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Abstract. The aim of this work is to study the global existence of solutions for the Cauchy problem of a
Klein-Gordon equation with high energy initial data. The proof relies on constructing a new functional,
which includes both the initial displacement and the initial velocity: with sign preserving property of the
new functional we show the existence of global weak solutions.

1. Introduction

The nonlinear Klein-Gordon equation with quadratic nonlinearity is

utt − uxx + αu − βu2 = 0, (1)

where α, and β , 0. Eq. (1) arises in many scientific applications such as solid state physics, nonlinear
optics and quantum field theory. The Klein-Gordon equation is the first relativistic equation in quantum
mechanics for the wave function of a particle with zero spin. It was proposed as a relativistic generalization
of the Schrödinger equation and was investigated in many papers [1, 2, 4–6, 9, 12, 15, 23, 26].

The goal of the present paper is to investigate the existence of global solutions for the Cauchy problem
of the Klein-Gordon equation with dissipation

utt − ∆u + u + ut = |u|p−1 u, x ∈ Rn, t > 0, (2)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Rn, (3)

where u0 and u1 are the initial value functions, n ≥ 2 and 1 < p < n+2
n−2 if n ≥ 3, 1 < p < ∞ if n = 2. Evolution

equations with dissipation are studied from various aspects in many papers [3, 13, 16, 17, 19].
In the present paper, we investigate the existence of global solutions by using the potential well method

[18]. Sattinger [18] investigated global existence of the initial-boundary value problem of the following
nonlinear hyperbolic equation

utt − ∇
2u + f (x,u) = 0
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in the case of initial energy less than the potential well depth d. Then this result extended to the total energy
of the initial data is less than or equal to d [24]. Very recently in a paper of Kutev et al. [8] it was proved that
there exist global solutions when the total energy of initial data is greater than d and they established the
existence of global weak solutions by constructing a functional which include both the initial displacement
and the initial velocity. Because they showed numerically that the initial velocity plays a crucial role in
the behaviour of the problem. Problem (2), (3) was already treated in the E (0) ≤ d case by Runzhang [25],
but the functional I (u) used in their paper fails to prove the E (0) > d case. Although a strongly damped
nonlinear Klein-Gordon equation is studied in [26] and a blow up result was given for the high energy intial
data, i.e. E (0) > d, the global existence was studied for E (0) ≤ d. In the present paper, we reinvestigate the
problem for the case E (0) ≤ d,where we use a standard functional that include only the initial displacement
u0. Then, we prove that the existence of global solutions for E (0) > d can not be proved via sign invariance
of this functional. A new functional which includes both the initial displacement u0 and initial velocity
u1 will be constructed for the case of high energy initial data. Functionals depending on u0 and u1 are
introduced for the first time in [8] and then they were successfully applied for proving the global existence
to some Boussinesq-type equations in [20–22].

Throughout this paper Hs = Hs (Rn) will denote the L2 Sobolev space on Rn with norm
∥∥∥ f

∥∥∥
Hs =∥∥∥(I − ∆)

s
2 f

∥∥∥ =

∥∥∥∥∥(1 + k2
) s

2 f̂
∥∥∥∥∥ , where s is a real number, I is unitary operator. The notation

∥∥∥ f
∥∥∥

p,
∥∥∥ f

∥∥∥ and∥∥∥ f
∥∥∥
∞

will be used instead of norms of Lp (Rn), L2 (Rn) and L∞ (Rn) , respectively.

2. Global Existence for E (0) ≤ d

The present section refers to two points. Firstly, we define a functional which includes only the initial
displacement, and prove the existence of global solutions for E (0) ≤ d by aid of the sign invariance of this
functional. We then show that this functional fails to prove the global existence in the case of E (0) > d.

Now, let us define

E (t) = E (u (t) ,ut (t)) =
1
2

[
‖ut‖

2 + ‖∇u‖2 + ‖u‖2
]
−

1
p + 1

‖u‖p+1
p+1 , (4)

E (t) +

∫ t

0
‖uτ‖2 dτ = E (0)

J (u) =
1
2

(
‖∇u‖2 + ‖u‖2

)
−

1
p + 1

‖u‖p+1
p+1 , (5)

I (u) =
(
‖∇u‖2 + ‖u‖2

)
− ‖u‖p+1

p+1 , (6)

d = inf
u∈N

J (u) , (7)

where N =
{
u ∈ H1

| I (u) = 0, ‖u‖H1 , 0
}
, E (u (t) ,ut (t)) is the total energy, J (u) is the potential energy and d

is the depth of potential well which can exactly be written in terms of the Sobolev constant as

d =
p − 1

2
(
p + 1

) (
Sp+1

p

)−2/(p−1)
. (8)

Here Sp is the imbedding constant from H1 (Rn) into Lp+1 (Rn) given by

Sp = sup
u∈H1

‖u‖p+1

‖u‖H1
.

