Compact Operators on some Generalized Mixed Norm Spaces

A. Alotaibi ${ }^{\text {a }}$, E. Malkowsky ${ }^{\text {b,c }}$, H. Nergiz ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
${ }^{b}$ Department of Mathematics, University of Giessen, Arndtstrasse 2, D-35392 Giessen, Germany
${ }^{c}$ Department of Mathematics, Faculty of Arts and Sciences, Fatih University, 34500 Büyükçekmece, Istanbul, Turkey

Abstract

We establish identities or estimates for the Hausdorff measure of noncompactness of operators from some generalized mixed norm spaces into any of the spaces c_{0}, c, ℓ_{1}, and $\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}$. Furthermore we give necessary and sufficient conditions for the operators in these cases to be compact. Our results are complementary to those in $[1,3,13]$.

1. Introduction and Notations

We use the following standard notations.
Let X and Y be normed spaces. Then $S_{X}=\{x \in X:\|x\|=1\}$ and $\bar{B}_{X}=\{x \in X:\|x\| \leq 1\}$ denote the unit sphere and closed unit ball in X, and $\mathcal{B}(X, Y)$ is the set of all bounded linear operators $L: X \rightarrow Y$ which is a Banach space with the operator norm given by $\|L\|=\sup \left\{\|L(x)\|: x \in S_{X}\right\}$, whenever Y is a Banach space.

A sequence $\left(b_{n}\right)_{n=1}^{\infty}$ in a linear metric space X is called a Schauder basis if, for every $x \in X$, there exists a unique sequence $\left(\lambda_{n}\right)_{n=1}^{\infty}$ of scalars such that $x=\sum_{n=1}^{\infty} \lambda_{n} b_{n}$.

Let ω denote the set of all complex sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$. We write ℓ_{∞}, c, c_{0} and ϕ for the set of all bounded, convergent, null and finite sequences, respectively, and $\ell_{p}=\left\{x \in \omega: \sum_{k=1}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$. Let e and $e^{(n)}(n \in \mathbb{N})$ be the sequences with $e_{k}=1$ for all k, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0$ for $k \neq n$.

A $B K$ space is a Banach sequence space with the property that convergence implies coordinatewise convergence; a $B K$ space $X \supset \phi$ is said to have $A K$ if $x^{[m]}=\sum_{k=1}^{m} x_{k} e^{(k)} \rightarrow x(m \rightarrow \infty)$ for every sequence $x=\left(x_{k}\right)_{k=1}^{\infty} \in X$. It is well known that the sets ℓ_{∞}, c and c_{0} are $B K$ spaces with $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|, \ell_{p}(1 \leq p<\infty)$ is a $B K$ space with $\|x\|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}, c_{0}$ and $\ell_{p}(1<p<\infty)$ have $A K$, every sequence $x=\left(x_{k}\right)_{k=1}^{\infty} \in c$ has a unique representation $x=\xi \cdot e+\sum_{k=1}^{\infty}\left(x_{k}-\xi\right) e^{(k)}$, where $\xi=\lim _{k \rightarrow \infty} x_{k}$.

Let $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ be an infinite matrix of complex numbers, X and Y be subsets of ω and $x \in \omega$. We write $A_{n}=\left(a_{n k}\right)_{k=1}^{n}$ for the sequence in the nth row of $A, A_{n} x=\sum_{k=1}^{\infty} a_{n k} x_{k}$ and $A x=\left(A_{n} x\right)_{n=1}^{\infty}$ (provided all the series $A_{n} x$ converge). The set $X^{\beta}=\left\{a \in \omega: \sum_{k=1}^{\infty} a_{k} x_{k}\right.$ converges for all $\left.x \in X\right\}$ is called the β-dual of X. Finally (X, Y) is the class of all matrices A for which $A_{n} \in X^{\beta}$ for all n and $A x \in Y$ for all $x \in X$.

If X is a normed space, then we write $\|a\|_{X}^{*}=\sup \left\{\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right|: x \in S_{X}\right\}$ provided the expression on the right-hand side exists and is finite which is the case whenever X is a $B K$ space and $a \in X^{\beta}$ ([17, Theorem 7.2.9]).

