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Abstract. We establish identities or estimates for the Hausdorff measure of noncompactness of operators
from some generalized mixed norm spaces into any of the spaces c0, c, `1, and [`1, `∞]<m(µ)>. Furthermore
we give necessary and sufficient conditions for the operators in these cases to be compact. Our results are
complementary to those in [1, 3, 13].

1. Introduction and Notations

We use the following standard notations.
Let X and Y be normed spaces. Then SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈ X : ‖x‖ ≤ 1} denote the unit

sphere and closed unit ball in X, and B(X,Y) is the set of all bounded linear operators L : X→ Y which is a
Banach space with the operator norm given by ‖L‖ = sup{‖L(x)‖ : x ∈ SX}, whenever Y is a Banach space.

A sequence (bn)∞n=1 in a linear metric space X is called a Schauder basis if, for every x ∈ X, there exists a
unique sequence (λn)∞n=1 of scalars such that x =

∑
∞

n=1 λnbn.
Let ω denote the set of all complex sequences x = (xk)∞k=1. We write `∞, c, c0 and φ for the set of all

bounded, convergent, null and finite sequences, respectively, and `p = {x ∈ ω :
∑
∞

k=1 |xk|
p < ∞} for 1 ≤ p < ∞.

Let e and e(n) (n ∈N) be the sequences with ek = 1 for all k, and e(n)
n = 1 and e(n)

k = 0 for k , n.
A BK space is a Banach sequence space with the property that convergence implies coordinatewise

convergence; a BK space X ⊃ φ is said to have AK if x[m] =
∑m

k=1 xke(k)
→ x (m → ∞) for every sequence

x = (xk)∞k=1 ∈ X. It is well known that the sets `∞, c and c0 are BK spaces with ‖x‖∞ = supk |xk|, `p (1 ≤ p < ∞)
is a BK space with ‖x‖p = (

∑
∞

k=1 |xk|
p)1/p, c0 and `p (1 < p < ∞) have AK, every sequence x = (xk)∞k=1 ∈ c has a

unique representation x = ξ · e +
∑
∞

k=1(xk − ξ)e(k), where ξ = limk→∞ xk.
Let A = (ank)∞n,k=1 be an infinite matrix of complex numbers, X and Y be subsets of ω and x ∈ ω. We

write An = (ank)n
k=1 for the sequence in the nth row of A, Anx =

∑
∞

k=1 ankxk and Ax = (Anx)∞n=1 (provided all
the series Anx converge). The set Xβ = {a ∈ ω :

∑
∞

k=1 akxk converges for all x ∈ X} is called the β–dual of X.
Finally (X,Y) is the class of all matrices A for which An ∈ Xβ for all n and Ax ∈ Y for all x ∈ X.

If X is a normed space, then we write ‖a‖∗X = sup{|
∑
∞

k=1 akxk| : x ∈ SX} provided the expression on the
right–hand side exists and is finite which is the case whenever X is a BK space and a ∈ Xβ ([17, Theorem
7.2.9]).
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Throughout let (k(ν))∞ν=0 and (m(µ))∞µ=0 be sequences of integers with 1 = k(0) < k(1) < . . . and 1 = m(0) <
m(1) < . . . , Iν = {k ∈N : k(ν) ≤ k ≤ k(ν+1)−1}, Mµ = {m ∈N : m(µ) ≤ m ≤ m(µ+1)−1} and x<ν> =

∑
k∈Iν xke(k)

be the ν–block of the sequence x = (xk)∞k=1 for ν = 0, 1, . . . . We write
∑
ν and maxν for the sum and maximum

taken over all k ∈ I<ν>,
∑
µ and maxµ for the sum and maximum taken over all m ∈ Mµ, and consider the

sets ([8, Example 2.1 (a)]) for 1 ≤ p < ∞ and 1 ≤ r < ∞

[`r, `p]<k(ν)> =
{
x ∈ ω :

(
‖x<ν>‖p

)∞
ν=0
∈ `r

}
,

[`r, `∞]<k(ν)> =
{
x ∈ ω : (‖x<ν>‖∞)∞ν=0 ∈ `r

}
,

[c0, `p]<k(ν)> =
{
x ∈ ω : lim

ν→∞
‖x<ν>‖p = 0

}
and

[`∞, `p]<k(ν)> =

{
x ∈ ω : sup

ν
‖x<ν>‖p < ∞

}
.