When 0 < E (0) < d, by the sign invariance of (6) one can prove the existence of global solutions of (2), (3).
Existence of global solutions was proved by such functionals for problem (2), (3) in [25]. It was proved in
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[25] that if I (u) > 0, then every weak solutions of the problem exist globally, and if I (u) < 0, then every
weak solutions of the problem blow up in finite time.

For σ > − p−1
2 , define

Iσ (u) = (1 − σ)
(
‖∇u‖2 + ‖u‖2

)
− ‖u‖p+1

p+1

= I (u) − σ
(
‖∇u‖2 + ‖u‖2

)
.

Then Dσ and Nσ are defined by

Dσ = inf
u∈Nσ

J (u) , Nσ =
{
u ∈ H1 : Iσ (u) = 0, ‖u‖H1 , 0

}
.

Obviously, taking σ = 0, Iσ corresponds to the functional I (u) . Moreover, if σ < − p−1
2 then Dσ < 0. In this

case for E (0) = Dσ < 0, all weak solutions of (2), (3) blow-up in a finite time.
For σ ∈

(
−

p−1
2 , 1

)
, we have the following lemmas.

Lemma 2.1. Assume that u ∈ H1 (Rn). If Iσ (u) < 0, then ‖u‖H1 >
(

1−σ
Sp+1

p

)1/(p−1)
. If Iσ (u) = 0, then ‖u‖H1 ≥(

1−σ
Sp+1

p

)1/(p−1)
or ‖u‖H1 = 0.

Proof. First, since Iσ (u) < 0, we have ‖u‖H1 , 0. Hence, from

(1 − σ) ‖u‖2H1 < ‖u‖
p+1
p+1 ≤ Sp+1

p ‖u‖p+1
H1 , (9)

we have ‖u‖H1 >
(

1−σ
Sp+1

p

)1/(p−1)
.

If ‖u‖H1 = 0, then Iσ (u) = 0. If Iσ (u) = 0 and ‖u‖H1 , 0, then from

(1 − σ) ‖u‖2H1 = ‖u‖p+1
p+1 ≤ Sp+1

p ‖u‖p+1
H1

it follows that ‖u‖H1 ≥

(
1−σ
Sp+1

p

)1/(p−1)
.

Lemma 2.2. If ‖u‖H1 <
(

1−σ
Sp+1

p

)1/(p−1)
, then Iσ (u) > 0.

Proof. By ‖u‖H1 <
(

1−σ
Sp+1

p

)1/(p−1)
, we obtain

‖u‖p+1
p+1 ≤ Sp+1

p ‖u‖p+1
H1 < (1 − σ) ‖u‖2H1

from which follows Iσ (u) > 0.

Theorem 2.3. Let Dσ be defined as above. Then for σ > − p−1
2 , we have

Dσ =
p − 1 + 2σ
2
(
p + 1

)  |1 − σ|Sp+1
p


2/(p−1)

.

If we write Dσ in terms of d, we obtain

Dσ =
p − 1 + 2σ
2
(
p + 1

) |1 − σ|2/(p−1) 2
(
p + 1

)
p − 1

d. (10)
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Proof. If u ∈ Nσ, we have by Lemma 2.1 that ‖u‖H1 ≥

(
1−σ
Sp+1

p

)1/(p−1)
. In the proof of Lemma 2.1 the inequality

(9) is an equality iff u is a minimizer of the imbedding H1 into Lp+1. Since ‖u‖p+1 = Sp ‖u‖H1 is attained only

for ũ =
(
cosh

( p−1
2

)
x
)− 2

p−1 for n = 1 [11], and for the ground state solution of (2), (3) for n > 1 [14] and it has
constant sign, we have

inf
u∈Nσ

‖u‖H1 =

1 − σ

Sp+1
p


1/(p−1)

.