[^0]Throughout let $(k(v))_{v=0}^{\infty}$ and $(m(\mu))_{\mu=0}^{\infty}$ be sequences of integers with $1=k(0)<k(1)<\ldots$ and $1=m(0)<$ $m(1)<\ldots, I_{v}=\{k \in \mathbb{N}: k(v) \leq k \leq k(v+1)-1\}, M_{\mu}=\{m \in \mathbb{N}: m(\mu) \leq m \leq m(\mu+1)-1\}$ and $x^{<v>}=\sum_{k \in I_{v}} x_{k} e^{(k)}$ be the v-block of the sequence $x=\left(x_{k}\right)_{k=1}^{\infty}$ for $v=0,1, \ldots$. We write \sum_{v} and $\max _{v}$ for the sum and maximum taken over all $k \in I^{<v>}, \sum_{\mu}$ and $\max _{\mu}$ for the sum and maximum taken over all $m \in M_{\mu}$, and consider the sets ([8, Example 2.1 (a)]) for $1 \leq p<\infty$ and $1 \leq r<\infty$

$$
\begin{aligned}
{\left[\ell_{r}, \ell_{p}\right]^{<k(v)>} } & =\left\{x \in \omega:\left(\left\|x^{<v>}\right\|_{p}\right)_{v=0}^{\infty} \in \ell_{r}\right\}, \\
{\left[\ell_{r}, \ell_{\infty}\right]^{<k(v)>} } & =\left\{x \in \omega:\left(\left\|x^{<v>}\right\|_{\infty}\right)_{v=0}^{\infty} \in \ell_{r}\right\}, \\
{\left[c_{0}, \ell_{p}\right]^{<k(v)>} } & =\left\{x \in \omega: \lim _{v \rightarrow \infty}\left\|x^{<v>}\right\|_{p}=0\right\} \text { and } \\
{\left[\ell_{\infty}, \ell_{p}\right]^{<k(v)>} } & =\left\{x \in \omega: \sup _{v}\left\|x^{<v>}\right\|_{p}<\infty\right\} .
\end{aligned}
$$

These sets generalize the mixed norm spaces $\ell(r, p)$ introduced and studied by Hedlund [6] and Kellogg [10]; they are also closely related to the sets w_{∞}^{p} and w_{0}^{p} of sequences that are strongly bounded and strongly convergent to 0 with index p by the Cesàro method of order 1, introduced and studied by Maddox [11], the Cesàro sequence spaces $\operatorname{ces}(p)$ studied by Jagers [7], and the sets of strong weighted means studied by Grosse-Erdmann [4, 5].

In this paper, we establish identities or estimates for the Hausdorff measure of noncompactness of operators $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, Y\right)$ for $1 \leq r<\infty$ and $1<p \leq \infty$, or $1<r<\infty$ and $p=1$, when Y any of the spaces c_{0}, c, ℓ_{1} and $\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}$. Furthermore, we give necessary and sufficient conditions for the operators in these cases to be compact. Our results are complementary to those in [1,3,13].

2. Basic Results

Here we collect and prove the important basic results.
If $1 \leq p \leq \infty$ then, as usual, its conjugate number is $q=\infty$ if $p=1, q=p /(p-1)$ if $1<p<\infty$, and $q=1$ if $p=\infty$. Throughout, let $1 \leq r<\infty$ and $1<p \leq \infty$, or $1<r<\infty$ and $p=1$, and s and q denote the conjugate numbers of r and p, respectively. We refer to Remark 3.4 for the other cases.

The following results are known ([8, Example 3.4 (a)]). If $1 \leq p, r<\infty$ then the sets $\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}$ and $\left[c_{0}, \ell_{p}\right]^{<k(v)>}$ are $B K$ spaces with $A K$ with

$$
\|x\|_{\left[\ell_{r}, \ell_{p}\right]<k(v)>}=\left\|\left(\left\|x^{<k(v)>}\right\|_{p}\right)_{v=0}^{\infty}\right\| \|_{r} \text { and }\left\|\left.x\right|_{\left.\left[\ell_{\infty}, \ell_{p}\right]<k(v)\right\rangle>}=\right\|\left(\left\|x^{<k(v)>}\right\|_{p}\right)_{v=0}^{\infty} \|_{\infty} ;
$$

also $\left[\ell_{\infty}, \ell_{p}\right]^{<k(v)>}$ is a $B K$ space with $\|\cdot\|_{\left[\ell_{\infty}, \ell_{p}\right]<k(v)>}$; moreover $\left[c_{0}, \ell_{p}\right]^{<k(v)>}$ is a closed subspace of $\left[\ell_{\infty}, \ell_{p}\right]^{<k(v) \gg}$; finally, the sets $\left[\ell_{r}, \ell_{\infty}\right]^{<k(v)>}$ are $B K$ spaces with $A K$ with

$$
\|x\|_{\left[\ell_{r}, \ell_{\infty}\right]<k(v) \gg}=\left\|\left(\left\|x^{<k(v)>}\right\|_{\infty}\right)_{v=0}^{\infty}\right\|_{r} .
$$