These sets generalize the mixed norm spaces `(r, p) introduced and studied by Hedlund [6] and Kellogg
[10]; they are also closely related to the sets wp

∞ and wp
0 of sequences that are strongly bounded and strongly

convergent to 0 with index p by the Cesàro method of order 1, introduced and studied by Maddox [11],
the Cesàro sequence spaces ces(p) studied by Jagers [7], and the sets of strong weighted means studied by
Grosse–Erdmann [4, 5].

In this paper, we establish identities or estimates for the Hausdorff measure of noncompactness of
operators L ∈ B([`r, `p]<k(ν)>,Y) for 1 ≤ r < ∞ and 1 < p ≤ ∞, or 1 < r < ∞ and p = 1, when Y any of the
spaces c0, c, `1 and [`1, `∞]<m(µ)>. Furthermore, we give necessary and sufficient conditions for the operators
in these cases to be compact. Our results are complementary to those in [1, 3, 13].

2. Basic Results

Here we collect and prove the important basic results.
If 1 ≤ p ≤ ∞ then, as usual, its conjugate number is q = ∞ if p = 1, q = p/(p − 1) if 1 < p < ∞, and q = 1 if

p = ∞. Throughout, let 1 ≤ r < ∞ and 1 < p ≤ ∞, or 1 < r < ∞ and p = 1, and s and q denote the conjugate
numbers of r and p, respectively. We refer to Remark 3.4 for the other cases.

The following results are known ([8, Example 3.4 (a)]). If 1 ≤ p, r < ∞ then the sets [`r, `p]<k(ν)> and
[c0, `p]<k(ν)> are BK spaces with AK with

‖x‖[`r,`p]<k(ν)> =
∥∥∥∥(‖x<k(ν)>

‖p

)∞
ν=0

∥∥∥∥
r

and ‖x|[`∞,`p]<k(ν)> =
∥∥∥∥(‖x<k(ν)>

‖p

)∞
ν=0

∥∥∥∥
∞

;

also [`∞, `p]<k(ν)> is a BK space with ‖ · ‖[`∞,`p]<k(ν)> ; moreover [c0, `p]<k(ν)> is a closed subspace of [`∞, `p]<k(ν)>;
finally, the sets [`r, `∞]<k(ν)> are BK spaces with AK with

‖x‖[`r,`∞]<k(ν)> =
∥∥∥∥(‖x<k(ν)>

‖∞

)∞
ν=0

∥∥∥∥
r
.

We need the following result on the equality of the norms ‖ · ‖∗X and ‖ · ‖Xβ .

Lemma 2.1. Let a ∈ ([`r, `p]<k(ν)>)β. Then we have

‖a‖∗[`r,`p]<k(ν)> = ‖a‖[`s,`q]<k(ν)> . (1)

Proof. We write Z = [`r, `p]<k(ν)>, for short, and obtain Zβ = [`s, `q]<k(ν)> by [8, Example 4.3 (a)], and so
‖a‖[`s,`q]<k(ν)> < ∞. Also, since the sets [`r, `p]<k(ν)> are BK spaces, it follows that ‖a‖∗

[`r,`p]<k(ν)> < ∞ by [17,
Theorem 7.2.9].
First we show

‖a‖∗Z ≤ ‖a‖Zβ . (2)
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Let a ∈ Zβ and x ∈ Z be given. If 1 < r < ∞ and 1 < p ≤ ∞ then we obtain, applying Hölder’s inequality
twice,∣∣∣∣∣∣∣

∞∑
k=1

akxk

∣∣∣∣∣∣∣ ≤
∞∑
ν=0

∑
ν|akxk| ≤

∞∑
ν=0

‖a<ν>‖q · ‖x<ν>‖p

≤

 ∞∑
ν=0

‖a<ν>‖sq


1/s

·

 ∞∑
ν=0

‖x<ν>‖rp


1/r

= ‖a‖Zβ · ‖x‖Z.