Hence from

inf
u∈Nσ

J (u) = inf
u∈Nσ

(
1
2
‖u‖2H1 −

1
p + 1

‖u‖p+1
p+1

)
= inf

u∈Nσ

[(
1
2
−

(1 − σ)
p + 1

)
‖u‖2H1 +

1
p + 1

Iσ (u)
]

=

(
1
2
−

(1 − σ)
p + 1

)
inf

u∈Nσ

‖u‖2H1 ,

and by definition of Dσ we obtain Dσ =
p−1+2σ
2(p+1)

(
1−σ
Sp+1

p

)2/(p−1)
.

We can also state the following properties of Dσ, which can be proved easily.

i) Dσ is strictly increasing on σ ∈
(
−

p−1
2 , 0

)
∪ (1,∞) and strictly decreasing on (0, 1).

ii) lim
σ→1

Dσ = 0, and Dσ0 = 0, where σ0 = −
p−1

2 .

The following theorems show the invariance of Iσ under the flow of (2), (3) for 0 < E (0) < d and E (0) = d,
respectively, and can be proved by contradiction as in [20].

Theorem 2.4. Assume that u0 ∈ H1 (Rn) , u1 ∈ L2 (Rn). Let 0 < E (0) < d. Then the sign of Iσ is invariant under the
flow of (2), (3) for σ ∈ (σ1, σ2] , where σ1 and σ2 are the corresponding minimal negative and minimal positive roots
of equation Dσ = E (0) .

Theorem 2.5. Let all the assumptions of Theorem 2.4 hold and that E (0) = d. Then the sign of I0 (recall that when
E (0) = d, we have σ1 = σ2 = 0) is invariant with respect to (2), (3) for every t ∈ [0,∞) .

Now, we give a lemma for σ > 1, which states similar results to Lemmas 2.1, 2.2, and can be proved
similarly.

Lemma 2.6. Assume that u ∈ H1 (Rn). Let σ > 1. If Iσ (u) > 0, then ‖u‖H1 > s (σ). If Iσ (u) = 0, then ‖u‖H1 ≥ s (σ)

or ‖u‖H1 = 0, where s (σ) =
(
σ−1
Sp+1

p

)1/(p−1)
. Moreover, if ‖u‖H1 < s (σ) , then Iσ (u) ≤ 0 and Iσ (u) = 0 if and only if

‖u‖H1 = 0.

Theorem 2.7. Assume that u0 ∈ H1 (Rn) , u1 ∈ L2 (Rn). If E (0) > 0, then Iσ (u (t)) ≤ 0 for every t > 0 and σ ≥ σm,
where σm is the maximal positive root of Dσ = E (0) .

Proof. We give the proof of the theorem for σ = σm and σ > σm separately. First, we prove the theorem for
σ = σm. By contradiction, assume that there exists some t′ > 0 such that Iσm (u(t′)) > 0. By Lemma 2.1, we
have ‖u‖H1 > 0 and there exists a value σ > σm such that Iσ(u(t′)) = 0. Then, by (4), Dσm = E (0) ≥ J (u (t′)) ≥
inf

u∈Nσ

J (u) = Dσ. By definition of Dσ, for σ > σm > 1 we have Dσ > Dσm . A contradiction occurs, which proves

the theorem for σ = σm. For σ ≥ σm, Iσm (u(t)) ≥ Iσ(u(t)) implies that the theorem is true for every σ ≥ σm.
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The following Corollary gives a more precise result for subcritical initial energy.

Corollary 2.8. Suppose u0 ∈ H1 (Rn) , u1 ∈ L2 (Rn) . Let 0 < E (0) < d and I0 (u0) > 0. Then,

0 < I0 (u (t)) ≤ σm ‖u‖2H1 (11)

for every t > 0.

Proof. We know that for I0 (u (t)) > 0, the solution u (x, t) of problem (2), (3) is globally defined. Since
E (0) = Dσm for some σm > 1 then by Theorem 2.7 we have Iσm (u (t)) ≤ 0 for every t ∈ [0,∞) . Thus we get the
inequality (11) from below and from above.

Remark 2.9. We tried to characterize the behavior of solutions for E (0) > d in terms of initial displacement. We
constituted the new functional Iσ (u) and proved the sign invariance of Iσ (u) for 0 < E (0) < d and E(0) = d. But
the case E (0) > d is still an open question, because from Theorem 2.7, we concluded that in this case Iσ (u) is always
non-positive.