We need the following result on the equality of the norms $\|\cdot\|_{X}^{*}$ and $\|\cdot\|_{X^{\beta}}$.
Lemma 2.1. Let $a \in\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}\right)^{\beta}$. Then we have

$$
\begin{equation*}
\|a\|_{\left[\ell_{r}, \ell_{p}\right]<k(v)>}^{*}=\|a\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>\cdot} . \tag{1}
\end{equation*}
$$

Proof. We write $Z=\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}$, for short, and obtain $Z^{\beta}=\left[\ell_{s}, \ell_{q}\right]^{<k(v)>}$ by [8, Example 4.3 (a)], and so $\|a\|_{\left[\ell_{s}, \ell_{q}\right] k(v) \gg}<\infty$. Also, since the sets $\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}$ are BK spaces, it follows that $\left.\|a\|_{\left[\ell_{r}, \ell_{p}\right]}^{*}\right] k(v) \gg \infty$ by [17,
Theorem 7.2.9].
First we show

$$
\begin{equation*}
\|a\|_{Z}^{*} \leq\|a\|_{Z^{\beta}} \tag{2}
\end{equation*}
$$

Let $a \in Z^{\beta}$ and $x \in Z$ be given. If $1<r<\infty$ and $1<p \leq \infty$ then we obtain, applying Hölder's inequality twice,

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right| & \leq \sum_{v=0}^{\infty} \sum_{v}\left|a_{k} x_{k}\right| \leq \sum_{v=0}^{\infty}\left\|a^{\langle v>}\right\|_{q} \cdot\left\|x^{<v>}\right\|_{p} \\
& \leq\left(\sum_{v=0}^{\infty}\left\|a^{\langle v>}\right\|_{q}^{s}\right)^{1 / s} \cdot\left(\sum_{v=0}^{\infty}\left\|x^{\langle v>}\right\|_{p}^{r}\right)^{1 / r}=\|a\|_{Z^{\beta}} \cdot\|x\|_{Z} .
\end{aligned}
$$

If $r=1$ and $1<p \leq \infty$ then we obtain by Hölder's inequality

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right| & \leq \sum_{v=0}^{\infty}\left\|a^{\langle v>}\right\|_{q} \cdot\left\|x^{\langle v>}\right\|_{p} \leq \sup _{v}\left\|a^{<v>}\right\|_{q} \cdot\left(\sum_{v=0}^{\infty}\left\|x^{\langle v>}\right\|_{p}\right) \\
& =\|a\|_{Z^{\beta}} \cdot\|x\|_{Z},
\end{aligned}
$$

Finally, if $1<r<\infty$ and $p=1$ then we obtain by Hölder's inequality

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right| & \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{\infty} \cdot\left\|x^{<v>}\right\|_{1} \leq\left(\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{\infty}^{s}\right)^{1 / s} \cdot\left(\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{1}^{r}\right)^{1 / r} \\
& =\|a\|_{Z^{\beta}} \cdot\|x\|_{Z} .
\end{aligned}
$$

Therefore (2) holds in each case.
Now we show

$$
\begin{equation*}
\|a\|_{Z}^{*} \geq\|a\|_{Z^{\beta}} \tag{3}
\end{equation*}
$$

Since the identity in (1) is trivial for $a=0$, we assume $a \neq 0$.
If $1<r<\infty$ and $1<p \leq \infty$, then we write $A=\left(\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s}\right)^{1 / r}$, and define the sequence x by

$$
x_{k}=\left\{\begin{array}{ll}
\left|a_{k}\right|^{q / p} \cdot\left\|a^{<v>}\right\|_{q}^{-q / p+s-1} \cdot A^{-1} \cdot \operatorname{sgn}\left(a_{k}\right) & \left(k \in I_{v}\right) \\
\text { for those } v \text { for which }\left\|a^{<v>}\right\|_{q} \neq 0 & \\
0 & \text { (otherwise) }
\end{array} \quad(v=0,1, \ldots)\right.
$$

Now let $r=1$ and $1<p \leq \infty$ and $\mu \in \mathbb{N}$ be given and so large that $a^{<k(\mu)>} \neq 0$. Furthermore, let $\mu(v)$ denote the smallest integer for which $\max _{0 \leq v \leq \mu}\left\|a^{<v>}\right\|_{q}=\left\|a^{<v(\mu)>}\right\|_{q}$. We define the sequence $x^{(\mu)}$ by

$$
x_{k}^{(\mu)}=\left\{\begin{array}{ll}
\left|a_{k}\right|^{q / p} \cdot\left\|a^{<v>}\right\|_{q}^{-q / p} \cdot \operatorname{sgn}\left(a_{k}\right) & \left(k \in I_{v(\mu)}\right) \\
0 & \text { (otherwise) }
\end{array} .\right.
$$