If r = 1 and 1 < p ≤ ∞ then we obtain by Hölder’s inequality∣∣∣∣∣∣∣
∞∑

k=1

akxk

∣∣∣∣∣∣∣ ≤
∞∑
ν=0

‖a<ν>‖q · ‖x<ν>‖p ≤ sup
ν
‖a<ν>‖q ·

 ∞∑
ν=0

‖x<ν>‖p


= ‖a‖Zβ · ‖x‖Z,

Finally, if 1 < r < ∞ and p = 1 then we obtain by Hölder’s inequality∣∣∣∣∣∣∣
∞∑

k=1

akxk

∣∣∣∣∣∣∣ ≤
∞∑
ν=0

‖a<ν>‖∞ · ‖x<ν>‖1 ≤

 ∞∑
ν=0

‖a<ν>‖s∞


1/s

·

 ∞∑
ν=0

‖x<ν>‖r1


1/r

= ‖a‖Zβ · ‖x‖Z.

Therefore (2) holds in each case.
Now we show

‖a‖∗Z ≥ ‖a‖Zβ . (3)

Since the identity in (1) is trivial for a = 0, we assume a , 0.
If 1 < r < ∞ and 1 < p ≤ ∞, then we write A = (

∑
∞

ν=0 ‖a<ν>‖sq)1/r, and define the sequence x by

xk =


|ak|

q/p
· ‖a<ν>‖−q/p+s−1

q · A−1
· sgn(ak) (k ∈ Iν)

for those ν for which ‖a<ν>‖q , 0
0 (otherwise)

(ν = 0, 1, . . . ).

Now let r = 1 and 1 < p ≤ ∞ and µ ∈N be given and so large that a<k(µ)> , 0. Furthermore, let µ(ν) denote
the smallest integer for which max0≤ν≤µ ‖a<ν>‖q = ‖a<ν(µ)>

‖q. We define the sequence x(µ) by

x(µ)
k =

{
|ak|

q/p
· ‖a<ν>‖−q/p

q · sgn(ak) (k ∈ Iν(µ))
0 (otherwise)

.

Finally let 1 < r < ∞ and p = 1. We write A = (
∑
∞

ν=0 ‖a<ν>‖s∞)1/r, and define the sequence x by

xk =


‖a<ν>‖s−1

∞ · A−1
· sgn(ak(ν)) (k = k(ν))

where k(ν) is the smallest integer k ∈ Iν
for which |ak(ν)| = maxν|ak|

0 (otherwise)

(ν = 0, 1, . . . ).

Then it follows that ‖x‖Z, ‖x(µ)
‖Z ≤ 1 for all µ, and∣∣∣∣∣∣∣

∞∑
k=1

akxk

∣∣∣∣∣∣∣ =

 ∞∑
ν=0

‖a<ν>‖sq


1/s

and

∣∣∣∣∣∣∣
∞∑

k=1

akx(µ)
k

∣∣∣∣∣∣∣ = ‖a<ν(µ)>
‖q for all µ.

Thus (3) holds in each case.
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We need also need the following known result.

Proposition 2.2. ([17, Theorem 4.2.8], [9, Theorem 1.9]) Let X and Y be BK spaces and X have AK. Then we have
B(X,Y) = (X,Y), that is, every A ∈ (X,Y) defines an operator L ∈ B(X,Y), where

L(x) = Ax for all x ∈ X, (4)

and conversely every operator L ∈ B(X,Y) is given by and infinite matrix A ∈ (X,Y) such that (4) holds.

Now we establish an identity and some inequalities for the norms of bounded linear operators. We
write supN for the supremum taken over all finite subsets of N or N0, and T for the set of all sequences
(tµ)∞µ=0 of integers such that for each µ there is one and only one tµ ∈Mµ.

Theorem 2.1. (a) If L ∈ B([`r, `p]<k(ν)>,Y) where Y = `∞, c, c0, then

‖L‖ = sup
n
‖An‖[`s,`q]<k(ν)> . (5)

(b) If L ∈ B([`r, `p]<k(ν)>, `1), then

supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

≤ ‖L‖ ≤ 4 · supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

. (6)

(c) If L ∈ B([`r, `p]<k(ν)>, [`1, `∞]<m(µ)>), then

supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

Atµ

∥∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

 ≤ ‖L‖ ≤ 4 · supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

Atµ

∥∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

 . (7)

Proof. Since all the spaces are BK spaces and each space [`r, `p]<k(ν)> has AK, in each case, the operator L is
given by an infinite matrix as in (4).
(a) If L ∈ B([`r, `p]<k(ν)>, `∞), then we have [14, Theorem 1.23] and (1)

‖L‖ = sup
n
‖An‖

∗

[`r,`p]<k(ν)> = sup
n
‖An‖[`s,`q]<k(ν)> .

