, Part 1 and Part 2, Ann. Inst. H. Poincaré, Anal. Non Linéarie, (1984) 1: 109-145; 223-283.
[12] X. Liu, Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Analysis, 74 (2011) 2497-2507.
[13] A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math. 4 (2003) 165-185.
[14] N. Polat, A. Ertas, Existence and blow up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl. 349 (2009) 10-20.
[15] N. Polat, N. Dündar, Global existence and asymptotic behavior of a solution of Cauchy problem for a viscous Cahn-Hilliard type equation, Contemporary Analysis and Applied Mathematics (CAAM), 1 (2) (2013) 107-117.
[16] J. Shatah, Stable standing waves of nonlinear Klein Gordon equations, Comm. Math. Phys. 91 (1983) 313-327.
[17] H. Taskesen, N. Polat, Global existence for a double dispersive sixth order Boussinesq equation, Contemporary Analysis and Applied Mathematics (CAAM), 1 (1) (2013) 60-69.
[18] L. Tian, G. Fang, G. Gui, Well-posedness and blow-up for an integrable shallow water equation with strong dispersive term, International Journal of Nonlinear Science, 1 (1) (2006) 3-13.
[19] H. Wang, S. Cui, Global well-posedness of the Cauchy problem of the fifth-order shallow water equation, Journal of Differential Equations, 230 (2) (2006) 600-613.

[^0]: 2010 Mathematics Subject Classification. Primary 35B35 ; Secondary 58E30, 76B25
 Keywords. Shallow water equation, Solitary waves, Variational methods, Stability
 Received: 08 November 2013; Revised: 27 February 2014, 21 March 2014; Accepted: 26 March 2014
 Communicated by Allabaren Ashyralyev (Guest Editor)
 Research supported by Grant No. 13-FF-46 of the Dicle University of Scientic Research Projects Coordination (DUBAP), Diyarbakir, Turkey

 Email addresses: nurhandundar@hotmail.com (Nurhan Dündar), npolat@dicle.edu.tr (Necat Polat)