Finally let $1<r<\infty$ and $p=1$. We write $A=\left(\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{\infty}^{s}\right)^{1 / r}$, and define the sequence x by

$$
x_{k}=\left\{\begin{array}{ll}
\left\|a^{<v>}\right\|_{\infty}^{s-1} \cdot A^{-1} \cdot \operatorname{sgn}\left(a_{k(v)}\right) & (k=k(v)) \\
\text { where } k(v) \text { is the smallest integer } k \in I_{v} & \\
\text { for which }\left|a_{k(v)}\right|=\max _{v}\left|a_{k}\right| & \\
0 & \text { (otherwise) }
\end{array} \quad(v=0,1, \ldots) .\right.
$$

Then it follows that $\|x\|_{Z},\left\|x^{(\mu)}\right\|_{Z} \leq 1$ for all μ, and

$$
\left|\sum_{k=1}^{\infty} a_{k} x_{k}\right|=\left(\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s}\right)^{1 / s} \text { and }\left|\sum_{k=1}^{\infty} a_{k} x_{k}^{(\mu)}\right|=\left\|a^{<v(\mu)>}\right\|_{q} \text { for all } \mu .
$$

Thus (3) holds in each case.

We need also need the following known result.
Proposition 2.2. ([17, Theorem 4.2.8], [9, Theorem 1.9]) Let X and Y be BK spaces and X have AK. Then we have $\mathcal{B}(X, Y)=(X, Y)$, that is, every $A \in(X, Y)$ defines an operator $L \in \mathcal{B}(X, Y)$, where

$$
\begin{equation*}
L(x)=A x \text { for all } x \in X \tag{4}
\end{equation*}
$$

and conversely every operator $L \in \mathcal{B}(X, Y)$ is given by and infinite matrix $A \in(X, Y)$ such that (4) holds.
Now we establish an identity and some inequalities for the norms of bounded linear operators. We write $\sup _{N}$ for the supremum taken over all finite subsets of \mathbb{N} or \mathbb{N}_{0}, and \mathcal{T} for the set of all sequences $\left(t_{\mu}\right)_{\mu=0}^{\infty}$ of integers such that for each μ there is one and only one $t_{\mu} \in M_{\mu}$.

Theorem 2.1. (a) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, Y\right)$ where $Y=\ell_{\infty}, c, c_{0}$, then

$$
\begin{equation*}
\|L\|=\sup _{n}\left\|A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]} \operatorname{lk(\nu)>} \tag{5}
\end{equation*}
$$

(b) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, \ell_{1}\right)$, then

$$
\begin{equation*}
\sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]^{<k(v)>}} \leq\|L\| \leq 4 \cdot \sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>} \tag{6}
\end{equation*}
$$

(c) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>},\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}\right)$, then

$$
\begin{equation*}
\sup _{N}\left[\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>}\right] \leq\|L\| \leq 4 \cdot \sup _{N}\left[\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>}\right] \tag{7}
\end{equation*}
$$

Proof. Since all the spaces are $B K$ spaces and each space $\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}$ has $A K$, in each case, the operator L is given by an infinite matrix as in (4).
(a) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, \ell_{\infty}\right)$, then we have [14, Theorem 1.23] and (1)

$$
\|L\|=\sup _{n}\left\|A_{n}\right\|_{\left[\ell_{r}, \ell_{p}\right]<k(\nu)>}^{*}=\sup _{n}\left\|A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]}<k(v)>.
$$

Since trivially $\mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, Y\right) \subset \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, \ell_{\infty}\right)$ for $Y=c, c_{0}$ and the $B K$ norms on ℓ_{∞}, c and c_{0} are the same, (5) also holds for $Y=c, c_{0}$.
(b) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, \ell_{1}\right)$, then we have by $[12$, Theorem 1$]$ and (1)

$$
\begin{aligned}
& \sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>}=\sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[e_{r}, \ell_{p}\right]<(\nu)>}^{*} \leq\|L\| \leq \\
& 4 \cdot \sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[\ell_{r}, \ell_{p}\right]<k(v)>}^{*}=4 \cdot \sup _{N}\left\|\sum_{n \in N} A_{n}\right\|_{\left[\varepsilon_{s}, \ell_{q}\right]<k(\nu)>} .
\end{aligned}
$$