Since trivially B([`r, `p]<k(ν)>,Y) ⊂ B([`r, `p]<k(ν)>, `∞) for Y = c, c0 and the BK norms on `∞, c and c0 are the
same, (5) also holds for Y = c, c0.
(b) If L ∈ B([`r, `p]<k(ν)>, `1), then we have by [12, Theorem 1] and (1)

supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

= supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

≤ ‖L‖ ≤

4 · supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

= 4 · supN

∥∥∥∥∥∥∥∑n∈N An

∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

.

(c) Let L ∈ B([`r, `p]<k(ν)>, [`1, `∞]<m(µ)>), and x ∈ S[`r,`p]<k(ν)> be given. Also, for each µ = 0, 1, . . . , let mµ ∈ Mµ

be such that |Amµx| = maxm∈Mµ |Amx|. Then we have by a well–known inequality ([15])

‖L(x)‖[`1,`∞]<m(µ)> =

∞∑
µ=0

∥∥∥(Ax)<m(µ)>
∥∥∥
∞

=

∞∑
µ=0

∣∣∣Amµx
∣∣∣ ≤ 4 · supN

∣∣∣∣∣∣∣∣
∑
µ∈N

Amµx

∣∣∣∣∣∣∣∣ ≤
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4 · supN

∥∥∥∥∥∥∥∥
∑
µ∈N

Amµ

∥∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

≤ 4 · supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

Atµ

∥∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

 ,
hence

‖L‖ ≤ 4 · supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

Atµ

∥∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

 . (8)

We also have
∑
∞

µ=0 |Amµx| ≥ |
∑
µ∈N Amµx| for all finite subsets N ofN0, for all µ ∈Mµ and for all x ∈ S[`r,`p]<k(ν)> ,

hence ‖L‖ ≥ ‖
∑
µ∈N Atµ‖

∗

[`r,`p]<k(ν)> for all t ∈ T , and so

supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

Atµ

∥∥∥∥∥∥∥∥
∗

[`r,`p]<k(ν)>

 ≤ ‖L‖. (9)

Now (7) follows from (9), (8) and (1).

3. Compact Operators

We recall that a linear operator L between Banach spaces X and Y is said to be compact, if its domain is
all of X and, for every bounded sequence (xn) in X, the sequence (L(xn)) has a convergent subsequence in Y.

Let (X, d) be a metric space. Then we writeMX for the class of all bounded subsets of X, and Br(x0) =
{x ∈ X : d(x, x0) < r} for the open ball of radius r > 0 with its centre in x0 ∈ X. We recall that the Hausdorff
measure of noncompactness is the map χ :MX → [0,∞) with

χ(Q) = inf

ε > 0 : Q ⊂
n⋃

k=1

Brk (xk), xk ∈ X, rk < ε (k = 1, 2, . . .n; n ∈N)

 .
If X is a linear metric space with a Schauder basis (bk) then we define the operator Rn for each n ∈N by

Rn(x) =
∑
∞

k=n+1 λkbk for all x =
∑
∞

k=1 λkbk ∈ X.
We say that a norm ‖ · ‖ on a sequence space X is monotonous if, for all x, x̃ ∈ X, |xk| ≤ |x̃k| for all k implies

‖x‖ ≤ ‖x̃‖.
We need the following result for the Hausdorff measure of noncompactness in certain BK spaces.