3. Main Results

We will introduce our new functional which will be used for global existence of solutions with high
energy initial data.

M̃ (υ,ω) =
(
‖∇υ‖2 + ‖υ‖2

)
− ‖υ‖

p+1
p+1 − (ω,ω) (12)

for every υ ∈ H1 and ω ∈ L2. For simplicity we denote

M (u, t) = M̃ (u (., t) ,ut (., t)) .

The sign invariance of this new functional can be stated as follows.

Theorem 3.1. Let u0 ∈ H1 (Rn) , u1 ∈ L2 (Rn) and E (0) > 0. For σ > σm, assume that

(u1,u0) +
1
2
‖u0‖

2 +

(
p + 1

)
σ

p − 1 +
(
p + 3

)
σ

E (0) ≤ 0. (13)

If M (u, 0) is positive, then M (u, t) is positive for every t ∈ [0,∞) .

Proof. [Proof]We prove the theorem by contradiction. Let us define

θ (t) = ‖u‖2 +

∫ t

0
‖u‖2 dτ.

Then

θ′ (t) = 2 (ut,u) + ‖u‖2 ,

θ′′ (t) = 2 ‖ut‖
2 + 2 (utt,u) + 2 (ut,u)

= 2 ‖ut‖
2 + 2

[
‖u‖p+1

p+1 − ‖∇u‖2 − ‖u‖2 − (ut,u)
]

+ 2 (ut,u)

= −2M (u, t) .

To get a contradiction, let us assume that there exists some t′ > 0 such that M (u, t′) = 0. Since θ′′ (t) < 0, we
conclude that θ′ (t) is strictly decreasing on [0, t′). Moreover, (13) implies θ′ (0) < 0 and therefore θ′ (t) < 0 in
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[0, t′] , from which follows that θ (t) is strictly decreasing on [0, t′] . By the energy identity and M (u, t′) = 0,
we have

E (0) ≥
1
2
‖ut (t′)‖2 +

p − 1
2
(
p + 1

) (
‖∇u‖2 + ‖u‖2

)
+

1
p + 1

I (u (t′))

=

(
1
2

+
1

p + 1

)
‖ut (t′)‖2 +

p − 1
2
(
p + 1

) (
‖∇u‖2 + ‖u‖2

)
. (14)

Theorem 2.7 and M (u, t′) = 0 yield(
‖∇u‖2 + ‖u‖2

)
≥ σ−1

m I0 (u (t′)) ≥ σ−1
‖ut (t′)‖2 .

The use of this inequality in (14) gives

E (0) ≥
(

1
2

+
1

p + 1
+

p − 1
2
(
p + 1

)
σ

)
‖ut (t′)‖2

=

(
p + 3

)
σ + p − 1

2
(
p + 1

)
σ

[
‖(ut (t′) + u (t′))‖2

−2 (ut (t′) ,u (t′)) − ‖u (t′)‖2
]
.

From the monotonocity of θ (t) and θ′ (t) , we get

E (0) >
(
p + 3

)
σ + p − 1(

p + 1
)
σ

[
− (u1,u0) −

1
2
‖u0‖

2
]

which contradicts with (13). Thus the proof is completed.

Theorem 3.2. Let 1 < p < ∞ for n = 2; 1 < p < n+2
n−2 for n ≥ 3 and u0 ∈ H1 (Rn) , u1 ∈ L2 (Rn). Suppose that

E (0) > 0, M (u, 0) > 0 and (13) holds for some σ > σm. Then, the weak solution of problem (2),(3) is globally defined
for every t ∈ [0,∞).

Proof. [Proof]The proof of this theorem follows from adding some arguments to the local existence result
of Proposition 1.1 of [25]. M (u, 0) > 0 implies from the sign preserving property of M (u, t) that M (u, t) > 0,
thereby I0 (u) > 0 for every t > 0. From enegy identity, we have

E (0) ≥
1
2
‖ut‖

2 +
p − 1

2
(
p + 1

) (
‖∇u‖2 + ‖u‖2

)
+

1
p + 1

I (u)

≥
1
2
‖ut‖

2 +
p − 1

2
(
p + 1

) (
‖∇u‖2 + ‖u‖2

)
.

Therefore ‖u‖H1 and ‖ut‖L2 are bounded for every t > 0. The previously mentioned local existence theory
completes the proof.
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