(c) Let $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>},\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}\right)$, and $x \in S_{\left[\ell_{r}, \ell_{p}\right] k(v)>}$ be given. Also, for each $\mu=0,1, \ldots$, let $m_{\mu} \in M_{\mu}$ be such that $\left|A_{m_{\mu}} x\right|=\max _{m \in M_{\mu}}\left|A_{m} x\right|$. Then we have by a well-known inequality ([15])

$$
\|L(x)\|_{\left[\ell_{1}, \ell_{\infty}\right]<m(\mu)>}=\sum_{\mu=0}^{\infty}\left\|(A x)^{<m(\mu)>}\right\|_{\infty}=\sum_{\mu=0}^{\infty}\left|A_{m_{\mu}} x\right| \leq 4 \cdot \sup _{N}\left|\sum_{\mu \in N} A_{m_{\mu}} x\right| \leq
$$

$$
4 \cdot \sup _{N}\left\|\sum_{\mu \in N} A_{m_{\mu}}\right\|_{\left[\ell_{r}, \ell_{p}\right] k(v)>}^{*} \leq 4 \cdot \sup _{N}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{r}, \ell_{p}\right]<k(\nu)>}^{*}\right),
$$

hence

$$
\begin{equation*}
\|L\| \leq 4 \cdot \sup _{N}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{r}, \ell_{\rho}\right]<k(\nu)>}^{*}\right) \tag{8}
\end{equation*}
$$

We also have $\sum_{\mu=0}^{\infty}\left|A_{m_{\mu}} x\right| \geq\left|\sum_{\mu \in N} A_{m_{\mu}} x\right|$ for all finite subsets N of \mathbb{N}_{0}, for all $\mu \in M_{\mu}$ and for all $x \in S_{\left[\ell_{r}, \ell_{p}\right]<(())>}$, hence $\|L\| \geq\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{r}, \ell_{p}\right]<k(v)>}^{*}$ for all $t \in \mathcal{T}$, and so

$$
\begin{equation*}
\sup _{N}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}\right\|_{\left[\ell_{r}, \ell_{p}\right]<k(\nu)>}^{*}\right) \leq\|L\| . \tag{9}
\end{equation*}
$$

Now (7) follows from (9), (8) and (1).

3. Compact Operators

We recall that a linear operator L between Banach spaces X and Y is said to be compact, if its domain is all of X and, for every bounded sequence $\left(x_{n}\right)$ in X, the sequence $\left(L\left(x_{n}\right)\right)$ has a convergent subsequence in Y.

Let (X, d) be a metric space. Then we write \mathcal{M}_{X} for the class of all bounded subsets of X, and $B_{r}\left(x_{0}\right)=$ $\left\{x \in X: d\left(x, x_{0}\right)<r\right\}$ for the open ball of radius $r>0$ with its centre in $x_{0} \in X$. We recall that the Hausdorff measure of noncompactness is the map $\chi: \mathcal{M}_{X} \rightarrow[0, \infty)$ with

$$
\chi(Q)=\inf \left\{\varepsilon>0: Q \subset \bigcup_{k=1}^{n} B_{r_{k}}\left(x_{k}\right), x_{k} \in X, r_{k}<\varepsilon(k=1,2, \ldots n ; n \in \mathbb{N})\right\} .
$$

If X is a linear metric space with a Schauder basis $\left(b_{k}\right)$ then we define the operator \mathcal{R}_{n} for each $n \in \mathbb{N}$ by $\mathcal{R}_{n}(x)=\sum_{k=n+1}^{\infty} \lambda_{k} b_{k}$ for all $x=\sum_{k=1}^{\infty} \lambda_{k} b_{k} \in X$.

We say that a norm $\|\cdot\|$ on a sequence space X is monotonous if, for all $x, \tilde{x} \in X,\left|x_{k}\right| \leq\left|\tilde{x}_{k}\right|$ for all k implies $\|x\| \leq\|\tilde{x}\|$.