Proposition 3.1. (a) If X is a BK space with monotonous norm and AK then we have

χ(Q) = lim
n→∞

sup
x∈Q
‖Rn(x)‖

 for all x ∈ MX. (10)

(b) If X = c then we have

1
2
· lim

n→∞

sup
x∈Q
‖Rn(x)‖

 ≤ χ(Q) ≤ lim
n→∞

sup
x∈Q
‖Rn(x)‖

 for all x ∈ Mc. (11)

Proof. If X is any BK space with a Schauder basis then (11) holds with lim sup instead of lim and 1/2 replaced
by 1/a, where a = lim supn→∞ ‖Rn‖, the basis constant, by the Goldenštein–Gohberg–Markus theorem (e.g
[16, Theorem 4.2]). The limits in (10) and (11) exist by [3, Lemma 1.10].
(a) If X has AK then a = 1 by [3, Lemma 1.10 (a)].
(b) If X = c, then a = 2 by [3, Lemma 1.10 (b)].
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Now we recall the definition of the Hausdorff measure of noncompactness of operators between Banach
spaces ([14, Definition 2.25]).
Let χ1 and χ2 be Hausdorff measures of noncompactness on the Banach spaces X and Y. An operator
L : X → Y is said to be (χ1, χ2)–bounded if L(Q) ∈ MY for all Q ∈ MX and there exists a non–negative real
number c such that

χ2(L(Q)) ≤ c · χ1(Q) for all Q ∈ MX. (12)

If an operator L is (χ1, χ2)–bounded, then the number

‖L‖χ = inf{c ≥ 0 : (12) holds }

is called the Hausdorff measure of noncompactness of L.
It is well known ([14, Theorem 2.25]) that if X and Y are Banach spaces and L ∈ B(X,Y) then

‖L‖χ = χ(L(SX)) (13)

and

L is compact if and only if ‖L‖χ = 0. (i)

Now we establish an identity and some inequalities for the Hausdorff measures of noncompactness of
certain operators.

Theorem 3.1. Let X and Y be BK spaces, X have AK, L ∈ B(X,Y), and A ∈ (X,Y) be the matrix that represents L
as in (4). Then we have

‖L‖χ = lim
r→∞

(
sup
n≥r
‖An‖

∗

X

)
if Y = c0; (14)

1
2
· lim

r→∞

(
sup
n≥r

∥∥∥An − (αk)∞k=1

∥∥∥∗
X

)
≤ ‖L‖χ ≤ lim

r→∞

(
sup
n≥r

∥∥∥An − (αk)∞k=1

∥∥∥∗
X

)
if Y = c, where αk = lim

k→∞
ank for each k; (15)

lim
r→∞

supNr

∥∥∥∥∥∥∥∑n∈Nr

An

∥∥∥∥∥∥∥
∗

X

 ≤ ‖L‖X ≤ 4 · lim
r→∞

supNr

∥∥∥∥∥∥∥∑n∈Nr

An

∥∥∥∥∥∥∥
∗

X

 for Y = `1,

where the supremum is taken over all finite sets of integers ≥ r; (16)

lim
r→∞

supN∗r

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N∗r

Atµ

∥∥∥∥∥∥∥∥
∗

X


 ≤ ‖L‖χ ≤ 4 · lim

r→∞

supN∗r

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N∗r

Atµ

∥∥∥∥∥∥∥∥
∗

X




for Y = [`1, `∞]<m(µ)> , where N∗r = {µ ∈N0 : r ≥ m(µ)}. (17)

Proof. For each r ∈N, let A(r) denote the matrix obtained from the matrix A by replacing the first r rows by
the zero sequence.
The identity in (14) holds by [1, Corollary 3.4].
The inequalities in (15) hold with lim sup by [2, Theorem 3.4] and the limit exists by [3, Lemma 1.10 (b)].
To prove the inequalities in (16), we first observe that we have by [12, Theorem 1] and the fact that Rr−1 ◦ L
is given by A(r)
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supNr

∥∥∥∥∥∥∥∑n∈Nr

An

∥∥∥∥∥∥∥
∗

X

= supN

∥∥∥∥∥∥∥∑n∈N A(r)
n

∥∥∥∥∥∥∥
∗

X

≤ ‖Rr−1 ◦ L‖∗X =
∥∥∥A(r)

∥∥∥∗
X ≤

4 · supN

∥∥∥∥∥∥∥∑n∈N A(r)
n

∥∥∥∥∥∥∥
∗

X

= supNr

∥∥∥∥∥∥∥∑n∈Nr

An

∥∥∥∥∥∥∥
∗

X

.