We need the following result for the Hausdorff measure of noncompactness in certain $B K$ spaces.
Proposition 3.1. (a) If X is a $B K$ space with monotonous norm and $A K$ then we have

$$
\begin{equation*}
\chi(Q)=\lim _{n \rightarrow \infty}\left(\sup _{x \in Q}\left\|\mathcal{R}_{n}(x)\right\|\right) \text { for all } x \in \mathcal{M}_{X} \tag{10}
\end{equation*}
$$

(b) If $X=c$ then we have

$$
\begin{equation*}
\frac{1}{2} \cdot \lim _{n \rightarrow \infty}\left(\sup _{x \in Q}\left\|\mathcal{R}_{n}(x)\right\|\right) \leq \chi(Q) \leq \lim _{n \rightarrow \infty}\left(\sup _{x \in Q}\left\|\mathcal{R}_{n}(x)\right\|\right) \text { for all } x \in \mathcal{M}_{c} \tag{11}
\end{equation*}
$$

Proof. If X is any $B K$ space with a Schauder basis then (11) holds with lim sup instead of lim and $1 / 2$ replaced by $1 / a$, where $a=\lim \sup _{n \rightarrow \infty}\left\|\mathcal{R}_{n}\right\|$, the basis constant, by the Goldenštein-Gohberg-Markus theorem (e.g [16, Theorem 4.2]). The limits in (10) and (11) exist by [3, Lemma 1.10].
(a) If X has $A K$ then $a=1$ by [3, Lemma 1.10 (a)].
(b) If $X=c$, then $a=2$ by [3, Lemma 1.10 (b)].

Now we recall the definition of the Hausdorff measure of noncompactness of operators between Banach spaces ([14, Definition 2.25]).
Let χ_{1} and χ_{2} be Hausdorff measures of noncompactness on the Banach spaces X and Y. An operator $L: X \rightarrow Y$ is said to be $\left(\chi_{1}, \chi_{2}\right)$-bounded if $L(Q) \in \mathcal{M}_{Y}$ for all $Q \in \mathcal{M}_{X}$ and there exists a non-negative real number c such that

$$
\begin{equation*}
\chi_{2}(L(Q)) \leq c \cdot \chi_{1}(Q) \text { for all } Q \in \mathcal{M}_{X} \tag{12}
\end{equation*}
$$

If an operator L is $\left(\chi_{1}, \chi_{2}\right)$-bounded, then the number

$$
\|L\|_{\chi}=\inf \{c \geq 0:(12) \text { holds }\}
$$

is called the Hausdorff measure of noncompactness of L.
It is well known ([14, Theorem 2.25]) that if X and Y are Banach spaces and $L \in \mathcal{B}(X, Y)$ then

$$
\begin{equation*}
\|L\|_{X}=\chi\left(L\left(S_{X}\right)\right) \tag{13}
\end{equation*}
$$

and
L is compact if and only if $\|L\|_{\chi}=0$.
Now we establish an identity and some inequalities for the Hausdorff measures of noncompactness of certain operators.

Theorem 3.1. Let X and Y be $B K$ spaces, X have $A K, L \in \mathcal{B}(X, Y)$, and $A \in(X, Y)$ be the matrix that represents L as in (4). Then we have

$$
\begin{align*}
& \|L\|_{X}=\lim _{r \rightarrow \infty}\left(\sup _{n \geq r}\left\|A_{n}\right\|_{X}^{*}\right) \text { if } Y=c_{0} ; \tag{14}\\
& \frac{1}{2} \cdot \lim _{r \rightarrow \infty}\left(\sup _{n \geq r}\left\|A_{n}-\left(\alpha_{k}\right)_{k=1}^{\infty}\right\|_{X}^{*}\right) \leq\|L\|_{X} \leq \lim _{r \rightarrow \infty}\left(\sup _{n \geq r}\left\|A_{n}-\left(\alpha_{k}\right)_{k=1}^{\infty}\right\|_{X}^{*}\right) \\
& \text { if } Y=c \text {, where } \alpha_{k}=\lim _{k \rightarrow \infty} a_{n k} \text { for each } k ; \tag{15}
\end{align*}
$$

where the supremum is taken over all finite sets of integers $\geq r$;

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(\sup _{N_{r}}\left\|\sum_{n \in N_{r}} A_{n}\right\|_{X}^{*}\right) \leq\|L\|_{X} \leq 4 \cdot \lim _{r \rightarrow \infty}\left(\sup _{N_{r}}\left\|\sum_{n \in N_{r}} A_{n}\right\|_{X}^{*}\right) \text { for } Y=\ell_{1}, \tag{16}
\end{equation*}
$$

$$
\begin{array}{r}
\lim _{r \rightarrow \infty}\left[\sup _{N_{r}^{*}}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N_{r}^{*}} A_{t_{\mu}}\right\|_{X} \|_{X}^{*}\right)\right] \leq\|L\|_{X} \leq 4 \cdot \lim _{r \rightarrow \infty}\left[\sup _{N_{r}^{*}}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N_{r}^{*}} A_{t_{\mu}}\right\|_{X}\right)\right] \\
\text { for } Y=\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}, \text { where } N_{r}^{*}=\left\{\mu \in \mathbb{N}_{0}: r \geq m(\mu)\right\} . \tag{17}
\end{array}
$$