Now the inequalities in (16) follow by (10) and (13).
Similarly, to prove the inequalities in (17), we obtain, using the same argument as in the proof of Theorem
2.1 with the norm ‖ · ‖∗

[`r,`p]<k(ν)> replaced by the norm ‖ · ‖∗X,

supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

A(r)
tµ

∥∥∥∥∥∥∥∥
∗

X

 ≤ ‖Rr−1 ◦ L‖ ≤ 4 · supN

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N

A(r)
tµ

∥∥∥∥∥∥∥∥
∗

X

 .
As before, the inequalities in (17) follow by (10) and (13).

We obtain as an immediate consequence of Lemma 2.1 and Theorem 3.1

Corollary 3.2. Let L ∈ B([`r, `p]<k(ν)>,Y) where Y is any of the spaces c0, c, `1 and [`1, `∞]<m(µ)>, and A ∈
([`r, `p]<k(ν)>,Y) be the matrix that represents L as in (4). Then the identity in (14) and the inequalities in (15)–(17)
hold with the norm ‖ · ‖∗X replaced by the norm ‖ · ‖[`s,`q]<k(ν)> .

Furthermore we obtain the following characterizations of compact operators from Corollary 3.2 and the
condition in (i).

Corollary 3.3. (a) If L ∈ B([`r, `p]<k(ν)>, c0) then L is compact if and only if

lim
r→∞

(
sup
n≥r
‖An‖[`s,`q]<k(ν)>

)
= 0.

(b) If L ∈ B([`r, `p]<k(ν)>, c0) then L is compact if and only if

lim
r→∞

(
sup
n≥r

∥∥∥An − (αk)∞k=1

∥∥∥∗
[`s,`q]<k(ν)>

)
= 0, where αk = lim

n→∞
ank for each k.

(c) If L ∈ B([`r, `p]<k(ν)>, `1) then L is compact if and only if

lim
r→∞

supNr

∥∥∥∥∥∥∥∑n∈Nr

An

∥∥∥∥∥∥∥
[`s,`q]<k(ν)>

 = 0.

(d) If L ∈ B([`r, `p]<k(ν)>, [`1, `∞]<m(µ)>) then L is compact if and only if

lim
r→∞

supN∗r

sup
t∈T

∥∥∥∥∥∥∥∥
∑
µ∈N∗r

Atµ

∥∥∥∥∥∥∥∥
[`s,`q]<k(ν)>


 = 0.

We close with the following remark.

Remark 3.4. The analogous results of those above in the case of Y = [c0, `1]<m(µ)> can easily be obtained from Lemma
2.1 and [3, Theorem 3.6] with αk = 0 for all k by observing that 2ν can be replaced by k(ν) for ν = 0, 1, . . . , and
x ∈ [c0, `1]<2ν> if and only if (zkxk)∞k=1 ∈ w0 where zk = 2ν for 2ν ≤ k ≤ 2ν+1

− 1 and ν = 0, 1, . . . .
The results of Corollaries 3.2 and 3.3 also hold for r = p = 1, since obviously [`r, `p]<k(ν)> = [`1, `1]<k(ν)> = `1 and
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‖ · ‖
∗

[`r,`p]<k(ν)> = ‖ · ‖∞. Similarly, we have [c0, `∞]<k(ν)> = c0 and ‖ · ‖∗
[c0,`1]<k(ν)> = ‖ · ‖`1 , and the results of Corollaries

3.2 and 3.3 also hold when X = [c0, `∞]<k(ν)>.
When X = [c0, `p]<k(ν)> for 1 ≤ p < ∞ then it easily follows ([11]) that ‖ · ‖∗

[c0,`p]<k(ν)> = ‖ · ‖[`1,`q]<k(ν)> , and the results of
Corollaries 3.2 and 3.3 follow from Theorem 3.1. Since ‖ · ‖∗

[`∞,`p]<k(ν)> = ‖ · ‖[`1,`q]<k(ν)> , the results of Corollaries 3.2 and

3.3 hold for those operators on [`∞, `p]<k(ν)> that are given by matrices.
Since Y = [`∞, `1]<m(µ)> does not have AK, we cannot use the Goldenštein–Gohberg–Markus theorem. Similarly as
in the proof of [2, Theorem 4.1 (c)] we would obtain estimates for ‖L‖χ with the lower bound equal to 0 in each case,
and only sufficient conditions for L to be compact, which are not necessary, in general.
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