Proof. For each $r \in \mathbb{N}$, let $A^{(r)}$ denote the matrix obtained from the matrix A by replacing the first r rows by the zero sequence.
The identity in (14) holds by [1, Corollary 3.4].
The inequalities in (15) hold with lim sup by [2, Theorem 3.4] and the limit exists by [3, Lemma 1.10 (b)].
To prove the inequalities in (16), we first observe that we have by [12, Theorem 1] and the fact that $\mathcal{R}_{r-1} \circ L$ is given by $A^{(r)}$

$$
\begin{aligned}
& \sup _{N_{r}}\left\|\sum_{n \in N_{r}} A_{n}\right\|_{X}^{*}=\sup _{N}\left\|\sum_{n \in N} A_{n}^{(r)}\right\|_{X}^{*} \leq\left\|\mathcal{R}_{r-1} \circ L\right\|_{X}^{*}=\left\|A^{(r)}\right\|_{X}^{*} \leq \\
& \qquad 4 \cdot \sup _{N}\left\|\sum_{n \in N} A_{n}^{(r)}\right\|_{X}^{*}=\sup _{N_{r}}\left\|\sum_{n \in N_{r}} A_{n}\right\|_{X}^{*} .
\end{aligned}
$$

Now the inequalities in (16) follow by (10) and (13).
Similarly, to prove the inequalities in (17), we obtain, using the same argument as in the proof of Theorem 2.1 with the norm $\|\cdot\|_{\left[\ell_{r}, \ell_{p}\right]<k(v)>}^{*}$ replaced by the norm $\|\cdot\|_{X^{\prime}}^{*}$

$$
\sup _{N}\left[\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}^{(r)}\right\|_{X}^{*}\right] \leq\left\|\mathcal{R}_{r-1} \circ L\right\| \leq 4 \cdot \sup _{N}\left[\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N} A_{t_{\mu}}^{(r)}\right\|_{X}^{*}\right]
$$

As before, the inequalities in (17) follow by (10) and (13).
We obtain as an immediate consequence of Lemma 2.1 and Theorem 3.1
Corollary 3.2. Let $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, Y\right)$ where Y is any of the spaces c_{0}, c, ℓ_{1} and $\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}$, and $A \in$ $\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, Y\right)$ be the matrix that represents L as in (4). Then the identity in (14) and the inequalities in (15)-(17) hold with the norm $\|\cdot\|_{X}^{*}$ replaced by the norm $\|\cdot\|_{\left[\varepsilon_{s}, \ell_{q}\right]<k(\nu)>}$.

Furthermore we obtain the following characterizations of compact operators from Corollary 3.2 and the condition in (i).

Corollary 3.3. (a) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, c_{0}\right)$ then L is compact if and only if

$$
\lim _{r \rightarrow \infty}\left(\sup _{n \geq r}\left\|A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(\nu)}\right)=0
$$

(b) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, c_{0}\right)$ then L is compact if and only if

$$
\lim _{r \rightarrow \infty}\left(\sup _{n \geq r}\left\|A_{n}-\left(\alpha_{k}\right)_{k=1}^{\infty}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>}^{*}\right)=0 \text {, where } \alpha_{k}=\lim _{n \rightarrow \infty} a_{n k} \text { for each } k .
$$

(c) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}, \ell_{1}\right)$ then L is compact if and only if

$$
\lim _{r \rightarrow \infty}\left(\sup _{N_{r}}\left\|\sum_{n \in N_{r}} A_{n}\right\|_{\left[\ell_{s}, \ell_{q}\right]<k(v)>}\right)=0
$$

(d) If $L \in \mathcal{B}\left(\left[\ell_{r}, \ell_{p}\right]^{<k(v)>},\left[\ell_{1}, \ell_{\infty}\right]^{<m(\mu)>}\right)$ then L is compact if and only if

$$
\lim _{r \rightarrow \infty}\left[\sup _{N_{r}^{*}}\left(\sup _{t \in \mathcal{T}}\left\|\sum_{\mu \in N_{r}^{*}} A_{t_{\mu}}\right\|_{\left.\left[\ell_{s}, \ell_{q}\right]<k(\nu)\right\rangle}\right)\right]=0 .
$$

We close with the following remark.
Remark 3.4. The analogous results of those above in the case of $Y=\left[c_{0}, \ell_{1}\right]^{<m(\mu)\rangle}$ can easily be obtained from Lemma 2.1 and [3, Theorem 3.6] with $\alpha_{k}=0$ for all k by observing that 2^{v} can be replaced by $k(v)$ for $v=0,1, \ldots$, and $x \in\left[c_{0}, \ell_{1}\right]^{<2^{v}>}$ if and only if $\left(z_{k} x_{k}\right)_{k=1}^{\infty} \in w_{0}$ where $z_{k}=2^{v}$ for $2^{v} \leq k \leq 2^{v+1}-1$ and $v=0,1, \ldots$.
The results of Corollaries 3.2 and 3.3 also hold for $r=p=1$, since obviously $\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}=\left[\ell_{1}, \ell_{1}\right]^{<k(v)>}=\ell_{1}$ and
 3.2 and 3.3 also hold when $X=\left[c_{0}, \ell_{\infty}\right]^{<k(v)\rangle}$.

When $X=\left[c_{0}, \ell_{p}\right]^{<k(v)\rangle}$ for $1 \leq p<\infty$ then it easily follows ([11]) that $\|\cdot\|_{\left[c_{0}, \ell_{p}\right]<\langle(v)\rangle}^{*}=\|\cdot\|_{\left[1_{1}, \ell_{q}\right]^{*<(v)\rangle} \text {, and the results of }}$
 3.3 hold for those operators on $\left[\ell_{\infty}, \ell_{p}\right]^{<k(v)\rangle}$ that are given by matrices.

Since $Y=\left[\ell_{\infty}, \ell_{1}\right]^{<m(\mu)>}$ does not have $A K$, we cannot use the Goldenštein-Gohberg-Markus theorem. Similarly as in the proof of [2, Theorem 4.1 (c)] we would obtain estimates for $\|L\|_{x}$ with the lower bound equal to 0 in each case, and only sufficient conditions for L to be compact, which are not necessary, in general.

Acknowledgements. The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

References

[1] F. Başar, E. Malkowsky, B. Altay, The characterisation of compact operators on spaces of strongly summable and bounded sequences, Appl. Math. Comput. 217 (2011) 5199-5207
[2] I. Djolović, E. Malkowsky, A note on compact operators on matrix domains, J. Math. Anal. Appl. 340 (2008) 291-303
[3] I. Djolović, E. Malkowsky, Compact operators into the spaces of strongly C_{1}-summable and bounded sequences, Nonlinear Analysis 74 (2011) 3736-3750
[4] K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Mathematics No. 1679, Springer-Verlag 1998
[5] K.-G. Grosse-Erdmann, Strong weighted mean summability and Kuttner's theorem, J. London Math. Soc. 259(3)(1999) 987-1002
[6] J. H. Hedlund, Multipliers of H^{p} spaces, J. Math. Mech. 18 (1968/1969) 1067-1074
[7] A. A. Jagers, A note on the Cesàro sequence spaces, Nieuw Arch. Wisk. 22 (1974) 113-124
[8] A. M. Jarrah, E. Malkowsky, Mixed norm spaces of difference sequences and matrix transformations, Mat. Vesnik 54 (2002) 93-110
[9] A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003) 59-78
[10] C. N. Kellog, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971) 121-127
[11] I. J. Maddox, On Kuttner's theorem J. London Math. Soc. 43 (1968) 285-290
[12] E. Malkowsky, Klassen von Matrixabbildungen in paranormierten FK-Räumen, Analysis 7 (1987) 275-292
[13] E. Malkowsky, A. Alotaibi, Measures of noncompactness on some BK spaces, to appear in Journal of Function Spaces and Applications
[14] E. Malkowsky, V. Rakočević, An Introduction into the Theory of Sequence Spaces and Measures of Noncompactness, Zb. rad. Beogr. 9(17), Matematički institut SANU, Beograd (2000) 143-234
[15] A. Peyerimhoff, Über ein Lemma von Herrn Chow, J. London Math. Soc. 32 (1957) 33-36
[16] J. M. Ayerbe Toledano, T. Dominguez Benavides, G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, Vol 99, Birkhäuser, Basel, Boston, Berlin, 1997
[17] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, vol. 85, Amsterdam, 1984

[^0]: 2010 Mathematics Subject Classification. Primary 47H08; Secondary 46B45, 46B50
 Keywords. Mixed norm spaces; matrix transformations; Hausdorff measure of noncompactness; compact operators
 Received: 13 November 2013; Accepted: 16 December 2013
 Communicated by Bruno de Malafosse
 Email addresses: mathker11@hotmail.com (A. Alotaibi), eberhard.malkowsky@math.uni-giessen.de (E. Malkowsky), h.sakirkaya@hotmail.com (H. Nergiz)

